

Let $a,b \in \mathbf{Z}$ with $a \neq 0$.

 $a|b \equiv a \text{ divides } b' := (\exists c \in \mathbf{Z}: b = ac)$

"There is an integer c such that c times a equals b."

If a divides b, then we say a is a factor or a divisor of b, and b is a multiple of a.

We will go through some useful basics of *number* theory.

Vital in many important algorithms today (hash functions, cryptography, digital signatures; in general, on-line security).

Common facts:

- a | 0
- If a | b and a | c, then a | (b+c)
- If a | b, then a | bc for all integers c
- If a | b and b | c, then a | c

Corollary:If a, b, c are integers, such that a | b and a | c, then a | mb + nc whenever m and n are integers.

Division Algorithm --- Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \le r < d$, such that a = dq+r.

r is called the **remainder**, d is called the **divisor**, a is called the **dividend**, q is called the **quotient**

It's really just a theorem, not an algorithm... Only called an "algorithm" for historical reasons.

- If a = 7 and d = 3, then q = 2 and r = 1, since 7 = (2)(3) + 1.
- If a = -7 and d = 3, then q = -3 and r = 2, since -7 = (-3)(3) + 2.

Proof of Division Algorithm: (we'll use the well-ordering property directly that states that every set of nonnegative integers has a least element.)

- **Existence:** We want to show the existence of q and r, with the property that a = dq+r, $0 \le r < d$
- Consider the set of non-negative numbers of the form a dq, where q is an integer. By the well-ordering property, S has a least element, r = a dq_0 .
- r is non-negative; also, r < d. Otherwise if r \geq d, there would be a smaller nonnegative element in S, namely a-d(q₀+1) \geq 0. But then a-d(q₀+1), which is smaller than a-dq₀, is an element of S, contradicting that a-dq₀ was the smallest element of S.
- So, it cannot be the case that $r \ge d$, proving the existence of $0 \le r < d$ and q.

QED

b) Uniqueness

Suppose $\exists q, Q, R 0 \le r, R < d \text{ such that } a = dq + r \text{ and } a = dQ + R.$

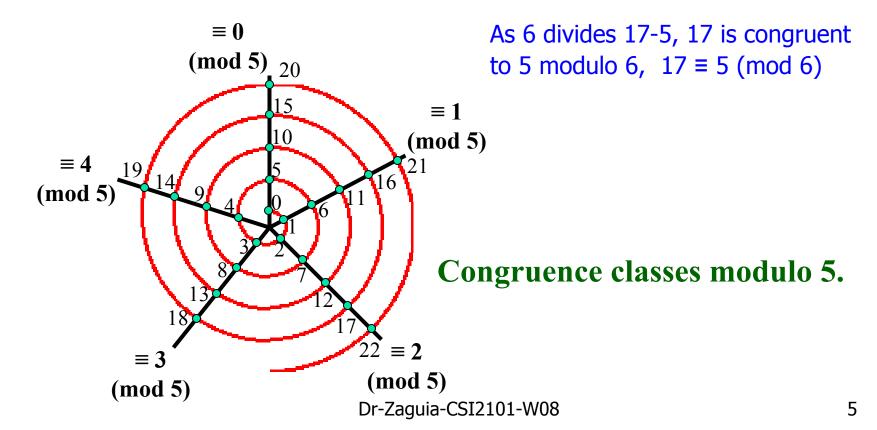
Without loss of generality we may assume that $q \le Q$. Subtracting both equations we have: d(q-Q) = (R-r). So d divides (R-r); so, either $|d| \le |(R-r)|$ or (R-r) = 0; Since $0 \le r$, R<d then -d < R - r < d i.e., |R-r| < d, thus we must have R - r = 0.

So, R = r. Substituting into the original two equations, we have dq = d Q (note $d \neq 0$) and thus q = Q, proving uniqueness.

