
Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Induction and Recursion

Lucia Moura

Winter 2010

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Mathematical Induction

Mathematical Induction

Principle (of Mathematical Induction)

Suppose you want to prove that a statement about an integer n is true for
every positive integer n.

Define a propositional function P (n) that describes the statement to
be proven about n.

To prove that P (n) is true for all n ≥ 1, do the following two steps:
I Basis Step: Prove that P (1) is true.
I Inductive Step: Let k ≥ 1. Assume P (k) is true, and prove that
P (k + 1) is true.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Mathematical Induction

Types of statements that can be proven by induction
1 Summation formulas

Prove that 1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1, for all integers n ≥ 0.
2 Inequalities

Prove that 2n < n! for every positive integer n with n ≥ 4.
3 Divisibility results

Prove that n3 − n is divisible by 3 for every positive integer n.
4 Results about sets

Prove that if S is a set with n elements where n is a nonnegative
integer, then S has 2n subsets.

5 Creative use of mathematical induction
Show that for n a positive integer, every 2n × 2n checkerboard with
one square removed can be tiled using right triominoes (L shape).

6 Results about algorithms
Prove that procedure fac(n) returns n! for all nonnegative integers
n ≥ 0.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Mathematical Induction

Prove that algorithm fac(n) returns n! for all nonnegative integers n ≥ 0.

procedure fac(n: nonnegative integer)
if (n = 0) then return 1

else return n∗fac(n− 1)

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Strong Induction or Complete Induction

Strong Induction

Principle (of Strong Induction)

Suppose you want to prove that a statement about an integer n is true for
every positive integer n.

Define a propositional function P (n) that describes the statement to
be proven about n.

To prove that P (n) is true for all n ≥ 1, do the following two steps:
I Basis Step: Prove that P (1) is true.
I Inductive Step: Let k ≥ 1. Assume P (1), P (2), . . . , P (k) are all true,

and prove that P (k + 1) is true.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Strong Induction or Complete Induction

Use strong induction to prove:

Theorem (The Fundamental Theorem of Arithmetic)

Every positive integer greater than 1 can be written uniquely as a prime or
as the product of two or more primes where the prime factors are written
in order of nondecreasing size.

Proof:

Part 1: Every positive integer greater than 1 can be written as a prime
or as the product of two or more primes.

Part 2: Show uniqueness, when the primes are written in nondecreasing
order.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Strong Induction or Complete Induction

Proof of Part 1: Consider P (n) the statement “n can be written as a
prime or as the product of two or more primes.”. We will use strong
induction to show that P (n) is true for every integer n ≥ 1.
Basis Step: P (2) is true, since 2 can be written as a prime, itself.
Induction Step: Let k ≥ 2. Assume P (1), P (2), . . . , P (k) are true. We
will prove that P (k + 1) is true, i.e. that k + 1 can be written as a prime
or the product of two or more primes.
Case 1: k + 1 is prime.
If k + 1 is prime, then the statement is true as k + 1 can be written as
itself, a prime.
Case 2: k + 1 is composite.
By definition, there exist two positive integers a and b with
2 ≤ a ≤ b < k + 1, such that k + 1 = ab. Since a, b < k + 1, we know by
induction hypothesis that a and b can each be written as a prime or the
product of two or more primes. Thus, k + 1 = ab can be written as a
product of two or more primes, namely those primes in the prime
factorization of a and those in the prime factorization of b. �

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Strong Induction or Complete Induction

We want to prove Part 2. The following Lemma has been proven.

Lemma (A)

If a, b, and c are positive integers such that gcd(a, b) = 1 and a|bc, then
a|c.

We prove the following lemma using induction.

Lemma (B)

If p is a prime and p|a1a2 · · · an, where each ai is an integer and n ≥ 1,
then p|ai for some i, 1 ≤ i ≤ n.

Proof: Let P (n) be the statement “If a1, a2, . . . , an are integers and p is
a prime number such that p|a1a2 · · · an, then p|ai for some i, 1 ≤ i ≤ n”.
We will prove P (n) is true for all n ≥ 1.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Strong Induction or Complete Induction

Let P (n) be the statement “If a1, a2, . . . , an are integers and p is a prime
number such that p|a1a2 · · · an, then p|ai for some i, 1 ≤ i ≤ n”.
We will prove P (n) is true for all n ≥ 1.

Basis: Prove that P (1) is true.
The statement is trivially true, since for n = 1, p|a1 already gives that p|ai

for some i, 1 ≤ i ≤ 1.

