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Introduction to Number Theory

Let a,b∈Z with a≠0.
a|b ≡ “a divides b” :≡ (∃ c∈Z: b=ac)

“There is an integer c such that c times a equals b.”

If a divides b, then we say a is a factor or a divisor
of b, and b is a multiple of a.

We will go through some useful  basics of number 
theory.

Vital in many important algorithms today (hash 
functions, cryptography, digital signatures; in 
general, on-line security).
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Introduction to Number Theory

Common facts:
� a | 0 
� If a | b and a | c, then a | (b+c)
� If a | b, then a | bc for all integers c
� If a | b and b | c, then a | c

Corollary:If a, b, c are integers, such that a | b and a | c, then a | mb + nc
whenever m and n are integers.

Division Algorithm --- Let a be an integer and d a positive integer. Then there 
are unique integers  q and r, with 0 ≤r < d, such that a = dq+r.

r is called the remainder, d is called the divisor, a is called the dividend, q is 
called the quotient

It’s really just a theorem, not an algorithm… Only called an “algorithm” for historical reasons.
� If a = 7 and d = 3, then q = 2 and r = 1, since 7 = (2)(3) + 1. 
� If a = −7 and d = 3, then q = −3 and r = 2, since −7 = (−3)(3) + 2. 
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Introduction to Number Theory

Proof of Division Algorithm : (we’ll use the well-ordering 
property directly that states that every set of nonnegative 
integers has a least element.)

Existence: We want to show the existence of q and r, with the 
property that a = dq+r, 0 ≤r <d

Consider the set  of non-negative numbers of the form a - dq, 
where q is an integer. By the well-ordering property, S has a least 
element, r = a - d q0.

r is non-negative; also, r < d. Otherwise if r≥ d, there would be a 
smaller nonnegative element in S, namely a-d(q0+1)≥0. But 
then a-d(q0+1), which is smaller than a-dq0, is an element of S, 
contradicting that  a-dq0 was the smallest element of S. 

So, it cannot be the case that r ≥ d, proving the existence of 0 ≤ r 
< d and q.

QED
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Introduction to Number Theory

b) Uniqueness
Suppose ∃ q, Q, R   0≤r, R<d  such that a= dq + r and a = dQ+ R.

Without loss of generality we may assume that q ≤ Q. Subtracting 
both equations we have: d (q-Q) = (R – r). So d divides (R-r); 
so, either |d| ≤ |(R –r)| or (R – r) = 0; Since 0 ≤ r, R<d then   
–d < R - r < d  i.e.,  |R-r| < d, thus we must have R – r = 0.

So, R = r. Substituting into the original two equations, we have dq
= d Q (note d≠0) and thus q=Q, proving uniqueness.
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Modular Arithmetic

If a and b are integers and m is a positive integer, then 

“a is congruent to b modulo m” if  m divides a-b 
(denoted: a ≡ b (mod m) ; a mod m = b mod m)

≡ 3
(mod 5)

≡ 2
(mod 5)

≡ 1
(mod 5)

≡ 0
(mod 5)
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As 6 divides 17-5, 17 is congruent 
to 5 modulo 6,  17 ≡ 5 (mod 6)

Congruence classes modulo 5.
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Modular Arithmetic

Theorem: Let m be a positive integer.  The integers a
and b are congruent modulo m if and only if there is 
an integer k such that a = b + km

Theorem: Let m be a positive integer.  If a ≡ b (mod m) 
and c ≡ d (mod m), then a+c ≡ (b+d) (mod m) and  
ac ≡ bd (mod m)
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Hashing Functions

� Also known as:
� hash functions, hash codes, or just hashes.

� Two major uses:
� Indexing hash tables

� Data structures which support O(1)-time access.
� Creating short unique IDs for long documents.

� Used in digital signatures – the short ID can be signed, 
rather than the long document.
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Hash Functions

� Example:  Consider  a record that is identified by the SSN (9 digits) 
of the customer.

