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Propositional Logic: Section 1.1

Proposition

A proposition is a declarative sentence that is either true or false.

Which ones of the following sentences are propositions?

Ottawa is the capital of Canada.

Buenos Aires is the capital of Brazil.

2 + 2 = 4
2 + 2 = 5
if it rains, we don’t need to bring an umbrella.

x+ 2 = 4
x+ y = z

When does the bus come?

Do the right thing.
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Propositional Logic: Section 1.1

Propositional variable and connectives
We use letters p, q, r, . . . to denote propositional variables (variables that
represent propositions).

We can form new propositions from existing propositions using logical
operators or connectives. These new propositions are called compound
propositions.

Summary of connectives:
name nickname symbol

negation NOT ¬
conjunction AND ∧
disjunction OR ∨
exclusive-OR XOR ⊕
implication implies →
biconditional if and only if ↔
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Propositional Logic: Section 1.1

Meaning of connectives

p q ¬p p ∧ q p ∨ q p⊕ q p→ q p↔ q

T T F T T F T T
T F F F T T F F
F T T F T T T F
F F T F F F T T

WARNING:
Implication (p→ q) causes confusion, specially in line 3: “F → T” is true.
One way to remember is that the rule to be obeyed is
“if the premise p is true then the consequence q must be true.”
The only truth assignment that falsifies this is p = T and q = F .
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Propositional Logic: Section 1.1

Truth tables for compound propositions

Construct the truth table for the compound proposition:
(p ∨ ¬q)→ (p ∧ q)

p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q)→ (p ∧ q)
T T F
T F T
F T F
F F T
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Propositional Equivalences: Section 1.2

Propositional Equivalences
A basic step is math is to replace a statement with another with
the same truth value (equivalent).
This is also useful in order to reason about sentences.
Negate the following phrase:

“Miguel has a cell phone and he has a laptop computer.”

p=”Miguel has a cell phone”
q=“Miguel has a laptop computer.”

The phrase above is written as (p ∧ q).

Its negation is ¬(p ∧ q), which is logically equivalent to ¬p ∨ ¬q.
(De Morgan’s law)

This negation therefore translates to:
“Miguel does not have a cell phone or he does not have a laptop
computer.”
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Propositional Equivalences: Section 1.2

Truth assignments, tautologies and satisfiability

Definition

Let X be a set of propositions.
A truth assignment (to X) is a function τ : X → {true, false} that
assigns to each propositional variable a truth value. (A truth assignment
corresponds to one row of the truth table)
If the truth value of a compound proposition under truth assignment τ is
true, we say that τ satisfies P , otherwise we say that τ falsifies P .

A compound proposition P is a tautology if every truth assignment
satisfies P , i.e. all entries of its truth table are true.

A compound proposition P is satisfiable if there is a truth assignment
that satisfies P ; that is, at least one entry of its truth table is true.

A compound proposition P is unsatisfiable (or a contradiction) if it
is not satisfiable; that is, all entries of its truth table are false.
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Propositional Equivalences: Section 1.2

Examples: tautology, satisfiable, unsatisfiable

For each of the following compound propositions determine if it is a
tautology, satisfiable or unsatisfiable:

(p ∨ q) ∧ ¬p ∧ ¬q
p ∨ q ∨ r ∨ (¬p ∧ ¬q ∧ ¬r)
(p→ q)↔ (¬p ∨ q)
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Propositional Equivalences: Section 1.2

Logical implication and logical equivalence

Definition

A compound proposition p logically implies a compound proposition q
(denoted p⇒ q) if p→ q is a tautology.
Two compound propositions p and q are logically equivalent (denoted
p ≡ q, or p⇔ q ) if p↔ q is a tautology.

Theorem

Two compound propositions p and q are logically equivalent if and only if
p logically implies q and q logically implies p.

In other words: two compound propositions are logically equivalent if and
only if they have the same truth table.
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Propositional Equivalences: Section 1.2

Logically equivalent compound propositions

Using truth tables to prove that (p→ q) and ¬p ∨ q are logically
equivalent, i.e.

(p→ q) ≡ ¬p ∨ q

p q ¬p ¬p ∨ q p→ q

T T F T T
T F F F F
F T T T T
F F T T T

What is the problem with this approach?
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Propositional Equivalences: Section 1.2

Truth tables versus logical equivalences

Truth tables grow exponentially with the number of propositional variables!

A truth table with n variables has 2n rows.

Truth tables are practical for small number of variables, but if you have,
say, 7 variables, the truth table would have 128 rows!