If *a* and *b* are integers and *m* is a positive integer, then

"a is congruent to b modulo m" if m divides a-b

(denoted: $a \equiv b \pmod{m}$; $a \mod m = b \mod m$)



Theorem: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km

Theorem: Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a+c \equiv (b+d) \pmod{m}$ and $ac \equiv bd \pmod{m}$

Hashing Functions

- Also known as:
 - hash functions, hash codes, or just hashes.
- Two major uses:
 - Indexing hash tables
 - Data structures which support O(1)-time access.
 - Creating short unique IDs for long documents.
 - Used in digital signatures the short ID can be signed, rather than the long document.

Hash Functions

- Example: Consider a record that is identified by the SSN (9 digits)
 of the customer.
- How can we assign a memory location to a record so that later on it's easy to locate and retrieve such a record?
- Solution to this problem → a good hashing function.
- Records are identified using a key (k), which uniquely identifies each record.
- If you compute the hash of the same data at different times, you should get the same answer – if not then the data has been modified.

Hash Function Requirements

- A hash function $h: A \rightarrow B$ is a map from a set A to a <u>smaller</u> set B (*i.e.*, $|A| \ge |B|$).
- An effective hash function should have the following properties:
 - It should cover (be onto) its codomain B.
 - It should be efficient to calculate.
 - The cardinality of each pre-image of an element of B should be about the same.
 - $\forall b_1, b_2 \in B$: $|f^{-1}(b_1)| \approx |f^{-1}(b_2)|$
 - That is, elements of B should be generated with roughly uniform probability.
 - Ideally, the map should appear random, so that clearly "similar" elements of A are not likely to map to the same (or similar) elements of B.

Hash Function Requirements

Why are these important?

- To make computations fast and efficient.
- So that any message can be hashed.
- To prevent a message being replaced with another with the same hash value.
- To prevent the sender claiming to have sent x₂ when in fact the message was x₁.

Hash Function Requirements

- Furthermore, for a cryptographically secure hash function:
 - Given an element $b \in B$, the problem of finding an $a \in A$ such that h(a) = b should have average-case time complexity of $\Omega(|B|^c)$ for some c > 0.
 - This ensures that it would take exponential time in the length of an ID for an opponent to "fake" a different document having the same ID.

A Simple Hash Using **mod**

Let the domain and codomain be the sets of all natural numbers below certain bounds:

$$A = \{a \in \mathbb{N} \mid a < a_{\lim}\}, B = \{b \in \mathbb{N} \mid b < b_{\lim}\}$$

- Then an acceptable (although not great!) hash function from A to B (when $a_{\lim} \ge b_{\lim}$) is $h(a) = a \mod b_{\lim}$.
- It has the following desirable hash function properties:
 - It covers or is onto its codomain B (its range is B).
 - When $a_{lim} \gg b_{lim}$, then each $b \in B$ has a preimage of about the same size,
 - Specifically, $|h^{-1}(b)| = \lfloor a_{\lim}/b_{\lim}\rfloor$ or $\lceil a_{\lim}/b_{\lim}\rceil$.

A Simple Hash Using mod

- However, it has the following limitations:
 - It is not very random. Why not?

For example, if all a's encountered happen to have the same residue mod b_{\lim} , they will all map to the same b! (see also "spiral view")

- It is definitely not cryptographically secure.
 - Given a b, it is easy to generate ds that map to it. How?

We know that for any $n \in \mathbb{N}$, $h(b + n b_{\lim}) = b$.

- Because a hash function is not one-to-one (there are more possible keys than memory locations) more than one record may be assigned to the same location → we call this situation a collision.
- What to do when a collision happens?
- One possible way of solving a collision is to assign the first free location following the occupied memory location assigned by the hashing function.
- There are other ways... for example chaining (At each spot in the hash table, keep a linked list of keys sharing this hash value, and do a sequential search to find the one we need.)