Induction step: Let n ≥ 2. Assume P (n− 1) is true. Prove P (n) is true.
Let p be a prime such that p|a1a2 · · · an. In the case that p|an, we are
done. So, consider the case p 6 | an. Since p is prime, we have
gcd(p, an) = 1, thus, by Lemma A, p|a1 . . . an−1. By induction hypothesis,
we have that p|ai for some i, 1 ≤ i ≤ n− 1. Combining both cases, we
get that p|ai for some i, 1 ≤ i ≤ n.
�

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Strong Induction or Complete Induction

Proof of Part 2: (uniqueness of the prime
factorization of a positive integer).

Suppose by contradiction that n can be written as a product of primes in
two different ways, say n = p1p2 . . . ps and n = q1q2 . . . qt, where each pi

and qj are primes such that p1 ≤ p2 ≤ · · · ≤ ps and q1 ≤ q2 ≤ · · · ≤ qt.
When we remove all common primes from the two factorizations, we have:
pi1pi2 · · · piu = qj1qj2 · · · qjv , where no primes occur on both sides of this
equations and u and v are positive integers.
By Lemma B, pi1 must divide qjk

for some k, 1 ≤ k ≤ v. Since pi1 and
qjk

are primes we must have pi1 = qjk
, which contradicts the fact that no

primes appear on both sides of the given equation.
�

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Strong Induction or Complete Induction

Examples of statements that can be proven by strong
induction

1 Consider a game with 2 players that take turns removing any positive
number of matches they want from one of two piles of matches. The
player that removes the last match wins the game. Prove that if both
piles contains the same number of matches initially, the second player
can always guarantee a win.

2 Prove that every amount of 12 cents or more can be formed with
4-cent and 5-cent stamps. (also try to prove it in a different way
using mathematical induction)

3 Prove that algorithm gcd(a, b) (given in page 313 of the textbook)
returns the gcd(a, b) for all integers a, b, a < b.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Strong Induction or Complete Induction

Prove that procedure gcd(a, b) returns the gcd(a, b) for all integers a, b,
a < b.

procedure gcd(a, b: nonnegative integers with a < b)
if (a = 0) then return b

else return gcd(b mod a, a)

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Recursive Definitions

Recursive Definitions

We can use recursion to define:

functions,

sequences,

sets.

Mathematical induction and strong induction can be used to prove results
about recursively defined sequences and functions.

Structural induction is used to prove results about recursively defined sets.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Recursive Definitions

Recursively Defined Functions
Examples:

Defining the factorial function recursively:

F (0) = 1,
F (n) = n× F (n− 1), for n ≥ 1.

Defining the maximum number of comparisons for the Mergesort
algorithm (given in page 318):

T (1) = 0,
T (n) = T (bn/2c) + T (dn/2e) + n− 1, for n ≥ 2.

Number of moves needed to solve the Hanoi tower problem:

H(1) = 1,
H(n) = 2H(n− 1) + 1, for n ≥ 2.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Recursive Definitions

Recursively Defined Sequences

Consider the Fibonacci numbers, recursively defined by:

f0 = 0,
f1 = 1,
fn = fn−1 + fn−2, for n ≥ 2.

Prove that whenever n ≥ 3, fn > αn−2 where α = (1 +
√

5)/2.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Recursive Definitions

Let P (n) be the statement “fn > αn−2”. We will show that P (n) is true
for n ≥ 3 using strong induction.

Basis: We show that P (3) and P (4) are true:
α = (1 +

√
5)/2 < (1 + 3)/2 = 2 = f3.

α2 = ((1+
√

5)/2)2 = (12+2
√

5+5)/4 = (3+
√

5)/2 < (3+3)/2 = 3 = f4.

Inductive step: Let k ≥ 4. Assume P (j) is true for all integers j with
3 ≤ j ≤ k. Prove that P (k + 1) is true.
We have:

fk+1 = fk + fk−1, (by the definition of the Fibonacci sequence)
> αk−2 + αk−3, (by induction hypothesis)
= αk−3(α+ 1) = αk−3((1 +

√
5)/2 + 1) = αk−3((3 +

√
5)/2)

= αk−3α2 = αk−1.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Recursive Definitions

Recursively Defined Sets and Structures

Definition (Set of strings over an alphabet)

The set Σ∗ of strings over the alphabet Σ can be defined recursively by:
Basis Step: λ ∈ Σ∗ (where λ is the empty string)
Recursive Step: If w ∈ Σ∗ and x ∈ Σ, then wx ∈ Σ∗.

