Recurrence Relations

Lucia Moura

Winter 2010

Recurrence Relations

- A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$.

Recurrence Relations

- A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$.
- Many sequences can be a solution for the same recurrence relation.

$$
a_{n}=2 a_{n-1}-a_{n-2}, \text { for } n \geq 2
$$

The following sequences are solutions of this recurrence relation:

Recurrence Relations

- A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$.
- Many sequences can be a solution for the same recurrence relation.

$$
a_{n}=2 a_{n-1}-a_{n-2}, \text { for } n \geq 2
$$

The following sequences are solutions of this recurrence relation:

- $a_{n}=3 n$, for all $n \geq 0$,

Recurrence Relations

- A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$.
- Many sequences can be a solution for the same recurrence relation.

$$
a_{n}=2 a_{n-1}-a_{n-2}, \text { for } n \geq 2
$$

The following sequences are solutions of this recurrence relation:

- $a_{n}=3 n$, for all $n \geq 0$,
- $a_{n}=5$, for all $n \geq 0$.

Recurrence Relations

- A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more of the previous terms $a_{0}, a_{1}, \ldots, a_{n-1}$, for all integers n with $n \geq n_{0}$.
- Many sequences can be a solution for the same recurrence relation.

$$
a_{n}=2 a_{n-1}-a_{n-2}, \text { for } n \geq 2
$$

The following sequences are solutions of this recurrence relation:

- $a_{n}=3 n$, for all $n \geq 0$,
- $a_{n}=5$, for all $n \geq 0$.
- The initial conditions for a sequence specify the terms before n_{0} (before the recurrence relation takes effect).
The recurrence relations together with the initial conditions uniquely determines the sequence. For the example above, the initial conditions are: $a_{0}=0, a_{1}=3$; and $a_{0}=5, a_{1}=5$; respectively.

Modeling with Recurrence Relations (used for advanced counting)

- Compound interest: A person deposits $\$ 10,000$ into savings that yields 11% per year with interest compound annually. How much is in the account in 30 years?
- Growth of rabbit population on an island:

A young pair of rabbits of opposite sex are placed on an island. A pair of rabbits do not breed until they are 2 months old, but then they produce another pair each month. Find a recurrence relation for the number of pairs of rabbits on the island after n months.

- The Hanoi Tower:

Setup a recurrence relation for the sequence representing the number of moves needed to solve the Hanoi tower puzzle.

- Find a recurrence relation for the number of bit strings of length n that do not have two consecutive 0s, and also give initial conditions.

Linear Homogeneous Recurrence Relations

We will study more closely linear homogeneous recurrence relations of degree k with constant coefficients:

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers and $c_{k} \neq 0$.
linear $=$ previous terms appear with exponent 1 (not squares, cubes, etc), homogeneous $=$ no term other than the multiples of a_{i} 's, degree $k=$ expressed in terms of previous k terms constant coefficients $=$ coefficients in front of the terms are constants, instead of general functions.

This recurrence relation plus k initial conditions uniquely determines the sequence.

Which of the following are linear homogeneous recurrence relations of degree k with constant coefficients? If yes, determine k; if no, explain why not.

- $P_{n}=(1.11) P_{n-1}$
- $f_{n}=f_{n-1}+f_{n-2}$
- $H_{n}=2 H_{n-1}+1$
- $a_{n}=a_{n-5}$
- $a_{n}=a_{n-1}+a_{n-2}^{2}$
- $B_{n}=n B_{n-1}$

Solving Linear Homogeneous Recurrence Relations with Constant Coefficients

Theorem (1)

Let c_{1} and c_{2} be real numbers. Suppose that $r^{2}-c_{1} r-c_{2}=0$ has two distinct roots r_{1} and r_{2}. Then, the sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ if and only if $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$ for $n=0,1,2, \ldots$, where α_{1} and α_{2} are constants.

Proof: (\Leftarrow) If $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$, then $\left\{a_{n}\right\}$ is a solution for the recurrence relation.
(\Rightarrow) If $\left\{a_{n}\right\}$ is a solution for the recurrence relation, then $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$, for some constants α_{1} and α_{2}.

Exercises:

(1) Solve: $a_{n}=a_{n-1}+2 a_{n-2}$ with $a_{o}=2$ and $a_{1}=7$
(2) Find explicit formula for the Fibonacci Numbers.

