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CSI 2101- Mathematical Induction

Many statements assert that a property of the 
form P(n) is true for all integers n.

Examples:
For every  positive integer n: n! ≤ nn

Every set with n elements, has 2n Subsets. 

Induction is one of the most important  
techniques for proving statements of that 
form.
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Mathematical Induction
For example, consider the following algorithm:

sum = 0;
for(i=1; i≤n; i++) {

sum = sum + 2*i-1;
}

What is its output?

• n=1 … 1

• n=2 … 1+3 = 4

• n=3 … 1+3+5 = 9

• n=4 … 1+3+5+7 = 16

We suspect that the output is n2

• but how to prove it?
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Mathematical Induction

Use induction to prove that the sum of the first n odd integers is n2. 
What’s the hypothesis? P(n) – sum of first n odd integers =  n2.

Base case (n=1): the sum of the first 1 odd integer is 12.  
Since 1 = 12  ☺

Inductive Step: show  that ∀(k) P(k) → P(k+1).
How? Assume P(k): the sum of the first k odd integers is k2. 
That is assume that 1 + 3 + … + (2k - 1) = k2

And prove P(k+1): the sum of the first (k+1) odd integers is (k+1)2. 

1 + 3 + … + (2k-1) + (2k+1) = k2 + (2k + 1) = (k+1)2. 

Prove a base case (n=1)
Prove P(k)→P(k+1)

By inductive hypothesis= k2

QED
Therefore P(k+1) is true
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What did we do?
� basic step:

� prove P(1)
� inductive step:

� assume P(n) and prove P(n+1) (i.e prove P(n) → P(n+1))

• Mathematical Induction is a rule of inference that tells us:

• P(1)
• ∀k (P(k)  → P(k+1))
• --------------------------
• ∴ ∀n P(n)

Mathematical Induction

Why Mathematical Induction works?

It is enough to prove that this rule 
of inference is valid
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Mathematical Induction
Well-Ordered-Principle 

Definition: A set S is “well-ordered” if every non-empty 
subset of S has a least element.

Given (we take as an axiom):
the set of natural numbers (N) is well-ordered.

� Is the set of integers (Z) well ordered?
� Is the set of non-negative reals (R) well ordered?

No.  
{ x ∈ Z : x < 0 } has no 

least element.

No.  
{ x ∈ R : x > 1 } has no 

least element.
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Proof that Mathematical Induction Works

By contradiction using the Well-Ordered-Principle. Assume that 
Mathematical Induction does not work.

We assume that both hypothesis, i.e. the basic step P(1) and 
the induction step (P(k) →P(k+1)) are both true but there 
still exists a such that ¬ P(a).

Let S be the set of all elements x for which ¬P(x).

By the well ordered principle, S has a smallest element a.

Because P(1), we know that a ≠ 1. Therefore we can 
consider b = a-1.

Because a was the smallest element of S, b is not in S. 
Therefore P(b) holds. By modus ponens using the induction 
step, we get P(a), which is a contradiction
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Writing a Proof by Induction

State the hypothesis  very clearly:
P(n) is true for all   integers n≥b – state the property P 
in English

Identify the  base case 
P(b) holds because …

Inductive Step - Assuming the inductive hypothesis P(k), 
prove that P(k+1) holds; i.e.,  P(k) → P(k+1)

Conclusion: By induction we have shown that P(k) holds for 
all k>b (b is what was used for the base case).
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Mathematical Induction

Another example: Use induction to prove that the 
1 + 2 + 22 + … + 2n = 2n+1 – 1, for all non-negative integers n.

1 - Base case  

Prove P(k)→P(k+1)2 – Inductive Hypothesis
Assume P(k) that is, 1 + 2 + 22 + … + 2k = 2 k+1 – 1 and prove P(k+1).

1 + 2 + 22 + … + 2k + 2 k+1 = 2 k+1+ 2 k+1 – 1 = 2*2 k+1 – 1 = 2 k+2 -1

n = 0  10 = 21-1.