Instead, we can prove that two compound propositions are logically
equivalent by using known logical equivalences (“equivalence laws”).
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Propositional Equivalences: Section 1.2

Summary of important logical equivalences I

Note T is the compound composition that is always true, and F is the compound composition that is always false.

CSI2101 Discrete Structures Winter 2010: Propositional Logic Lucia Moura



Propositional Logic Basics Propositional Equivalences Normal forms Boolean functions and digital circuits

Propositional Equivalences: Section 1.2

Summary of important logical equivalences II

Rosen, page 24-25.
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Propositional Equivalences: Section 1.2

Proving new logical equivalences

Use known logical equivalences to prove the following:

1 Prove that ¬(p→ q) ≡ p ∧ ¬q.

2 Prove that (p ∧ q)→ (p ∨ q) is a tautology.
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Normal forms for compound propositions

Normal forms for compound propositions

A literal is a propositional variable or the negation of a propositional
variable.

A term is a literal or the conjunction (and) of two or more literals.

A clause is a literal or the disjunction (or) of two or more literals.

Definition

A compound proposition is in disjunctive normal form (DNF) if it is a
term or a disjunction of two or more terms. (i.e. an OR of ANDs).
A compound proposition is in conjunctive normal form (CNF) if it is a
clause or a conjunction of two or more clauses. (i.e. and AND of ORs)
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Normal forms for compound propositions

Disjunctive normal form (DNF)

x y z x ∨ y → ¬x ∧ z
1 F F F T
2 F F T T
3 F T F F
4 F T T T
5 T F F F
6 T F T F
7 T T F F
8 T T T F

The formula is satisfied by the truth assignment in row 1 or
by the truth assignment in row 2 or by the truth assignment in row 4.
So, its DNF is : (¬x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ z) ∨ (¬x ∧ y ∧ z)
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Normal forms for compound propositions

Conjunctive normal form (CNF)

x y z x ∨ y → ¬x ∧ z
1 F F F T
2 F F T T
3 F T F F
4 F T T T
5 T F F F
6 T F T F
7 T T F F
8 T T T F

The formula is not satisfied by the truth assignment in row 3 and
in row 5 and in row 6 and in row 7 and in row 8. So:, it is log. equiv. to:
¬(¬x∧y∧¬z)∧¬(x∧¬y∧¬z)∧¬(x∧¬y∧z)∧¬(x∧y∧¬z)∧¬(x∨y∨z)
apply DeMorgan’s law to obtain its CNF:
(x∨¬y∨ z)∧ (¬x∨y∨ z)∧ (¬x∨y∨¬z)∧ (¬x∨¬y∨ z)∧ (¬x∧¬y∧¬z)
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Boolean functions and digital circuits

Boolean functions and the design of digital circuits

Let B = {false, true} (or B = {0, 1}). A function f : Bn → B is called a
boolean function of degree n.

Definition

A compound proposition P with propositions x1, x2, . . . , xn represents a
Boolean function f with arguments x1, x2, . . . , xn if for any truth
assignment τ , τ satisfies P if and only if
f(τ(x1), τ(x2), . . . , τ(xn)) = true.

Theorem

Let P be a compound proposition that represents a boolean function f .
Then, a compound proposition Q also represents f if and only if Q is
logically equivalent to P .
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Boolean functions and digital circuits

Complete set of connectives (functionally complete)

Theorem

Every boolean formula can be represented by a compound proposition that
uses only connectives {¬,∧,∨} (i.e. {¬,∧,∨} is functionally complete ).

Proof: use DNF or CNF!
This is the basis of circuit design:
In digital circuit design, we are given a functional specification of the
circuit and we need to construct a hardware implementation.
functional specification = number n of inputs + number m of outputs
+ describe outputs for each set of inputs (i.e. m boolean functions!)
Hardware implementation uses logical gates: or-gates, and-gates,
inverters.
The functional specification corresponds to m boolean functions which we
can represent by m compound propositions that uses only {¬,∧,∨}, that
is, its hardware implementation uses inverters, and-gates and or-gates.
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Boolean functions and digital circuits

Boolean functions and digital circuits

Consider the boolean function represented by x ∨ y → ¬x ∧ z.

Give a digital circuit that computes it, using only {∧,∨,¬}.
This is always possible since {∧,∨,¬} is functionally complete (e.g. use
DNF or CNF).

Give a digital circuit that computes it, using only {∧,¬}.
This is always possible, since {∧,¬} is functionally complete:
Proof: Since {∧,∨,¬} is functionally complete, it is enough to show how
to express x ∨ y using only {∧,¬}:
(x ∨ y) ≡ ¬(¬x ∧ ¬y)

Give a digital circuit that computes it, using only {∨,¬}.
Prove that {∨,¬} is functionally complete.
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