Digital Signature Application

- Many digital signature systems use a cryptographically secure (but public) hash function h which maps arbitrarily long documents down to fixed-length (e.g., 1,024-bit) "fingerprint" strings.
- Document signing procedure:
 - -Given a document a to sign, quickly compute its hash b = h(a).
 - -Compute a certain function c = f(b) that is known only to the signer
 - •This step is generally slow, so we don't want to apply it to the whole document.
 - -Deliver the original document together with the digital signature c.
- Signature verification procedure:
 - -Given a document a and signature c, quickly find a's hash b = h(a).
 - -Compute $b' = f^{-1}(c)$. (Possible if f's inverse f^{-1} is made public (but not $f \odot$).)
 - -Compare b to b'; if they are equal then the signature is valid.

What if h was not cryptographically secure?
Note that if h were not cryptographically secure, then an opponent could easily forge a different document a' that hashes to the <u>same</u> value \hat{b} , and thereby attach someone's digital signature to a different document than they actually signed, and fool the verifier! Dr-Zaquia-CSI2101-W08 15

Pseudorandom numbers

- Computers cannot generate truly random numbers that's why we call them pseudo-random numbers!
- Linear Congruential Method: Algorithm for generating pseudorandom numbers.
- Choose 4 integers
 - **Seed** x_0 : starting value
 - Modulus m: maximum possible value
 - **Multiplier** a: such that $2 \le a < m$
 - **Increment** c. between 0 and m
- In order to generate a sequence of pseudorandom numbers, $\{x_n \mid 0 \le x_n < m\}$, apply the formula:

$$X_{n+1} = (aX_n + c) \mod m$$

Pseudorandom numbers

Formula:
$$x_{n+1} = (ax_n + c) \mod m$$

Let $x_0 = 3$, $m = 9$, $a = 7$, and $c = 4$

•
$$x_1 = 7x_0 + 4 = 7*3 + 4 = 25 \mod 9 = 7$$

• $x_2 = 7x_1 + 4 = 7*7 + 4 = 53 \mod 9 = 8$
• $x_3 = 7x_2 + 4 = 7*8 + 4 = 60 \mod 9 = 6$
• $x_4 = 7x_3 + 4 = 7*6 + 4 = 46 \mod 9 = 1$
• $x_5 = 7x_4 + 4 = 7*1 + 4 = 46 \mod 9 = 2$
• $x_6 = 7x_5 + 4 = 7*2 + 4 = 46 \mod 9 = 0$
• $x_7 = 7x_6 + 4 = 7*0 + 4 = 46 \mod 9 = 4$

 $x_8 = 7x_7 + 4 = 7*4 + 4 = 46 \mod 9 = 5$

Pseudorandom numbers

Formula:
$$x_{n+1} = (ax_n + c) \mod m$$

Let $x_0 = 3$, $m = 9$, $a = 7$, and $c = 4$

This sequence generates:

3, 7, 8, 6, 1, 2, 0, 4, 5, 3, 7, 8, 6, 1, 2, 0, 4, 5, 3

- Note that it repeats!
- But it selects all the possible numbers before doing so
- The common algorithms today use $m = 2^{32}-1$
 - You have to choose 4 billion numbers before it repeats
- Multiplier 7⁵ = 16,807 and increment c=0 (pure multiplicative generator)

Cryptology (secret messages)

- The Caesar cipher: Julius Caesar used the following procedure to encrypt messages
- A function f to encrypt a letter is defined as: $f(p) = (p+3) \mod 26$
 - Where *p* is a letter (0 is A, 1 is B, 25 is Z, etc.)
- Decryption: $f^{1}(p) = (p-3) \mod 26$
- This is called a substitution cipher
 - You are substituting one letter with another

