Secondary Storage Devices: CD-ROM

Last Time : Magnetic Tapes

Today

- Complete discussion of magnetic tapes from last class
- Physical Organization of CD-ROM
- CD-ROM Strengths and Weaknesses

Reference: Folk, Zoellick and Riccardi. Sections 3.5 and 3.6.

Physical Organization of CD-ROM

Compact Disc - read only memory (write once)

- Data is encoded and read optically with a laser
- Can store around 600 MB data

Digital data is represented as a series of **Pits** and **Lands**.

Pit = a little depression, forming a lower level in the track Land = the flat part between pits, or the upper levels in the track

Reading a CD is done by shining a laser at the disc and detecting changing reflections patterns.

1 = change in height (land to pit or pit to land) 0 = a "fixed" amount of time between 1's

	Ι	LAI	١D				P]	ΓT				L	ANI)			F	PIJ	[Ι	LAI	١D		
 						-+ _			+-							-+ _				+-			••	•
 0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0		

Changes in height in the track are detected as changes of intensity of th reflected light.

Note: We cannot have two 1's in a row!

Indeed, because of other limitations there must be at least two and at most ten 0's between two 1's.

Therefore, each of the 256 bytes must be encoded into a sequence of bits that has every pair of 1's separated by at least two zeros. There tare exactly 267 binary words of length 14 that satisfy this property; 256 of them were chosen to represent every possible byte in the so-called eight to fourteen modulation. We could not encode bytes using 13 bits since there are only 188 words of length 13 having the desired property.

Eight to fourteen modulation (EFM) encoding table:

Original	Translated
Bits	Bits
00000000	01001000100000
0000001	1000010000000
00000010	10010000100000
00000011	10001000100000
00000100	0100010000000
00000101	00000100010000
00000110	00010000100000
00000111	0010010000000
00001000	01001001000000
	Original Bits 00000000 0000001 00000010 00000100 00000101 00000110 00000111 00000111

Lecture 0	Date: January 22-23, 2001 Prof. Lucia Moura	CSI 2131 Lecture 6	Page: 3
-----------	--	-----------------------	---------

Note that: Since 0's are represented by the **length of time** between transitions, we must travel at **constant linear velocity** on the tracks.

Comparing CD-ROM with magnetic disks:

CR-ROM	Magnetic Disks
CLV = Constant Linear Velocity	CAV = Constant Angular Veloc-
	ity
Sectors organized along a spiral	Sectors organized in concentric
	track
Sectors have same linear length	Sectors have same angular length
(data packed at its maximum	(data written less densely in the
density permitted)	outer tracks)
Advantage: takes advantage of all	Advantage: operates on constant
storage space available	speed, timing marks to delimit
	tracks
Disadvantage: has to change	Disadvantage: it doesn't use up
rotational speed when seeking	all storage available
(slower towards the outside)	

Addressing

1 second of play time is divided up into 75 sectors.

Each sector holds 2KB.

60 Min CD : 60 min x 60 sec/min x 75 sectors/sec = 270,000 sectors = 540,000 KB \sim 540 MB

A sector is addressed by : Minute : Second : Sector 16:22:34 16 min, 22 sec, 34th sector

Date: January 22-23, 2001 Prof. Lucia Moura	CSI 2131 Lecture 6	Page: 4

Difficulty in Seeking

- To read address of a sector it must be at the correct speed
- But knowing the correct speed depends on the ability to read the address info!

The **drive control mechanism** solves this problem by trial-and-error. This slows down the performance!

CD-ROM Strength and Weaknesses

- Seek performance (~ 500 msecs) Slow Our old analogy : 20 secs (RAM)
 58 days (Magnetic Disks)
 2.5 years (CD-ROM)
- Data transfer rate 150 KB/sec Slow (while \sim 3,000 KB/sec for magnetic disks)
- Storage capacity $\sim 600 \text{ MB}$
- Read-only access (publishing medium)

Things changed nowadays :

- Most drives use CAV or combination of CAV and CLV
- Other types of compact discs :
 - CD-R = compact disc-recordable
 - CD-RW = compact disc-rewritable

They use different technologies which simulates the effect of Pits and Lands.