� How can we assign   a memory location to a record so that later 
on it’s easy to locate and retrieve such a record?

� Solution to this problem Æ a good hashing function.
� Records are identified using a key (k), which uniquely identifies 

each record. 
� If you compute the hash of the same data at different times, you

should get the same answer – if not then the data has been 
modified.
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Hash Function Requirements

� A hash function h: A→B is a map from a set A to a smaller set B
(i.e., |A| ≥ |B|).

� An effective hash function should have the following properties:
� It should cover (be onto) its codomain B.
� It should be efficient to calculate.
� The cardinality of each pre-image of an element of B should be about 

the same.
� ∀b1,b2∈B: |h−1(b1)| ≈ |h−1(b2)|
� That is, elements of B should be generated with roughly uniform 

probability.
� Ideally, the map should appear random, so that clearly “similar”

elements of A are not likely to map to the same (or similar) elements 
of B.
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Hash Function Requirements

Why are these important?
� To make computations fast and efficient.
� So that any message can be hashed.
� To prevent a message being replaced with 

another with the same hash value.
� To prevent the sender claiming to have 

sent x2 when in fact the message was x1.
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Hash Function Requirements

� Furthermore, for a cryptographically secure hash function:

� Given an element b∈B, the problem of finding an a∈A such that 
h(a)=b should have average-case time complexity of Ω(|B|c) for 
some c>0.

� This ensures that it would take exponential time in the length of 
an ID for an opponent to “fake” a different document having the 
same ID.
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A Simple Hash Using mod

� Let the domain and codomain be the sets of all natural numbers 
below certain bounds:

A = {a∈N | a < alim},B = {b∈N | b < blim}

� Then an acceptable (although not great!) hash function from A to B
(when alim≥blim) is     h(a) = a mod blim.

� It has the following desirable hash function properties:
� It covers or is onto its codomain B (its range is B).
� When alim ≫ blim, then each b∈B has a preimage of about the 

same size,
� Specifically, |h−1(b)| = alim/blim or alim/blim.
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A Simple Hash Using mod

� However, it has the following limitations:

� It is not very random. Why not?

� It is definitely not cryptographically secure.
� Given a b, it is easy to generate a’s that map to it. How?

We know that for any n∈N, h(b + n blim) = b.

For example, if all a’s encountered happen to have the 
same residue mod blim, they will all map to the same b!
(see also “spiral view”)
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Hash Function: Collision

� Because a hash function is not one-to-one (there are 
more possible keys than memory locations) more 
than one record  may be assigned to the same 
location Æ we call this situation a collision.

� What to do when a collision happens?
� One possible way of solving a collision is to assign 

the first free location following the occupied memory 
location assigned by the hashing function.

� There are other ways… for example chaining (At 
each spot in the hash table, keep a linked list of keys 
sharing this hash value, and do a sequential search 
to find the one we need. )
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Digital Signature Application

� Many digital signature systems use a cryptographically secure (but 
public) hash function h which maps arbitrarily long documents down to 
fixed-length (e.g., 1,024-bit) “fingerprint” strings.

� Document signing procedure:

� Signature verification procedure:
–Given a document a and signature c, quickly find a’s hash b = h(a).
–Compute b′ = f −1(c).  (Possible if f’s inverse f −1 is made public (but not f☺).)
–Compare b to b′; if they are equal then the signature is valid.

Note that if h were not cryptographically secure, then an opponent could easily 
forge a different document a′ that hashes to the same value b, and thereby attach 
someone’s digital signature to a different document than they actually signed, and 
fool the verifier!

–Given a document a to sign, quickly compute its hash b = h(a).
–Compute a certain function c = f(b) that is known only to the signer

•This step is generally slow, so we don’t want to apply it to the whole 
document.

–Deliver the original document together with the digital signature c.

What if h was not cryptographically secure?
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Pseudorandom numbers

Computers cannot generate truly random numbers –
that’s why we call them pseudo-random numbers!

� Linear Congruential Method: Algorithm for 
generating pseudorandom numbers.