∀n ≥ 0 P(n) is true, where P(n): 1 + 2 + 22 + … + 2n = 2 n+1 – 1

Prove P(0)

By inductive hypothesis= 2 k+1 – 1 
Therefore P(k+1) is true
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Mathematical Induction

Proof by induction that P(n) is true for all n ≥ 0

1- Base case P(0): a set S with 0 elements has  20=1 subsets.
S={ø}, then S has a unique subset {ø} and thus P(0) is true

Another example:
Prove P(n) using induction where 

P(n): a set S with n elements has  2n subsets.

Example: if S={1, 2, 3} then S has 8=23 subsets, these are 
{∅}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
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Generating subsets of a set S with k+1 
elements from a set T with k elements

QED

Mathematical Induction

T

S

{a}

x

x

S
{a}

x

2- Inductive Step: ∀(k) P(k) → P(k+1), i.e, assuming P(k) is true 
we must show that P(k+1) is true. 

Assume that any set with k elements has  2k subsets.  Let S a set 
with k+1 elements. Thus S = T ∪ {a}, where T is a set with k 
elements. 

For each subset  X of T there are exactly two subsets of S, 
namely X and X ∪ {a}. Because there are 2k subsets of S 
(inductive hypothesis), there are 2 × 2k = 2k+1 subsets of T.

Therefore P(k+1) is true
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Mathematical Induction: 
Deficient Tiling

A 2n x 2n sized grid is deficient if all but one cell is tiled.

2n

2nP(n): all 2n x 2n sized deficient 
grids can be tiled with right 
triominoes, which are pieces that 
cover three squares at a time, like 
this:

We want to show that for all n ≥ 2, P(n) is true
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Mathematical Induction: 
Deficient Tiling

P(1) - Is it true for 21 x 21 grids?

YES ☺

� Base Case:
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Mathematical Induction: 
Deficient Tiling

Inductive Step:
We assume that we can tile a 2k x 2k deficient 

board using our designer tiles. We use this to 
prove that we can tile a 2k+1 x 2k+1 deficient 
board using our designer tiles.
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2k

2k 2k

2k

2k+1

OK!! 
(by 
IH)

?

?

?

Mathematical Induction: 
Deficient Tiling
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2k

2k 2k

2k

2k+1

OK!! 
(by 
IH)

OK!! 
(by 
IH)

OK!! 
(by 
IH)

OK!! 
(by 
IH)

Mathematical Induction: 
Deficient Tiling
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Mathematical Induction: 
Deficient Tiling
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So, we can tile a 2k x 2k

deficient board using our 
designer tiles.

What does this mean for 22k mod 3? = 1 (also do direct proof by induction)

Mathematical Induction: 
Deficient Tiling
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Mathematical Induction – Exercises

Prove that chess knight (horse) can visit every square in an infinite 
chessboard.

Prove that n lines separate the plane into (n2+n+2)/2 regions if no 
two lanes are parallel and no three lines pass through the same point.

Prove that 

½ * ¾ * … * (2n-1)/2n < 1/√3n

• can’t really prove it directly, but can prove a stronger statement

½ * ¾ * … * (2n-1)/2n < 1/√(3n+1)

• sometimes called inductive loading
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Mathematical Induction – Common Errors

What is wrong with the following “proof” of “All horses are of the 
same colour”

Base step: One horse has one colour

Induction step: Assume k horses have the same colour, we show 
that k+1 horses have the same colour.

Take the first k horses of our k+1 horses. By induction hypothesis 
they are of the same colour. The same holds for the last k horses. 
As these two sets overlap, they both must be of the same colour, 
i.e. all k+1 horses are of the same colour.

first k horses

last k horses
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Strong Induction

P(n): a chocolate bar of size nx1 squares needs exactly 
n-1 breaks to break it into the basic squares.