Root with multiplicity 2...
Theorem (2)
Let c_{1} and c_{2} be real numbers with $c_{2} \neq 0$. Suppose that $r^{2}-c_{1} r-c_{2}=0$ has only one root r_{0}. A sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ if and only if $a_{n}=\alpha_{1} r_{0}^{n}+\alpha_{2} n r_{0}^{n}$, for $n=0,1,2 \ldots$, where α_{1} and α_{2} are constants.

Exercise:

Solve the recurrence relation $a_{n}=6 a_{n-1}-9 a_{n-2}$, with initial conditions $a_{0}=1, a_{1}=6$.

Exercise:

Solve the recurrence relation $a_{n}=6 a_{n-1}-9 a_{n-2}$, with initial conditions $a_{0}=1, a_{1}=6$.

Solution:

$r^{2}-6 r+9=0$ has only 3 as a root.
So the format of the solution is $a_{n}=\alpha_{1} 3^{n}+\alpha_{2} n 3^{n}$. Need to determine α_{1} and α_{2} from initial conditions:

$$
\begin{aligned}
& a_{0}=1=\alpha_{1} \\
& a_{1}=6=\alpha_{1} \cdot 3+\alpha_{2} 3
\end{aligned}
$$

Solving these equations we get $\alpha_{1}=1$ and $\alpha_{2}=1$.
Therefore, $a_{n}=3^{n}+n 3^{n}$.
Question: how can you double check this answer is right?

Theorem (3)

Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation $r^{k}-c_{1} r^{k-1}-\cdots-c_{k}=0$ has k distinct roots $r_{1}, r_{2}, \ldots, r_{k}$. Then, a sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

if and only if $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\cdots+\alpha_{k} r_{k}^{n}$ for $n=0,1,2, \ldots$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are constants.

Exercise:

Find the solution to the recurrence relation

$$
a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3}
$$

with the initial conditions $a_{0}=2, a_{1}=5$, and $a_{2}=15$.

Theorem (4)

Let $c_{1}, c_{2}, \ldots, c_{k}$ be real numbers. Suppose that the characteristic equation $r^{k}-c_{1} r^{k-1}-\cdots-c_{k}=0$ has t distinct roots $r_{1}, r_{2}, \ldots, r_{t}$ with multiplicities $m_{1}, m_{2}, \ldots, m_{t}$, respectively, so that $m_{i} \geq 1$ and $m_{1}+m_{2}+\cdots+m_{t}=k$. Then, a sequence $\left\{a_{n}\right\}$ is a solution of the recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

if and only if

$$
\begin{aligned}
a_{n}= & \left(\alpha_{1,0}+\alpha_{1,1} n+\cdots \alpha_{1, m_{1}-1} n^{m_{1}-1}\right) r_{1}^{n} \\
& +\left(\alpha_{2,0}+\alpha_{2,1} n+\cdots \alpha_{2, m_{2}-1} n^{m_{2}-1}\right) r_{2}^{n} \\
& +\cdots+\left(\alpha_{t, 0}+\alpha_{t, 1} n+\cdots \alpha_{t, m_{t}-1} n^{m_{t}-1}\right) r_{t}^{n}
\end{aligned}
$$

for $n=0,1,2, \ldots$, where $\alpha_{i, j}$ are constants for $1 \leq i \leq t, 0 \leq j \leq m_{i}-1$.

Exercise:

Find the solution to the recurrence relation

$$
a_{n}=-3 a_{n-1}-3 a_{n-2}-a_{n-3},
$$

with initial conditions $a_{0}=1, a_{1}=-2$ and $a_{2}=-1$.

Non-homogeneous Recurrence Relations

We look not at linear non-homogeneous recurrence relation with constant coefficients, that is, one of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n)
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers and $F(n)$ is a function not identically zero depending only on n.
The recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

is the associated homogeneous recurrence relation.

Solving Non-homogeneous Linear Recurrence Relations

Theorem (5)

If $\left\{a_{n}^{(p)}\right\}$ is a particular solution for the non-homogeneous linear recurrence relation with constant coefficients

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n)
$$

then every solution is of the form $\left\{a_{n}^{(p)}+a_{n}^{(h)}\right\}$, where $\left\{a_{n}^{(h)}\right\}$ is a solution of the associated homogeneous recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

Key: find a particular solution to the non-homogeneous case and we are done, since we know how to solve the homogeneous one.