Example: If Σ = {0, 1}, then
Σ∗ = {λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . .}.

Definition (Well-formed formulas of Operators and Operands)

Basis Step: x is a well-formed formula if x is a numeral or variable.
Recursive Step: If F and G are well-formed formulas, then (F +G),
(F −G), (F ∗G), (F/G) and (F ↑ G) are well-formed formulas.

Example: The following are well-formed formulas:
(x ∗ 3), (3/0), ((x+ 2) ∗ y), ((2 + 3)− (x/y)), etc.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Structural Induction

Structural Induction
Structural induction is used to show results about recursively defined sets.

Principle (of Structural Induction)

To show that a statement holds for all elements of a recursively defined
set, use the following steps:

Basis Step: Prove that the statement holds for all elements
specified in the basis step of the set definition.

Recursive Step: Prove that if the statement is true for each of the
elements used to construct elements in the recursive step of the set
definition, then the result holds for these new elements.

The validity of this principle comes from the validity of mathematical
induction, as we can transform the above argument on an induction on n
where n is the number of applications of the recursive step of the set
definition needed to obtain the element we are analysing.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Structural Induction

Example of Structural Induction I
Prove that every well-formed formula of Operators and Operands contains
an equal number of left and right parentheses.
Proof by structural induction:
Basis Step: A numeral or a variable, each contains 0 parentheses, so
clearly they contain an equal number of right and left parentheses.
Recursive Step: Assume F and G are well-formed formulas each
containing an equal number of left and right parentheses. That is, if lF
and lG are the number of left parentheses in F and G, respectively, and
rF and rG are the number of right parentheses in F and G, respectively,
then lF = rF and lG = rG. We need to show that (F +G), (F −G),
(F ∗G), (F/G) and (F ↑ G) also contain an equal number of left and
right parenthesis. For each of these well-formed formulas, the number of
left parentheses is L = lF + lG + 1 and the number of right parentheses is
R = rF + rG + 1. Since lF = rF and lG = rG, it follows that
L = lF + lG + 1 = rF + rG + 1 = R. This concludes the inductive proof. �

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Structural Induction

Example of Structural Induction II

Recall the definition of a set of strings.

Definition (Set of strings over an alphabet)

The set Σ∗ of strings over the alphabet Σ can be defined recursively by:
Basis Step: λ ∈ Σ∗ (where λ is the empty string)
Recursive Step: If w ∈ Σ∗ and x ∈ Σ, then wx ∈ Σ∗.

We now give a definition of concatenation of two strings.
Note how this definition is built on the definition of string.

Definition (Concatenation of two strings)

Basis Step: If w ∈ Σ∗, then w · λ = w.
Recursive Step: If w1 ∈ Σ∗, w2 ∈ Σ∗ and x ∈ Σ, then
w1 · (w2x) = (w1 · w2)x.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Structural Induction

We now give a recursive definition of the reversal of a string.

Definition (Reversal of a string)

Basis Step: λR = λ
Recursive Step: If w ∈ Σ∗ and x ∈ Σ, then (wx)R = x · (w)R.

Exercise: Use structural induction to prove that if w1 and w2 are strings,
then (w1 · w2)R = wR

2 · wR
1 .

Note that this proof needs to use the 3 definitions given above.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Correctness of recursive algorithms

Proving the correctness of recursive programs

Mathematical induction (and strong induction) can be used to prove that
a recursive algorithm is correct:

to prove that the algorithm produces the desired output for all possible
input values.

We will see some examples next.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Correctness of recursive algorithms

Recursive algorithm for computing an

procedure power(a: nonzero real number, n: nonnegative integer)
if (n = 0) then return 1

else return a×power(a, n− 1)

We will prove by mathematical induction on n that the algorithm above is
correct.
We will show P (n) is true for all n ≥ 0, for
P (n): For all nonzero real numbers a, power(a, n) correctly computes an.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Correctness of recursive algorithms

Proving power(a, n) is correct

Basis: If n = 0, the first step of the algorithm tells us that power(a,0)=1.
This is correct because a0 = 1 for every nonzero real number a, so P (0) is
true.

