
Dr. Nejib Zaguia - Winter 2008 1

CSI 2101 / Winter 2008: Discrete Structures.

Program Correctness/Verification

Dr. Nejib Zaguia - Winter 2008 2

Program Correctness

We want to be able to prove that a given
program meets the intended specifications.

This can often be done manually, or even by
automated program verification tools.

One example is PVS (People’s Verification System).

A program is correct if it produces the correct
output for every possible input.

A program has partial correctness if it produces
the correct output for every input for which the
program eventually halts.

Dr. Nejib Zaguia - Winter 2008 3

Initial & Final Assertions

A program’s I/O specification can be given using initial and final
assertions.

The initial assertion p is the condition that the program’s input
(its initial state) is guaranteed (by its user) to satisfy.
The final assertion q is the condition that the output produced
by the program (its final state) is required to satisfy.

Hoare triple notation:
The notation p{S}q means that, for all inputs I such that p(I)
is true, if program S (given input I) halts and produces output
O = S(I), then q(O) is true.

That is, S is partially correct with respect to specification p,q.

Dr. Nejib Zaguia - Winter 2008 4

A Trivial Example

Let S be the program fragment
“y := 2; z := x+y”

Let p be the initial assertion “x = 1”.
The variable x will hold 1 in all initial states.

Let q be the final assertion “z = 3”.
The variable z must hold 3 in all final states.

Prove p{S}q.
Proof: If x=1 in the program’s input state, then
after running y:=2 and z:=x+y, z will be 1+2=3.

Dr. Nejib Zaguia - Winter 2008 5

Hoare Triple Inference Rules

Deduction rules for Hoare Triple statements.
A simple example: The composition rule:

p{S1}q
q{S2}r

∴ p{S1; S2}r

It says: If program S1 given condition p
produces condition q, and S2 given q
produces r, then the program “S1 followed by
S2”, if given p, yields r.

Dr. Nejib Zaguia - Winter 2008 6

Inference rule for if statements

(p ∧ cond){S}q
(p ∧ ¬cond)→q

∴ p{if cond then S}q
Example: Show that: T {if x>y then y:=x} y≥x.

Proof: If initially x>y, then the if body is
executed, setting y=x, and so afterwards y≥x is
true. Otherwise, x≤y and so y≥x. In either case
y≥x is true. So the rule applies, and so the
fragment meets the specification.

Dr. Nejib Zaguia - Winter 2008 7

if-then-else rule

(p ∧ cond){S1}q
(p ∧ ¬cond){S2}q

∴ p{if cond then S1 else S2}q
Example: Show that
T {if x<0 then abs:=−x else abs:=x} abs=|x|

If x<0 then after the if body, abs will
be |x|. If ¬(x<0), i.e., x≥0, then after
the else body, abs=x, which is |x|. So
the rule applies.

Dr. Nejib Zaguia - Winter 2008 8

Loop Invariants

For a while loop “while cond S”, we say that p is
a loop invariant of this loop if (p∧cond){S}p.

If p (and the continuation condition cond) is
true before executing the body, then p remains
true afterwards.

And so p stays true through all subsequent
iterations.

This leads to the inference rule:
(p ∧ cond){S}p

∴ p{while cond S}(¬cond ∧ p)

Dr. Nejib Zaguia - Winter 2008 9

Loop Invariant Example

Prove that the following Hoare triple holds:
T {i:=1; fact:=1; while i<n {i++; fact*=i}}
(fact=n!)

Proof. Note that p:≡“fact=i! ∧ i≤n” is a loop
invariant, and is true before the loop. Thus,
after the loop we have ¬cond∧p ⇔ ¬(i<n)∧
fact=i! ∧ i≤n ⇒ i=n ∧ fact=i! ⇒ fact=n!. ■

Dr. Nejib Zaguia - Winter 2008 10

Big Example

procedure multiply(m,n: integers) m,n∈Z
if n<0 then a:=−n else a:=n

a=|n|
k:=0; x:=0 x = mk ∧ k≤a
while k<a { Maintains loop invariant:

x += m; k++ x = mk ∧ k≤a
} x = mk ∧ k=a ∴ x = ma = m|n|

∴ (n<0 ∧ x=−mn) ∨ (n≥0 ∧ x=mn)
if n<0 then prod := −x else prod:=x

prod = mn