� Choose 4 integers
� Seed x0: starting value
� Modulus m: maximum possible value
� Multiplier a: such that 2 ≤ a < m
� Increment c: between 0 and m

� In order to generate a sequence of pseudorandom  
numbers, {xn | 0≤ xn <m}, apply the formula:

xn+1 = (axn + c) mod m
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� Formula: xn+1 = (axn + c) mod m
Let x0 = 3, m = 9, a = 7, and c = 4

� x1 = 7x0+4 = 7*3+4 = 25 mod 9 = 7
� x2 = 7x1+4 = 7*7+4 = 53 mod 9 = 8
� x3 = 7x2+4 = 7*8+4 = 60 mod 9 = 6
� x4 = 7x3+4 = 7*6+4 = 46 mod 9 = 1
� x5 = 7x4+4 = 7*1+4 = 46 mod 9 = 2
� x6 = 7x5+4 = 7*2+4 = 46 mod 9 = 0
� x7 = 7x6+4 = 7*0+4 = 46 mod 9 = 4
� x8 = 7x7+4 = 7*4+4 = 46 mod 9 = 5

Pseudorandom numbers
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Pseudorandom numbers

Formula: xn+1 = (axn + c) mod m
Let x0 = 3, m = 9, a = 7, and c = 4

This sequence generates:
3, 7, 8, 6, 1, 2, 0, 4, 5, 3 , 7, 8, 6, 1, 2, 0, 4, 5, 3
� Note that it repeats!
� But it selects all the possible numbers before 

doing so

� The common algorithms today use m = 232-1
� You have to choose 4 billion numbers before it repeats

� Multiplier 75 = 16,807 and increment c=0 (pure multiplicative  
generator)
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Cryptology
(secret messages)

� The Caesar cipher: Julius Caesar used the following 
procedure  to encrypt messages

� A function f to encrypt a letter is defined as: 
f(p) = (p+3) mod 26
� Where p is a letter (0 is A, 1 is B, 25 is Z, etc.)

� Decryption: f-1(p) = (p-3) mod 26

� This is called a substitution cipher
� You are substituting one letter with another
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The Caesar cipher

� Encrypt “go cavaliers”
� Translate to numbers: g = 6, o = 14, etc.

� Full sequence: 6, 14, 2, 0, 21, 0, 11, 8, 4, 17, 18
� Apply the cipher to each number: f(6) = 9, f(14) = 17, etc.

� Full sequence: 9, 17, 5, 3, 24, 3, 14, 11, 7, 20, 21
� Convert the numbers back to letters 9 = j, 17 = r, etc.

� Full sequence: jr wfdydolhuv

� Decrypt “jr wfdydolhuv”
� Translate to numbers: j = 9, r = 17, etc. 

� Full sequence: 9, 17, 5, 3, 24, 3, 14, 11, 7, 20, 21
� Apply the cipher to each number: f-1(9) = 6, f-1(17) = 14, etc.

� Full sequence: 6, 14, 2, 0, 21, 0, 11, 8, 4, 17, 18
� Convert the numbers back to letters 6 = g, 14 = 0, etc. 

� Full sequence: “go cavaliers”
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Rot13 encoding

A Caesar cipher, but translates letters by 13 instead of 3
� Then, apply the same function to decrypt it, as 

13+13=26     (Rot13 stands for “rotate by 13”)

� Example:
>echo Hello World | rot13
Uryyb Jbeyq
> echo Uryyb Jbeyq | rot13
Hello World
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Fundamental Theorem of Arithmetic

A positive integer p is prime if the only positive factors 
of p are 1 and p. (If there are other factors, it is composite, 
note that 1 is not prime! It’s not composite either – it’s in its 
own class)

Fundamental Theorem of Arithmetic:
Every positive integer greater than 1 can be uniquely 

written as a prime or as the product of two or more 
primes where the prime factors are written in order 
of non-decreasing size

primes are the building blocks of the natural numbers.
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Fundamental Theorem of Arithmetic