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true

Inductive Step: show  that ∀(k) P(k) → P(k+1).
Assume P(k): a chocolate bar of size kx1 squares needs exactly k-1 breaks 
to break it into the basic squares. and deduce P(k+1).
We break the chocolate bar into 2 pieces with sizes m and (k+1)-m. 
Using the inductive hypothesis …..???

How can we use the inductive hypothesis P(k)??? We have a problem!

Use  strong induction.
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Strong Induction

Normal induction: To prove that P(n) is true for all 
positive integers n:

Base step: prove P(1) 

Induction step: prove P(n) → P(n+1)

Strong induction: To prove that P(n) is true for all 
positive integers n:

Base step: prove P(1) 

Induction step: prove P(1)∧P(2)∧ … ∧P(n) →
P(n+1)
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Strong Induction

P(n): a chocolate bar of size nx1 squares needs exactly n-1 breaks to 
break it into the basic squares.

Using Strong induction:

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true
Inductive Step: show  that ∀(k) P(1) ∧ P(2) ∧ … ∧ P(k)→ P(k+1).

We break the chocolate bar into 2 pieces with sizes m and (k+1)-m. 
Since both m and (k+1-m) are less than k+1, then by the strong 
induction hypothesis, we need m-1 breaks for the first piece and 
(k+1-m)-1= k-m for the second piece. 

So in total we will need (m-1) + (k-m) + 1= k = (k+1)-1 breaks for 
the chocolate bar with size k+1

The break used the first time
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Strong Induction

Prove the following using strong induction; P(n): each postage of  n 
cents with n at least 18s can be paid by 4c and 7c stamps.

Show that if in a round-robin tournament there exists a cycle of “player A 
beats player B”, then there must be a cycle of length 3.

Theorem: Every simple polygon of n sides can be triangulated into n-2
triangles.

Theorem: Every triangulation of a simple polygon of n ≥ 4 sides has at 
least two triangles in the triangulation with two edges on the sides of the 
polygon.

Theorem: Show that there is a rational number between any two real 
numbers.
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Recursive definition

� Recursion is the general term for the practice 
of defining an object in terms of itself
� or of part of itself
� This may seem circular, but it isn’t necessarily.

� An inductive proof establishes the truth of 
P(n+1) recursively in terms of P(n).

� There are also recursive algorithms, 
definitions, functions, sequences, sets, and 
other structures
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Recursive definition

Recursive (Inductive) Definition of a Function:

Define f(1) (perhaps also f(2), f(3)…f(k) for some constant k) 

Define f(n+1) using f(i) for i smaller then n+1

Example 1:

f(1) = 2, f(n+1) = 2f(n) What is the explicit value of  f(n)?

Example 2:

g(1) = 1, g(n+1) = (n+1)g(n) What is the explicit value of  g(n)?

We can guess the solution and then use proof by induction to do a 
formal check
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Recursive definition

Example 1:
f(1) = 2, f(n+1) = 2f(n) What is the explicit value of  f(n)?
Proof by induction that f(n) = 2n for every n ≥1.
Base step: n=1  f(1)= 2 = 21. True
Inductive step: Assume that f(k) = 2k and deduce that f(k+1)=2k+1

By definition of the function f, f(k+1) = 2 f(k). By induction hypothesis f(k) 
= 2k and therefore f(k+1) = 2*2k = 2k+1. This finishes the inductive 
step.

� Example 2:   g(1) = 1, g(n+1) = (n+1)g(n)
Proof by induction that g(n) = n! for every n ≥1.
Base step: n=1  g(1)= 1 = 1!. True.
Inductive step: Assume that g(k) = k! and deduce that g(k+1)=(k+1)!
By definition of the function g, g(k+1) = (k+1) f(k). By induction 

hypothesis g(k) = k! and therefore g(k+1) = (k+1)*k!= (k+1)!. This 
finishes the inductive step.
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Recursive definition

Example 3:  f(n) – Fibonacci numbers

f(1) = 1, f(2) = 1,

f(n+1)  = f(n) + f(n-1)

How fast do the Fibonacci numbers grow?