The Caesar cipher

- Encrypt "go cavaliers"
 - Translate to numbers: g = 6, o = 14, etc.
 - Full sequence: 6, 14, 2, 0, 21, 0, 11, 8, 4, 17, 18
 - Apply the cipher to each number: f(6) = 9, f(14) = 17, etc.
 - Full sequence: 9, 17, 5, 3, 24, 3, 14, 11, 7, 20, 21
 - Convert the numbers back to letters 9 = j, 17 = r, etc.
 - Full sequence: jr wfdydolhuv
- Decrypt "jr wfdydolhuv"
 - Translate to numbers: j = 9, r = 17, etc.
 - Full sequence: 9, 17, 5, 3, 24, 3, 14, 11, 7, 20, 21
 - Apply the cipher to each number: $f^1(9) = 6$, $f^1(17) = 14$, etc.
 - Full sequence: 6, 14, 2, 0, 21, 0, 11, 8, 4, 17, 18
 - Convert the numbers back to letters 6 = g, 14 = 0, etc.
 - Full sequence: "go cavaliers"

Rot13 encoding

A Caesar cipher, but translates letters by 13 instead of 3

■ Then, apply the same function to decrypt it, as 13+13=26 (Rot13 stands for "rotate by 13")

Example:

>echo Hello World | rot13

Uryyb Jbeyq

> echo Uryyb Jbeyq | rot13

Hello World

Fundamental Theorem of Arithmetic

A positive integer *p* is **prime** if the only positive factors of *p* are 1 and *p*. (If there are other factors, it is composite, note that 1 is not prime! It's not composite either – it's in its own class)

Fundamental Theorem of Arithmetic:

Every positive integer greater than 1 can be uniquely written as a prime or as the product of two or more primes where the prime factors are written in order of non-decreasing size

primes are the building blocks of the natural numbers.

Fundamental Theorem of Arithmetic

Proof of Fundamental theorem of arithmetic: (use Strong Induction)
Show that if n is an integer greater than 1, then n can be written as the product of primes.

- Base case P(2) 2 can be written as 2 (the product of itself)
- Inductive Hypothesis Assume P(j) is true for ∀ 2 ≤j ≤k, j integer and prove that P(k+1) is true.
- a) If k+1 is prime then it's the product of itself, thus P(k+1) true;
- b) If k+1 is a composite number and it can be written as the product of two positive integers a and b, with $2 \le a \le b \le k+1$. By the inductive hypothesis, a and b can be written as the product of primes, and so does k+1,

Missing Uniqueness proof, it needs more knowledge, soon...

Fundamental Theorem of Arithmetic

Theorem: If *n* is a composite integer, then *n* has a prime divisor less than or equal to the square root of *n*

Proof:

Since n is composite, it has a factor a such that 1 < a < n. Thus, n = ab, where a and b are positive integers greater than 1.

Either $a \le \sqrt{n}$ or $b \le \sqrt{n}$ (Otherwise, $ab > \sqrt{n} * \sqrt{n} > n$. Contradiction.) Thus, n has a divisor not exceeding \sqrt{n} . This divisor is either prime or a composite. If the latter, then it has a prime factor (by the FTA). In either case, n has a prime factor less than \sqrt{n}

- E.g., show that 113 is prime.
- Solution
 - The only prime factors less than $\sqrt{113} = 10.63$ are 2, 3, 5, and 7
 - None of these divide 113 evenly
 - Thus, by the fundamental theorem of arithmetic, 113 must be prime

Mersenne numbers

Mersenne number: any number of the form 2^n-1

Mersenne prime: any prime of the form 2^{p} -1, where p is also a prime.

- Example: $2^5-1 = 31$ is a Mersenne prime
- But $2^{11}-1 = 2047$ is not a prime (23*89)

If M is a Mersenne prime, then M(M+1)/2 is a perfect number

- A perfect number equals the sum of its divisors
- Example: $2^3-1 = 7$ is a Mersenne prime, thus 7*8/2 = 28 is a perfect number 28 = 1+2+4+7+14
- Example: $2^5-1 = 31$ is a Mersenne prime, thus 31*32/2 = 496 is a perfect number $496 = 2*2*2*2*31 \rightarrow 1+2+4+8+16+31+62+124+248 = 496$

The largest primes found are Mersenne primes.