Inductive step:
Let k ≥ 0.
Inductive hypothesis: power(a, k) = ak , for all a 6= 0.
We must show next that power(a, k + 1) = ak+1.
Since k + 1 > 0 the algorithm sets power(a, k + 1) = a×power(a, k).
By inductive hypotheses power(a, k) = ak, so
power(a, k + 1) = a×power(a, k) = a× ak = ak+1.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Correctness of recursive algorithms

Recursive algorithm for computing bn mod m

procedure mpower(b, n,m: integers with m ≥ 2, n ≥ 0)
if n = 0 then return 1;
else if n is even then return mpower(b, n/2,m)2 mod m
else return ((mpower(b, bn/2c,m)2 mod m) ∗ (b mod m)) mod m

Examples:

power(2, 5, 6) =
= ((power(2, 2, 6)2 mod 6) ∗ (2 mod 6)) mod 6
= (((power(2, 1, 6)2 mod 6)2 mod 6) ∗ (2)) mod 6
= ((((power(2, 0, 6)2 mod 6) ∗ (2 mod 6)) mod 6)2 mod 6)2 mod 6)
∗2) mod 6

= ((((12 mod 6) ∗ 2) mod 6)2 mod 6)2 mod 6) ∗ 2) mod 6
= 2.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Correctness of recursive algorithms

Proving mpower(a, n,m) is correct, using induction on n
Basis: Let b and m be integers with m ≥ 2, and n = 0. In this case, the
algorithm returns 1. This is correct because b0 mod m = 1.
Inductive step:
Induction hypothesis: Let k ≥ 1. Assume power(b, j,m) = bj mod m for
all integers j with 0 ≤ j ≤ k − 1, whenever b is a positive integer and m is
an integer with m ≥ 2.
We must show next that power(b, k,m) = bk mod m. There are two
cases to consider.

Case 1: k is even. In this case, the algorithm returns
mpower(b, k/2,m)2 mod m = (i.h.)(bk/2 mod m)2 mod m = bk

mod m.
Case 2: k is odd. In this case, the algorithm returns
((mpower(b, bk/2c,m)2 mod m) ∗ (b mod m)) mod m
= (i.h.)(bbk/2c mod m)2 mod m) ∗ (b mod m)) mod m
= (b2bk/2c+1 mod m) = bk mod m.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Program verification

Program verification

We want to be able to prove that a given program meets the intended
specifications.
This can often be done manually, or even by automated program
verification tools. One example is PVS (People’s Verification System).

A program is correct if it produces the correct output for every possible
input.
A program has partial correctness if it produces the correct output for
every input for which the program eventually halts.
Therefore, a program is correct if and only if it has partial correctnes and
terminates.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Program verification

Hoare’s triple notation

A program’s I/O specification can be given using initial and final
assertions.

I The initial assertion p is the condition that the program’s input (its
initial state) is guaranteed (by its user) to satisfy.

I The final assertion q is the condition that the output produced by the
program (its final state) is required to satisfy.

Hoare triple notation:
I The notation p{S}q means that, for all inputs I such that p(I) is true,

if program S (given input I) halts and produces output O = S(I),
then q(O) is true.

I That is, S is partially correct with respect to specification p, q.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Program verification

A simple example

Let S be the program fragment
y:= 2; z:= x+y

Let p be the initial assertion x=1.
The variable x will hold 1 in all initial states.

Let q be the final assertion z= 3.
The variable z must hold 3 in all final states.

Prove p{S}q.
Proof: If x=1 in the program’s input state, then after running
y:=2 and z:=x+y, then z will be 1 + 2 = 3.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Program verification

Rules of inference for Hoare triples

The composition rule:
p{S1}q
q{S2}r
∴ p{S1;S2}r

It says: If program S1 given condition p produces condition q,
and S2 given q produces r,
then the program “S1 followed by S2”, if given p, yields r.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Program verification

Inference rule for if-then statements

(p ∧ cond){S}q
(p ∧ ¬cond)→ q

∴ p{if cond then S}q

Example: Show that: T{if x > y then y := x}(y ≥ x).

Proof:
When initially T is true, if x > y, then the if-body is executed, setting
y = x, and so afterwards y ≥ x is true. Otherwise, x ≤ y and so y ≥ x.
In either case, the final assertion y ≥ x is true. So the rule applies, and so
the fragment meets the specification.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Program verification

Inference rule for if-then-else statements

(p ∧ cond){S1}q
(p ∧ ¬cond){S2}q
∴ p{if cond then S1 else S2}q

Example: Prove that
T{if x < 0 then abs := −x else abs := x}(abs = |x|)

Proof:
If the initial assertion is true and x < 0 then after the if-body, abs will be
−x = |x|.
If the initial assertion is true, but ¬(x < 0) is true, i.e., x ≥ 0, then after
the else-body, abs = x, which is |x|.
So using the above rule, we get that this segment is true with respect to
the final assertion.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Program verification

Loop Invariants

For a while-loop “while cond S”, we say that p is a loop invariant of this
loop if (p ∧ cond){S}p.