Theorem: ∀n≥3, f(n) > α(n-2) where α=(1+√5)/2

Proof: By induction. How can we prove this?

• base step: n = 3: f(3) = 2 > α, f(4) = 3 >(3+√5)/2 = α2

• induction step: note that α2 = α+1, since α is a root of x2-x-1 = 0. 
Therefore αn-1 = α2αn-3 = (α+1)αn-3 = αn-2+αn-3

• by induction hypothesis, f(n) < αn-2, f(n-1)<αn-3, therefore as 
f(n+1) = f(n)+f(n-1), also f(n+1)<αn-2+αn-3 = αn-1
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Careful with Recursive Definitions

The function defined has to be well defined

• it is defined for each element of its domain (often positive integers)

• it is defined unambiguously (no two different values)

Consider:

• F(n) = 1+F(n/2) for n≥1 and F(1) = 1

• F(n) = 1+F(n-2) for n ≥1 and F(1) = 0

• F(n) = 1+F(n/3) for even n≥3, and F(1) = F(2) = 1

• F(n) = 1+F(F(n-1)) for n ≥2 and F(1) = 2

Problems
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Recursively Defined Sets and Structures

� An infinite set S may be defined recursively, by 
giving:
� A small finite set of base elements of S.
� A rule for constructing new elements of S from previously-

established elements.
� Implicitly, S has no other elements but these.

Example:
Let 3∈S, and 
let if x,y∈S then x+y∈S.

What is S?
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Recursively Defined Sets and Structures

Example: Set of strings Σ* over alphabet Σ:

Base step: the empty string γ∈Σ*

Induction step: If w∈Σ* and x ∈Σ then also wx ∈ Σ*
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Recursively Defined Sets and Structures

Example: Let Σ be a set of symbols (the alphabet) and Σ* be a set of 
strings over this alphabet. Concatenation (denoted by “.”) of two 
strings is recursively defined as follows:

Base step: If w∈Σ* then, w.γ = w, where γ is the empty string

Induction step: If w1∈Σ* and w2∈Σ* and x∈Σ, then w1.(w2)x=(w1.w2)x

Well-formed formulae of propositional logic:

Base step: T, F and s, where s is a propositional variable, are well-
formed formulaes

Induction step: If E and F are well-formed formulae, then also 
(¬E), (E∧F), (E∨F), (E→F) and (E↔F) are well formed formulae

• how would you define well-formed arithmetic expressions?
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Recursively Defined Sets and Structures

The set of full binary trees can be defined recursively:

Basic step: There is a full binary tree consisting only of a single 
vertex r.

Recursive step: If T1 and T2 are disjoint full binary tree, there is a 
full binary tree denoted by T1.T2, consisting of a root r together 
with edges connecting the root to each of the roots of the left 
subtree T1 and the right subtree T2.

We define The height h(T) of a full binary tree T recursively
Basic step: The height of the full binary tree consisting of only a 
root r is h(T)=0.
Recursive step: If T1 and T2 are full binary tree, then the full 
binary tree T=T1.T2 has height h(T)= 1 + max(h(T1), h(T2)).
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Recursively Defined Sets and Structures

� Give recursive definition of 
� a rooted tree
� a binary tree
� internal and leaf vertices of a tree
� length of a string
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Structural Induction

Prove that every well-formed formula of propositional logic has 
equal number of left and right parenthesis

Base step: T, F and propositional variables do not contain 
parenthesis

Induction step: in every way to construct well-formed formula, 
the number of left and right parenthesis is the same

Structural induction of P(x) for every element x of a 
recursively defined set S:

Base step: prove P(x) for each element x of the base step 
definition of S

Induction step: for every way to construct an element x of S
from elements y1, y2, .. yk, show that P(y1)∧P(y2)… ∧P(yk) 
→ P(x)
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Structural Induction