Proof of Fundamental theorem of arithmetic: (use Strong Induction)
Show that if n is an integer greater than 1, then n can be written 

as the product of primes. 
� Base case – P(2)  2 can be written as 2 (the product of itself)

� Inductive Hypothesis  - Assume P(j) is true for ∀ 2 ≤j ≤k, j 
integer and prove that P(k+1) is true.

a) If k+1 is prime then it’s the product of itself, thus P(k+1) true;
b) If k+1  is a composite number and it can be written as the 

product of two positive integers a and b, with 2 ≤a ≤ b ≤ k+1. 
By the inductive hypothesis, a and b can be written as the 
product of primes, and so does k+1 , 

Missing Uniqueness proof, it needs more knowledge, 
soon…
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Fundamental Theorem of Arithmetic

Theorem: If n is a composite integer, then n has a prime 
divisor less than or equal to the square root of n

Proof:
Since n is composite, it has a factor a such that 1<a<n. Thus, n = ab, where 

a and b are positive integers greater than 1. 
Either a≤√n or b≤√n (Otherwise, ab > √n*√n > n. Contradiction.) Thus, n

has a divisor not exceeding √n. This divisor is either prime or a 
composite. If the latter, then it has a prime factor (by the FTA). In either 
case, n has a prime factor less than √n   ●

� E.g., show that 113 is prime. 

� Solution
� The only prime factors less than √113 = 10.63 are 2, 3, 5, and 7
� None of these divide 113 evenly
� Thus, by the fundamental theorem of arithmetic, 113 must be prime
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Mersenne numbers
Mersenne number: any number of the form 2n-1

Mersenne prime: any prime of the form 2p-1, where p is also a prime.

� Example: 25-1 = 31 is a Mersenne prime
� But 211-1 = 2047 is not a prime (23*89)

If M is a Mersenne prime, then M(M+1)/2 is a perfect number
� A perfect number equals the sum of its divisors
� Example: 23-1 = 7 is a Mersenne prime, thus 7*8/2 = 28 is a perfect number

� 28 = 1+2+4+7+14
� Example: 25-1 = 31 is a Mersenne prime, thus 31*32/2 = 496 is a perfect number

496 = 2*2*2*2*31 Î 1+2+4+8+16+31+62+124+248 = 496

The largest primes found are Mersenne primes.
� Since, 2p-1 grows fast, and there is an extremely efficient test – Lucas-Lehmer test – for 

determining if a Mersenne prime is prime
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GCD and LCM of Two Integers
The greatest common divisor of two integers a and b is the 

largest integer d such that d | a and d | b,  denoted by 
gcd(a,b)

Two numbers are relatively prime if they don’t have any 
common factors (other than 1), that is gcd (a,b) = 1

The least common multiple of the positive integers a and b is the 
smallest positive integer that is divisible by both a and b. 
Denoted by lcm (a, b).

nn b
n
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n

aa pppbpppa ...,... 2121
2121 ==

),min(),min(
2
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1 ...),gcd( 2211 nn ba

n
baba pppba =

The gcd and the lcm are computed by the following formulas:

),max(),max(
2

),max(
1 ...),lcm( 2211 nn ba

n
baba pppba =

Given two numbers a and b, rewrite them as:
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GCD and LCM of Two Integers

Theorem: Let a and b be positive integers.  
Then  a*b = gcd(a,b) * lcm (a, b).

Finding GCDs by comparing prime factorizations is not necessarily a good algorithm 
(can be difficult to find prime factors are! And, no fast algorithm for factoring is 
known. (except …)

Euclid: For all integers a, b, gcd(a, b)=gcd((a mod b), b).
Sort a,b so that a>b, and then (given b>1) (a mod b) < a, so problem is simplified.

lcm(10, 25) = 50
What is lcm (95256, 432)?

� 95256 = 233572, 432=2433

� lcm (233572, 2433) = 2max(3,4)3max(5,3)7max(2,0)= 24 35 72 = 190512
What is gcd (95256, 432)?