 Since, 2^p-1 grows fast, and there is an extremely efficient test – Lucas-Lehmer test – for determining if a Mersenne prime is prime

The greatest common divisor of two integers a and b is the largest integer d such that d | a and d | b, denoted by gcd(a,b)

Two numbers are *relatively prime* if they don't have any common factors (other than 1), that is gcd(a,b) = 1

The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b. Denoted by lcm (a, b).

Given two numbers *a* and *b*, rewrite them as:

$$a=p_1^{a_1}p_2^{a_2}...p_n^{a_n}, b=p_1^{b_1}p_2^{b_2}...p_n^{b_n}$$

The gcd and the lcm are computed by the following formulas:

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} ... p_n^{\min(a_n,b_n)}$$

$$lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} ... p_n^{\max(a_n,b_n)}$$

lcm(10, 25) = 50

What is lcm (95256, 432)?

- $95256 = 2^33^57^2, 432 = 2^43^3$
- Icm $(2^33^57^2, 2^43^3) = 2^{\max(3,4)}3^{\max(5,3)}7^{\max(2,0)} = 2^4 3^5 7^2 = 190512$

What is gcd (95256, 432)?

 $\gcd(2^33^57^2, 2^43^3) = 2^{\min(3,4)}3^{\min(5,3)}7^{\min(2,0)} = 2^33^37^0 = 216$

Theorem: Let a and b be positive integers.

Then $a*b = \gcd(a,b) * \operatorname{lcm}(a,b)$.

Finding GCDs by comparing prime factorizations is not necessarily a good algorithm (can be difficult to find prime factors are! And, no fast algorithm for factoring is known. (except ...)

Euclid: For all integers a, b, gcd(a, b) = gcd((a mod b), b).

Sort a,b so that a>b, and then (given b>1) (a mod b) < a, so problem is simplified.

Theorem: Let a = bq+r, where a,b,q,and r are integers. Then gcd(a,b) = gcd(b,r)

Proof: Suppose a and b are the natural numbers whose gcd has to be determined. And suppose the remainder of the division of a by b is r. Therefore a = qb + r where q is the quotient of the division.

- Any common divisor of a and b is also a divisor of r. To see why this is true, consider that r can be written as r = a qb. Now, if there is a common divisor d of a and b such that a = sd and b = td, then r = (s-qt)d. Since all these numbers, including s-qt, are whole numbers, it can be seen that r is divisible by d.
- The above analysis is true for any divisor *d*; thus, the greatest common divisor of *a* and *b* is also the greatest common divisor of *b* and *r*.

Before we get to two Additional Applications:

- 1 Performing arithmetic with large numbers
- 2 Public Key System

We require additional key results in Number Theory

- Theorem 1:
 - $\forall a,b \text{ integers, } a,b > 0$: $\exists s,t$: gcd(a,b) = sa + tb
- Lemma 1:
 - $\forall a,b,c>0$: gcd(a,b)=1 and $a \mid bc$, then $a \mid c$
- Lemma 2:
 - If p is prime and $p \mid a_1 a_2 \dots a_n$ (integers a_i), then $\exists i : p \mid a_i$.
- Theorem 2:
 - If $ac \equiv bc \pmod{m}$ and gcd(c,m)=1, then $a \equiv b \pmod{m}$.

Theorem 1: $\forall a \geq b \geq 0 \exists s, t$: gcd(a,b) = sa + tb

Proof: By induction over the value of the larger argument a.

Base case: If b=0 or a=b then gcd(a,b)=a and thus gcd(a,b)=sa+tb where s=1, t=0. Therefore Theorem true for base case.

Inductive step: From Euclid theorem, we know that if $c = a \mod b$, (i.e. a = kb + c for some integer k, and thus c = a - kb.) then gcd(a,b) = gcd(b,c).