Theorem: Let  T be a full binary tree with n(T) vertices and height h(T), 
then n(T) ≤ 2 h(T)+1 -1 

Proof using structural induction:
Basis step: for the full binary tree consisting of just the root r, n(T)=1 and 

h(T)=0, thus n(T)=1 ≤ 20+1 -1 =1. Inequality is true.
Inductive step:
We assume that n(T1) ≤ 2 h(T1)+1 -1 and n(T2) ≤ 2 h(T2)+1 -1 for two full 

binary trees T1 and T2. According to the recursive formulae: 
n(T)=n(T1)+n(T2)+1 and h(T)= 1 + max(h(T1), h(T2)), thus

n(T)=n(T1)+n(T2)+1 ≤ (2 h(T1)+1 -1) + (2 h(T2)+1 -1) +1
≤ (2 h(T1)+1 + 2 h(T2)+1) -1
≤ 2*max (2 h(T1)+1, 2 h(T2)+1) -1
≤ 2*2 max (h(T1)+1, h(T2)+1) -1
≤ 2*2 h(T) -1 = 2 h(T)+1 -1 

Recursive definition of height
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Structural Induction

Exercises

Let l(x) denote the length of a string x. Prove that 
l(x.y) =l(x)+l(y).

Every quantified formula has an equivalent one which 
is in prenex normal form.
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Recursive Algorithms

Recursive definitions can be used to describe Recursive definitions can be used to describe algorithms.algorithms.

Typical problem solving approach: solve the problem for 
smaller/simpler subproblems and obtain the result from that:

int fact(int n)  {
if (n == 1)  return 1;
else return n*fact(n-1);

}

intint gcd(intgcd(int aa, , intint bb)   {)   {
if if aa == 0 return == 0 return b;b;
else return else return gcd(gcd(bb mod mod aa, , aa););

}}



Dr-Zaguia-CSI2101-W08 38

Recursion and Iteration

What about the Fibonacci sequence?

int fibRec(int n) {
if (n <=2 ) return 1;
else return fib(n-1)+fib(n-2)

}

can we do it iteratively?

int fibIter(int n) {
int a = b = c = 1;
for(i=2; i<n; i++) { 

c = a+b;
a = b;
b = c;

}
return c

}
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Recursion and Iteration

Search for an element in a list

We traverse sequentially the array starting from the first cell until 
we find x or we finish the array

procedure search(a: series; i, j: integer; x: item to be found)
if ai = x return i 
if i = j return 0  
return search(i+1, j, x)

No real advantage in using recursion here

location := i
while (location  ≤ j) and (S[location] ≠ x) do

location := location+1
if location > j then 

location := 0
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Recursion and Iteration

When the list is already sorted, we can use a faster search: 
Binary search

procedure binarySearch(a, x, i, j)
{Find location of x in a, ≥i and <j}
m := (i + j)/2 {Go to halfway point.}
if x = am return m
if x<am ∧ i<m return {If it’s to the left,}

binarySearch(a,x,i,m−1){Check that ½}
else if am<x ∧ m<j return   {If it’s to right,}

binarySearch(a,x,m+1,j){Check that ½}
else return 0 {No more items, failure.}
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Recursion and Iteration

Since 1 = n/2k   then k = log n and thus Binary search needs
log n + 1 comparisons.
Sequentiel search needs at most n comparisons

TBS(n) = (k+1) * 1 = k+1

Number of recursive calls Number of comparisons par call

Complexity of sequential search:  TSS(n) = T(n-1) + n

Complexity of sequential search:  TBS(n) = T(n/2) + 1
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Recursion and Iteration

� Comparing both search algorithms:

Size Sequential Binary

128 128 8
1024 1024 11

1,048,576 1,048,576 21
4,294,967,296 4,294,967,296 33

Binary search is much faster however the list 
must be sorted