� gcd (233572, 2433) = 2min(3,4)3min(5,3)7min(2,0)= 23 33 70 = 216
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GCD and LCM of Two Integers

Theorem: Let a =bq+r, where a,b,q,and r are integers. 
Then gcd(a,b) = gcd(b,r)

Proof: Suppose a and b are the natural numbers whose gcd has to 
be determined. And suppose the remainder of the division of a
by b is r. Therefore a = qb + r where q is the quotient of the 
division.

� Any common divisor of a and b is also a divisor of r. To see why 
this is true, consider that r can be written as r = a − qb. Now, if 
there is a common divisor d of a and b such that a = sd and 
b = td, then r = (s−qt)d. Since all these numbers, including 
s−qt, are whole numbers, it can be seen that r is divisible by d.

� The above analysis is true for any divisor d; thus, the greatest 
common divisor of a and b is also the greatest common divisor 
of b and r. 
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GCD and LCM of Two Integers

Before we get to two Additional Applications:
1 - Performing arithmetic with large numbers
2 - Public Key System

We require additional key results in Number Theory
� Theorem 1:

� ∀a,b integers, a,b >0:    ∃s,t:  gcd(a,b) = sa + tb

� Lemma 1:
� ∀a,b,c>0:  gcd(a,b)=1 and a | bc, then a|c

� Lemma 2:
� If p is prime and p|a1a2…an (integers ai), then ∃i: p|ai.

� Theorem 2:
� If ac ≡ bc (mod m) and gcd(c,m)=1, then a ≡ b (mod m).
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GCD and LCM of Two Integers

Theorem 1: ∀a≥ b≥ 0  ∃s,t:  gcd(a,b) = sa + tb
Proof: By induction over the value of the larger argument a.

Base case: If b=0 or a=b then gcd(a,b)= a and thus gcd(a,b) = sa
+ tb where s = 1, t = 0. Therefore Theorem true for base case.

Inductive step: From Euclid theorem, we know that if c = a mod b, 
(i.e. a = kb +c for some integer k,  and thus c = a − kb.) then 
gcd(a,b) = gcd(b,c). 

Since b<a and c<b, then by the strong inductive hypothesis, we 
can deduce that ∃uv: gcd(b,c) = ub +vc.   

Substituting for c=a − kb, we obtain ub+v(a−kb), which we can 
regroup to get va + (u−vk)b.  

So, for s = v, and let t = u −vk, we have gcd(a,b) = sa + tb. This 
finishes the induction step.
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GCD and LCM of Two Integers

Lemma 2:  If p is a prime and p|a1…an then ∃i: p|ai.

Proof: We use strong induction on the value n.
Base case: n=1 Obviously the lemma is true, since p|a1 implies p|a1.  
Inductive case: Suppose the lemma is true for all n ≤ k and suppose 

p|a1…ak+1.  If p|m where m=a1…ak then by induction p divides 
one of the ai’s for i=1, …k, and we are done.  

Otherwise, we have p|mak+1 but ¬(p|m).  Since m is not a multiple 
of p, and p has no factors, m has no common factors with p, thus 
gcd(m,p)=1.  So, by applying lemma 1, p|ak+1. This end the proof 
of the inductive step ■
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the Fundamental Theorem of Arithmetic: 
Uniqueness

“The prime factorization of any number n is unique.”

Theorem: If p1…ps = q1…qt are equal products of two non decreasing 
sequences of primes, then s=t and pi = qi for all i.

Proof:
We proceed with a proof by contradiction. We assume that p1…ps = q1…qt 

however there i such that for every j, pi ≠ qj. In fact, and without loss 
of generality we may assume that all primes in common have already 
been divided out, and thus may assume that ∀ij: pi ≠ qj. 

But since p1…ps = q1…qt, we clearly have p1|q1…qt. According to Lemma 2, 
∃j: p1|qj.  Since qj is prime, it has no divisors other than itself and 1, so 
it must be that pi=qj. This contradicts the assumption ∀ij: pi ≠ qj.  The 
only resolution is that after the common primes are divided out, both 
lists of primes were  empty, so we couldn’t pick out p1. In other words, 
the two lists must have been identical to begin with!