Since b < a and c < b, then by the strong inductive hypothesis, we can deduce that $\exists uv$: gcd(b,c) = ub + vc.

Substituting for c=a-kb, we obtain ub+v(a-kb), which we can regroup to get va+(u-vk)b.

So, for s = v, and let t = u - vk, we have gcd(a,b) = sa + tb. This finishes the induction step.

Lemma 2: If p is a prime and $p|a_1...a_n$ then $\exists i$: $p|a_i$.

Proof: We use strong induction on the value n.

Base case: n=1 Obviously the lemma is true, since $p|a_1$ implies $p|a_1$.

Inductive case: Suppose the lemma is true for all $n \le k$ and suppose $p \mid a_1 \dots a_{k+1}$. If $p \mid m$ where $m = a_1 \dots a_k$ then by induction p divides one of the a_i 's for $i = 1, \dots k$, and we are done.

Otherwise, we have $p \mid ma_{k+1}$ but $\neg(p \mid m)$. Since m is not a multiple of p, and p has no factors, m has no common factors with p, thus $\gcd(m,p)=1$. So, by applying lemma 1, $p \mid a_{k+1}$. This end the proof of the inductive step \blacksquare

the Fundamental Theorem of Arithmetic: Uniqueness

The "other" part of proving the Fundamental Theorem of Arithmetic.

"The prime factorization of any number n is unique."

Theorem: If $p_1...p_s = q_1...q_t$ are equal products of two non decreasing sequences of primes, then s=t and $p_i=q_i$ for all i.

Proof:

We proceed with a proof by contradiction. We assume that $p_1...p_s = q_1...q_t$ however there i such that *for every j,* $p_i \neq q_j$. In fact, and without loss of generality we may assume that all primes in common have already been divided out, and thus may assume that $\forall ij$. $p_i \neq q_j$.

But since $p_1...p_s = q_1...q_t$, we clearly have $p_1/q_1...q_t$. According to Lemma 2, $\exists j$: $p_1|q_j$. Since q_j is prime, it has no divisors other than itself and 1, so it must be that $p_j = q_j$. This contradicts the assumption $\forall jj$: $p_i \neq q_j$. The only resolution is that after the common primes are divided out, both lists of primes were empty, so we couldn't pick out p_1 . In other words, the two lists must have been identical to begin with!

(primes are the building blocks of numbers)

Theorem 2: If $ac \equiv bc \pmod{m}$ and gcd(c,m)=1, then $a \equiv b \pmod{m}$.

Proof: Since $ac = bc \pmod{m}$, this means $m \mid ac-bc$. Factoring the right side, we get $m \mid c(a-b)$. Since gcd(c,m)=1 (c and m are relative prime), lemma 1 implies that $m \mid a-b$, in other words, $a = b \pmod{m}$.

An Application of Theorem 2

Suppose we have a pure-multiplicative pseudo-random number generator $\{x_n\}$ using a multiplier a that is relatively prime to the modulus m.

Then the transition function that maps from x_n to x_{n+1} is bijective. Because if $x_{n+1} = ax_n \mod m = ax_n \mod m$, then $x_n = x_n'$ (by theorem 2). This in turn implies that the sequence of numbers generated cannot repeat until the original number is reencountered. And this means that on average, we will visit a large fraction of the numbers in the range 0 to m-1 before we begin to repeat!

- Intuitively, because the chance of hitting the first number in the sequence is 1/m, so it will take $\Theta(m)$ tries on average to get to it.
- Thus, the multiplier *a* ought to be chosen relatively prime to the modulus, to avoid repeating too soon.

- A congruence of the form ax = b (mod m) is called a linear congruence.
 Solving the congruence is to find the x's that satisfy it.
- An *inverse of a, modulo m* is any integer a' such that $a' = 1 \pmod{m}$.
- If we can find such an a', notice that we can then solve $ax \equiv b$. Enough to multiply both sides by a', giving $a'ax \equiv a'b$, thus $1 \cdot x \equiv a'b$, therefore $x \equiv a'b$ (mod m).