Finding a particular solution

Theorem (6)

Suppose that $\left\{a_{n}\right\}$ satisfies the linear non-homogeneous recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+F(n)$, where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers and $F(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\cdots+b_{1} n+b_{0}\right) s^{n}$, where $b_{0}, b_{1}, \ldots, b_{t}$ and s are real numbers.
When s is NOT a root of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form

$$
\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\cdots+p_{1} n+p_{0}\right) s^{n}
$$

When s is a root of the characteristic equation and its multiplicity is m, there is a particular solution of the form

$$
n^{m}\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\cdots+p_{1} n+p_{0}\right) s^{n}
$$

Exercises: (roots of characteristic polynomial are given to simplify your work) Find all solutions of

- $a_{n}=3 a_{n-1}+2 n$. What is the solution with $a_{1}=3$? (root: $r_{1}=3$)
- $a_{n}=5 a_{n-1}-6 a_{n-2}+7^{n}$ (root: $r_{1}=3, r_{2}=2$)

What is the form of a particular solution to

$$
a_{n}=6 a_{n-1}-9 a_{n-2}+F(n),
$$

when:

- $F(n)=3^{n}$,
- $F(n)=n 3^{n}$,
- $F(n)=n^{2} 2^{n}$,
- $F(n)=\left(n^{2}+1\right) 3^{n}$.
(root: $r_{1}=3$, multiplicity 2)

Divide-and-Conquer Recurrence Relations

- Divide-and-conquer algorithms:

Divide-and-Conquer Recurrence Relations

- Divide-and-conquer algorithms:
- divide a problem of size n into a subproblems of size b,

Divide-and-Conquer Recurrence Relations

- Divide-and-conquer algorithms:
- divide a problem of size n into a subproblems of size b,
- use some extra operations to combine the individual solutions into the final solution for the problem of size n, say $g(n)$ steps.

Divide-and-Conquer Recurrence Relations

- Divide-and-conquer algorithms:
- divide a problem of size n into a subproblems of size b,
- use some extra operations to combine the individual solutions into the final solution for the problem of size n, say $g(n)$ steps.
- Examples: binary search, merge sort, fast multiplication of integers, fast matrix multiplication.

Divide-and-Conquer Recurrence Relations

- Divide-and-conquer algorithms:
- divide a problem of size n into a subproblems of size b,
- use some extra operations to combine the individual solutions into the final solution for the problem of size n, say $g(n)$ steps.
- Examples: binary search, merge sort, fast multiplication of integers, fast matrix multiplication.
- A divide-and-conquer recurrence relation, expresses the number of steps $f(n)$ needed to solve the problem:

$$
f(n)=a f(n / b)+c n^{d} .
$$

(for simplicity assume this is defined for n that are multiples of b; otherwise there are roundings up or down to closest integers)

Examples

Give the recurrence relations for:

- Mergesort
- Binary search
- Finding both maximum and minimum over a array of length n by dividing it into 2 pieces and the comparing their individual maxima and minima.

Master Theorem for Divide-and-Conquer Recurrence Relations

Theorem (Master Theorem)

Let f be an increasing function that satisfies the recurrence relation:

$$
f(n)=a f(n / b)+c n^{d}
$$

whenever $n=b^{k}$, where k is a positive integer, $a \geq 1, b$ is an integer greater than 1 , and c and d are real numbers with c positive and d non-negative. Then,

	$O\left(n^{d}\right)$	if $a<b^{d}$
$f(n)$ is	$O\left(n^{d} \log n\right)$	if $a=b^{d}$
	$O\left(n^{\log _{b} a}\right)$	if $a>b^{d}$.