If p (and the continuation condition cond) is true before executing the
body, then p remains true afterwards.

And so p stays true through all subsequent iterations.

This leads to the inference rule:

(p ∧ cond){S}p
∴ p{while cond S}(¬cond ∧ p)

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Program verification

Example1: loop invariant

Prove that the following Hoare triple holds:
T{i := 1; fact := 1; while i < n{i+ +; fact = fact ∗ i}}(fact = n!)

Proof:
Let p be the assertion “‘fact = i! ∧ i ≤ n”. We will show tht p is a loop
invariant.
Assume that at the beginning of the while-loop p is true and the condition
of the while-loop holds, in other words, assume that fact = i! and i < n.
The new values inew and factnew of i and fact are
inew = i+ 1 and
factnew = fact× (i+ 1) = (i!)× (i+ 1) = (i+ 1)! = inew!.
Since i < n, we also have inew = i+ 1 ≤ n.
Thus p is true at the end of the execution of the loop. This shows p is a
loop invariant.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Program verification

Final example: combining all rules

procedure multiply(m,n : integers)
p := “(m,n ∈ Z)”
if n < 0 then a := −n (segment S1)

else a := n
q := “(p ∧ (a = |n|))”
k := 0;x := 0 (segment S2)
r := “q ∧ (k = 0) ∧ (x = 0)”
(x = mk ∧ k ≤ a)
while k < a { (segment S3)

x = x+m; k = k + 1;
}Maintains loop invariant: (x = mk ∧ k ≤ a)
(x = mk ∧ k = a) ∴ s := “(x = ma) ∧ a = |n|)”
s⇒ (n < 0 ∧ x = −mn) ∨ (n ≤ 0 ∧ x = mn)
if n < 0 then prod := −x (segment S4)

else prod := x t = “(prod = mn)”
CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Program verification

Correctness of multiply(m, n)
The proof is structured as follows, by using propositions p, q, r, s, t as
defined in the previous page.

Prove p{S1}q by using if-then-else inference rule.
Prove q{S2}r by examining this trivial segment.
Prove r{S3}s by using while-loop inference rule.
Prove s{S4}t by using if-then-else inference rule.
Use the rule of composition to show that p{S1;S2;S3;S4}t;
recall that p := “(m,n ∈ Z)” and t = “(prod = mn)”, which is what
we wanted to show for the partial correctness.

To complete the proof of correctness, given the partial correctness, we
must verify that each segment terminates.
Termination is trivial for segments S1, S2 and S4; for the while-loop (S4)
it is easy to see that it runs for a iterations.
(See general rule for proving termination of loops in the next page)
We leave the details of each step above as an exercise.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Program verification

Proving termination of a loop

Associate with each iteration i a natural number ki, such that
< k0, k1, k2, . . . > is a decreasing sequence.

Using the well-ordering principle, every decreasing sequence of natural
numbers is finite.

Find a decreasing sequence of natural numbers for the while-loop in
the previous example:

Define ki = a− k
< k0, k1, k2, . . . > is decreasing as a is constant and k increases by 1
at each iteration.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Program verification

Proving termination of a loop

Associate with each iteration i a natural number ki, such that
< k0, k1, k2, . . . > is a decreasing sequence.

Using the well-ordering principle, every decreasing sequence of natural
numbers is finite.

Find a decreasing sequence of natural numbers for the while-loop in
the previous example:

Define ki = a− k
< k0, k1, k2, . . . > is decreasing as a is constant and k increases by 1
at each iteration.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

Induction Strong Induction Recursive Defs and Structural Induction Program Correctness

Program verification

Proving termination of a loop

Associate with each iteration i a natural number ki, such that
< k0, k1, k2, . . . > is a decreasing sequence.

Using the well-ordering principle, every decreasing sequence of natural
numbers is finite.

Find a decreasing sequence of natural numbers for the while-loop in
the previous example:

Define ki = a− k
< k0, k1, k2, . . . > is decreasing as a is constant and k increases by 1
at each iteration.

CSI2101 Discrete Structures Winter 2010: Induction and Recursion Lucia Moura

	Induction
	Mathematical Induction

	Strong Induction
	Strong Induction or Complete Induction

	Recursive Defs and Structural Induction
	Recursive Definitions
	Structural Induction

	Program Correctness
	Correctness of recursive algorithms
	Program verification