Theorem 3: If gcd(a, m)=1 and m>1, then a has a unique (modulo m) inverse a.

Proof:

By theorem 1, $\exists st. sa+tm = 1$, so $sa+tm \equiv 1 \pmod{m}$. Since $tm \equiv 0 \pmod{m}$, $sa \equiv 1 \pmod{m}$. Thus s is an inverse of $a \pmod{m}$. Theorem 2 guarantees that if $ra \equiv sa \equiv 1$ then $r \equiv s$. Thus this inverse is unique mod m. (All inverses of a are in the same congruence class as s.)

Pseudoprimes

- Ancient Chinese mathematicians noticed that whenever n is prime, $2^{n-1}\equiv 1 \pmod{n}$.
 - Then some also claimed that the converse was true.
- It turns out that the converse is not true!
 - If $2^{n-1}\equiv 1 \pmod{n}$, it doesn't follow that n is prime.
 - 341=11·31 do it is not prime, but $2^{340} \equiv 1 \pmod{341}$. (not so easy to find the counter example)

If converse was true, what would be a good test for primality?

- Composites n with this property are called pseudoprimes.
 - More generally, if $b^{n-1} \equiv 1 \pmod{n}$ and n is composite, then n is called a *pseudoprime to the base b*.

Fermat generalized the ancient observation that $2^{p-1}\equiv 1\pmod{p}$ for primes p to the following more general theorem:

Theorem: (Fermat's Little Theorem.)

- If p is prime and a is an integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$.
- Furthermore, for every integer a $a^p \equiv a \pmod{p}$.

Carmichael numbers

These are sort of the "ultimate pseudoprimes."

A *Carmichael number* is a composite n such that $a^{n-1} \equiv 1 \pmod{n}$ for all a relatively prime to n.

The smallest few are 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341.

These numbers are important since they fool the Fermat primality test: They are "Fermat liars".

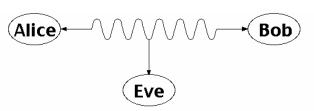
The Miller-Rabin ('76 / '80) randomized primality testing algorithm eliminates problems with Carmichael problems.

Carmichael numbers have at least three prime factors.

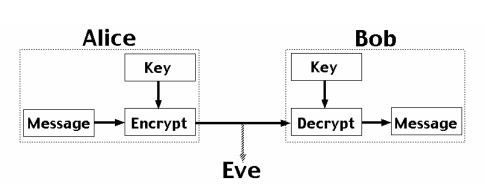
k	
3	$561 = 3 \cdot 11 \cdot 17$
4	$41041 = 7 \cdot 11 \cdot 13 \cdot 41$
5	$825265 = 5 \cdot 7 \cdot 17 \cdot 19 \cdot 73$
6	$321197185 = 5 \cdot 19 \cdot 23 \cdot 29 \cdot 37 \cdot 137$
7	$5394826801 = 7 \cdot 13 \cdot 17 \cdot 23 \cdot 31 \cdot 67 \cdot 73$
8	$232250619601 = 7 \cdot 11 \cdot 13 \cdot 17 \cdot 31 \cdot 37 \cdot 73 \cdot 163$
9	$9746347772161 = 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 31 \cdot 37 \cdot 41 \cdot 641$

The first Carmichael numbers with k=3, 4, 5, ... prime factors

RSA and Public-key Cryptography

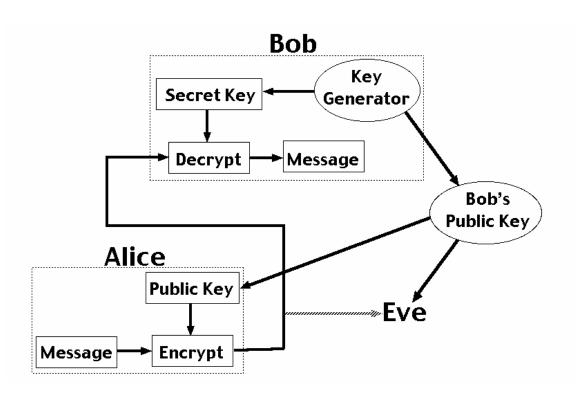


Alice and Bob have never met but they would like to exchange a message. Eve would like to eavesdrop.