(primes are the building blocks of numbers)

The “other” part of proving the Fundamental Theorem of Arithmetic.
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GCD and LCM of Two Integers

Theorem 2: If ac ≡ bc (mod m) and gcd(c,m)=1, then a ≡ b (mod m).

Proof: Since ac ≡ bc (mod m), this means m | ac−bc.  Factoring the 
right side, we get m | c(a − b). Since gcd(c,m)=1 (c and m are 
relative prime), lemma 1 implies that m | a−b,  in other words, a ≡
b (mod m). 
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An Application of Theorem 2

Suppose we have a pure-multiplicative pseudo-random number 
generator {xn} using a multiplier a that is relatively prime to the 
modulus m.

Then the transition function that maps from xn to xn+1 is bijective. 
Because if xn+1 = axn mod m = axn

′ mod m, then xn=xn′ (by 
theorem 2). This in turn implies that the sequence of numbers 
generated cannot repeat until the original number is re-
encountered. And this means that on average, we will visit a 
large fraction of the numbers in the range 0 to m−1 before we 
begin to repeat!

� Intuitively, because the chance of hitting the first number in the 
sequence is 1/m, so it will take Θ(m) tries on average to get to it.

� Thus, the multiplier a ought to be chosen relatively prime to the 
modulus, to avoid repeating too soon.
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GCD and LCM of Two Integers

� A congruence of the form ax ≡ b (mod m) is called a linear congruence.
� Solving the congruence is to find the x’s that satisfy it.

� An inverse of a, modulo m is any integer a′ such that  a′a ≡ 1 (mod m).
� If we can find such an a′, notice that we can then solve ax ≡ b. Enough 

to multiply both sides by a′, giving a′ax ≡ a′b, 
thus 1·x ≡ a′b, therefore x ≡ a′b (mod m).

Theorem 3:  If gcd(a,m)=1 and m>1, then a has a unique (modulo m) inverse a′.

Proof:
By theorem 1, ∃st: sa+tm = 1, so sa+tm ≡ 1 (mod m).   Since tm 

≡ 0 (mod m), sa ≡ 1 (mod m).  Thus s is an inverse of a (mod 
m). Theorem 2 guarantees that if ra ≡ sa ≡ 1 then r≡s. Thus 
this inverse is unique mod m. (All inverses of a are in the same 
congruence class as s.)
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Pseudoprimes

� Ancient Chinese mathematicians noticed that whenever n is 
prime, 2n−1≡1 (mod n).
� Then some also claimed that the converse was true.

� It turns out that the converse is not true!
� If 2n−1≡1 (mod n), it doesn’t follow that n is prime.

� 341=11·31 do it is not prime, but 2340 ≡ 1 (mod 341). 
(not so easy to find the counter example)

� Composites n with this property are called pseudoprimes.
� More generally, if bn−1 ≡ 1 (mod n) and n is composite, then n

is called a pseudoprime to the base b.

If converse was true, what would be a good test for primality?
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Fermat’s Little Theorem

Fermat generalized the ancient observation that 2p−1≡1 (mod p) for 
primes p to the following more general theorem:

Theorem: (Fermat’s Little Theorem.) 
� If p is prime and a is an  integer not divisible by p, then

ap−1 ≡ 1 (mod p).
� Furthermore, for every integer a

ap ≡ a (mod p).  
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Carmichael numbers

These are sort of the “ultimate pseudoprimes.”
A Carmichael number is a composite n such that  a n−1 ≡ 1 (mod n)

for all a relatively prime to n.

The smallest few are 561, 1105, 1729, 2465, 2821, 6601, 8911, 
10585, 15841, 29341.

These numbers are important since they fool the Fermat 
primality test: They are “Fermat liars”. 