Proof of the master theorem

We can prove the theorem by showing the following steps:
(1) Show that if $a=b^{d}$ and n is a power of b, then $f(n)=f(1) n^{d}+c n^{d} \log _{b} n$.
Once this is shown, it is clear that if $a=b^{d}$ then $f(n) \in O\left(n^{d} \log n\right)$.
(2) Show that if $a \neq b^{d}$ and n is a power of b, then
$f(n)=c_{1} n^{d}+c_{2} n^{\log _{b} a}$, where $c_{1}=b^{d} c /\left(b^{d}-a\right)$ and $c_{2}=f(1)+b^{d} c /\left(a-b^{d}\right)$.
(3) Once the previous is shown, we get:
if $a<b^{d}$, then $\log _{b} a<d$, so
$f(n)=c_{1} n^{d}+c_{2} n^{\log _{b} a} \leq\left(c_{1}+c_{2}\right) n^{d} \in O\left(n^{d}\right)$.
if $a>b^{d}$, then $\log _{b} a>d$, so
$f(n)=c_{1} n^{d}+c_{2} n^{\log _{b} a} \leq\left(c_{1}+c_{2}\right) n^{\log _{b} a} \in O\left(n^{\log _{b} a}\right)$.

Proving item 1:

Lemma

If $a=b^{d}$ and n is a power of b, then $f(n)=f(1) n^{d}+c n^{d} \log _{b} n$.

Proof:

Let $k=\log _{b} n$, that is $n^{k}=b$. Iterating $f(n)=a f(n / b)+c n^{d}$, we get:

$$
\begin{aligned}
f(n) & =a\left(a f\left(n / b^{2}\right)+c(n / b)^{d}\right)+c n^{d}=a^{2} f\left(n / b^{2}\right)+a c(n / b)^{d}+c n^{d} \\
& =a^{2}\left(a f\left(n / b^{3}\right)+c\left(n / b^{2}\right)\right)+a c(n / b)^{d}+c n^{d} \\
& =a^{3} f\left(n / b^{3}\right)+a^{2} c\left(n / b^{2}\right)^{d}+a c(n / b)^{d}+c n^{d} \\
& =\ldots=a^{k} f(1)+\sum_{j=0}^{k-1} a^{j} c\left(n / b^{j}\right)^{d}=a^{k} f(1)+\sum_{j=0}^{k-1} c n^{d} \\
& =a^{k} f(1)+k c n^{d}=a^{\log _{b} n} f(1)+\left(\log _{b} n\right) c n^{d} \\
& =n^{\log _{b} a} f(1)+c n^{d} \log _{b} n=n^{d} f(1)+c n^{d} \log _{b} n .
\end{aligned}
$$

Proving item 2:

Lemma

If $a \neq b^{d}$ and n is a power of b, then $f(n)=c_{1} n^{d}+c_{2} n^{\log _{b} a}$, where $c_{1}=b^{d} c /\left(b^{d}-a\right)$ and $c_{2}=f(1)+b^{d} c /\left(a-b^{d}\right)$.

Proof:

Let $k=\log _{b} n$; i. e. $n=b^{k}$. We will prove the lemma by induction on k. Basis: If $n=1$ and $k=0$, then $c_{1} n^{d}+c_{2} n^{\log _{b} a}=c_{1}+c_{2}=b^{d} c /\left(b^{d}-a\right)+f(1)+b^{d} c /\left(a-b^{d}\right)=f(1)$. Inductive step: Assume lemma is true for k, where $n=b^{k}$. Then, for $n=b^{k+1}, f(n)=a f(n / b)+c n^{d}=$ $\left.a\left(\left(b^{d} c /\left(b^{d}-a\right)\right)(n / b)^{d}+\left(f(1)+b^{d} c /\left(a-b^{d}\right)\right)(n / b)^{\log _{b} a}\right)\right)+c n^{d}=$ $\left(b^{d} c /\left(b^{d}-a\right)\right) n^{d} a / b^{d}+\left(f(1)+b^{d} c /\left(a-b^{d}\right)\right) n^{\log _{b} a}+c n^{d}=$ $n^{d}\left[a c /\left(b^{d}-a\right)+c\left(b^{d}-a\right) /\left(b^{d}-a\right)\right]+\left[f(1)+b^{d} c /\left(a-b^{d} c\right)\right] n^{\log _{b} a}=$ $\left(b^{d} c /\left(b^{d}-a\right)\right) n^{d}+\left(f(1)+b^{d} c /\left(a-b^{d}\right)\right) n^{\log _{b} a}$.

Use the master theorem to determine the asymptotic growth of the following recurrence relations:

- binary search: $b(n)=b(n / 2)+2$;
- mergesort: $M(n)=2 M(n / 2)+n$;
- maximum/minima: $m(n)=2 m(n / 2)+2$.

You have divided and conquered; have you saved in all cases?