They could come up with a good encryption algorithm and exchange the encryption key – but how to do it without Eve getting it? (If Eve gets it, all security is lost.)

CS folks found the solution: *public key encryption*. Quite remarkable.



RSA – Public Key Cryptosystem (why RSA?)

Uses modular arithmetic and large primes \rightarrow Its security comes from the computational difficulty of factoring large numbers.

RSA stands for its inventors Rivest, Shamir, Adleman

Normal cryptography:

- communicating parties both need to know a secret key k
- sender encodes the message m using the key k and gets
 the ciphertext c = f(m,k)
- the receiver decodes the ciphertext using the key k and recovers the original message m = g(c,k)

Problem: How to securely distribute the key k

• for security reasons, we don't want to use the same k everywhere/for long time

- In private key cryptosystems, the same secret "key" string is used to both encode and decode messages.
 - This raises the problem of how to securely communicate the key strings.
- In public key cryptosystems, instead there are two complementary keys.
 - One key decrypts the messages that the other one encrypts.
- This means that one key (the public key) can be made public, while the other (the private key) can be kept secret from everyone.
 - Messages to the owner can be encrypted by anyone using the public key, but can *only* be decrypted by the owner using the private key.
 - Or, the owner can encrypt a message with the private key, and then anyone can decrypt it, and know that only the owner could have encrypted it.
 - This is the basis of digital signature systems.
- The most famous public-key cryptosystem is RSA.
 - It is based entirely on number theory

RSA brings the idea of **public key cryptography**

- the receiver publishes (lets everybody know) its public key k
- everybody can send an encoded message c to the receiver:
 c=f(m,k)
 - f is a known encoding function
- only the receiver that know the secret key k' can decode the ciphertext using m = g(c, k')
 - the decoding function g is also known, just k' is not publicly known

So how does it works? What are the keys k and k' and the functions f() and g()?

Let p and q be two really large primes (each of several hundred digits)

The public key is a pair (n,e) where

n = pq, and e is relatively prime to (p-1)(q-1)

The encoding function is $f(m,k) = m^e \mod n$

- assumes you message is represented by an integer m<n
- every message m can be split into integers m₁, m₂, ... and encode those integers separately

The secret (private) key is the number d which is an inverse of e modulo (p-1)(q-1)

The decoding function is $g(c, d) = c^d \mod n$

The basic idea is that from the knowledge of **n** it is very difficult (exponential in the number of digits) to figure **p** and **q**, and therefore very difficult to figure **d**.

Himm, how come that we actually recover the original message?

We want to show that g(f(m, k), k') = m

 $g(f(m,k), k') = (m^e \mod n)^d \mod n = m^{ed} \mod n$

By choice of e and d, we have $ed \equiv 1 \mod (p-1)(q-1)$, ie ed = 1+k(p-1)(q-1) for some k

Let us assume that gcd(m,p) = gcd(m,q) = 1

• that can be checked by the encoding algorithm and handled separately if not true

Then, by Fermat's Little Theorem $m^{p-1} \equiv 1 \pmod{p}$ and $m^{p-1} \equiv 1 \pmod{q}$

We get $m^{ed} \equiv m^{1+k(p-1)(q-1)} \equiv m^*(m^{p-1})^{k(q-1)} \equiv m^*1^{k(q-1)} \equiv m \pmod{p}$

Analogously, we get $m^{ed} \equiv m \pmod{q}$

Since p and q are relatively prime, by the Chinese Remainder Theorem we get $m^{ed} \equiv m \pmod{pq}$