The Miller-Rabin (’76 / ’80) randomized primality testing algorithm
eliminates problems with Carmichael problems.
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Carmichael numbers have at least three prime factors.

The first Carmichael numbers with k=3, 4, 5, … prime factors

Carmichael numbers
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RSA and Public-key Cryptography

Alice and Bob have never met but they would like to 
exchange a message. Eve would like to eavesdrop.

They could come up with a good 
encryption algorithm and exchange the 
encryption key – but how to do it without
Eve getting it? (If Eve gets it, all security
is lost.)

CS folks found the solution:
public key encryption. Quite remarkable.



Dr-Zaguia-CSI2101-W08 41

Public Key Encryption: RSA

RSA – Public Key Cryptosystem (why RSA?)
Uses  modular arithmetic and large primes Æ Its security comes from the computational difficulty 
of factoring large numbers.
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Public Key Encryption: RSA

RSA stands for its inventors Rivest, Shamir, Adleman

Normal cryptography:

• communicating parties both need to know a secret key k

• sender encodes the message m using the key k and gets 
the     ciphertext c = f(m,k)

• the receiver decodes the ciphertext using the key k and 
recovers the original message m  = g(c,k)

Problem: How to securely distribute the key k

• for security reasons, we don’t want to use the same k 
everywhere/for long time
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Public Key Encryption: RSA

� In private key cryptosystems, the same secret “key” string is used to both encode 
and decode messages.
� This raises the problem of how to securely communicate the key strings.

� In public key cryptosystems, instead there are two complementary keys.
� One key decrypts the messages that the other one encrypts.

� This means that one key (the public key) can be made public, while the other (the 
private key) can be kept secret from everyone.
� Messages to the owner can be encrypted by anyone using the public key, but 

can only be decrypted by the owner using the private key.
� Or, the owner can encrypt a message with the private key, and then anyone 

can decrypt it, and know that only the owner could have encrypted it.
� This is the basis of digital signature systems.

� The most famous public-key cryptosystem is RSA.
� It is based entirely on number theory
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Public Key Encryption: RSA

RSA brings the idea of public key cryptography

• the receiver publishes (lets everybody know) its public key k

• everybody can send an encoded message c to the receiver: 
c=f(m,k)

• f is a known encoding function

• only the receiver that know the secret key k’ can decode the 
ciphertext using m = g(c, k’)

• the decoding function g is also known, just k’ is not 
publicly known

So how does it works?  What are the keys k and k’ and 
the functions f() and g()?
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Public Key Encryption: RSA

Let p and q be two really large primes (each of several hundred digits)

The public key is a pair (n,e) where 

n = pq, and e is relatively prime to (p-1)(q-1)

The encoding function is f(m,k) = me mod n

• assumes you message is represented by an integer m<n

• every message m can be split into integers m1, m2, … and 
encode those integers separately

The secret (private) key is the number d which is an inverse of e
modulo (p-1)(q-1)

The decoding function is g(c, d) = cd mod n

The basic idea is that from the knowledge of n it is very difficult 
(exponential in the number of digits) to figure p and q, and therefore 
very difficult to figure d.
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Public Key Encryption: RSA

Hmm, how come that we actually recover the original message?

We want to show that g(f(m, k), k’) = m

g(f(m,k), k’) = (me mod n)d mod n = med mod n

By choice of e and d, we have ed ≡ 1 mod (p-1)(q-1), ie ed = 1+k(p-
1)(q-1) for some k

Let us assume that gcd(m,p) = gcd(m,q) = 1

• that can be checked by the encoding algorithm and handled separately 
if not true

Then, by Fermat’s Little Theorem mp-1 ≡1 (mod p) and mp-1 ≡ 1 (mod q)

We get med ≡ m1+k(p-1)(q-1) ≡ m*(mp-1)k(q-1) ≡ m*1k(q-1) ≡ m (mod p)

Analogously, we get med ≡ m (mod q)

Since p and q are relatively prime, by the Chinese Remainder Theorem we 
get med ≡ m (mod pq)


