T
Many statements assert that a property of the

form P(n) is true for all integers n.

Examples:
For every positive integer n: n! <nn

CSI 2101- Mathematical Induction

Every set with n elements, has 2" Subsets.

Induction is one of the most important
techniques for proving statements of that
form.
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& Mathematical Induction
Ecmmple, consider the following algorithm:

sum = 0;
for (1i=1; i<n; 1i++) {
sum = sum + 2*i-1;

}
What is its output?
en=1..1
en=2..1+3 =4
en=3.. 1+3+5=9
en=4.. 1+3+5+7 =16
We suspect that the output is n?

e but how to prove it?
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Mathematical Induction

‘?
se induction to prove that the sum of the first n odd integers is n2.
What’s the hypothesis? P(n) — sum of first n odd integers = n2.

Base case (n=1): the sum of the first 1 odd integer is 12.

Inductive Step: show that v (k) P(k) —» P(k+1).

How? the sum of the first k odd integers is k2.

That is assume that 1+3+...+(2k-1) =k?
And prove P(k+1): the sum of the first (k+1) odd integers is (k+1)2.

<+3+ o+ (2K

(2k+1) = k2 + (2k + 1) = (k+1)2

QED
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Mathematical Induction

What did we do?

basic step:

= prove P(1)

inductive step:

= assume P(n) and prove P(n+1) (i.e prove P(n) — P(n+1))

Mathematical Induction is a rule of inference that tells us:
P(1) Why Mathematical Induction works?
vk (P(k) — P(k+1))

-------------------------- It is enough to prove that this rule
- vn P(n) of inference is valid
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Mathematical Induction
Well-Ordered-Principle

Definition: A set S is “well-ordered” if every non-empty
subset of S has a least element.

Given (we take as an axiom):
the set of natural numbers (N) is well-ordered.

= Is the set of integers (Z) well ordered?
= Is the set of non-negative reals (R) well ordered?
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_TH By contradiction using the Well-Ordered-Principle. Assume t
Mathematical Induction does not work.

We assume that both hypothesis, i.e. the basic step P(1) and
the induction step (P(k) —P(k+1)) are both true but there
still exists a such that — P(a).

Let S be the set of all elements x for which —P(x).
By the well ordered principle, S has a smallest element a.

Because P(1), we know that a = 1. Therefore we can
consider b = a-1.

Because a was the smallest element of S, b is not in S.
Therefore P(b) holds. By modus ponens using the induction

step, we get P(a), which is a contradiction
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Efate the hypothesis very clearly:

P(n) is true for all integers n>b — state the property P
in English

Identify the base case
P(b) holds because ...

Inductive Step - Assuming the inductive hypothesis P(k),
prove that P(k+1) holds; i.e., P(k) » P(k+1)

Writing a Proof by Induction

Conclusion: By induction we have shown that P(k) holds for
all k>b (b is what was used for the base case).
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Mathematical Induction

=
|
Another example: Use induction to prove that the
1+2+22+ ... +2"=2"1_1, for all non-negative integers n.

vn = 0P(n) is true, whereP(n): 1 + 2 + 22+ ...+ 2" =2"n1-1

2 — Inductive Hypothesis -

thatis, 1 + 2+ 22+ ... + 2k =2 k1 _ 1 and prove P(k+1).

A

+2+22+..D+2k+1=2k+1+2k+1—1=2*2k+1—1=2k+2-1
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Another example:
Prove P(n) using induction where
P(n): a set S with n elements has 2" subsets.

Mathematical Induction

Example: if S={1, 2, 3} then S has 8=23 subsets, these are
{9}, {13, {2}, {3} {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

Proof by induction that P(n) is true for alln >0

1- Base case P(0): a set S with 0 elements has 2°9=1 subsets.
S={@}, then S has a unique subset {g} and thus P(0) is true
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Mathematical Induction 22,
T2 Inductive Step: V(k) P(k) —> P(k+1), i.e, assuming P(k) is true
we must show that P(k+1) is true.

Assume that any set with k elements has 2k subsets. Let S a set
with k+1 elements. Thus S = T u {a}, where T is a set with k
elements.

For each subset X of T there are exactly two subsets of S,
namely X and X u {a}. Because there are 2k subsets of S
(inductive hypothesis), there are 2 x 2k = 2k+1 subsets of T.

S
Therefore P(k+1) is true
T — QED
\ S
{a} Generating subsets of a set S with k-+1
elements from a set T with k elements

Dr-Zaguia-CSI2101-W08
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Mathematical Induction:
Deficient Tiling

4

S

A 2" x 2" sized grid is deficientif all but one cell is tiled.

P(n): all 2n x 2n sized deficient 2n
grids can be tiled with right
triominoes, which are pieces that
cover three squares at a time, like

this:

2n

\
We want to show that for all n = 2, P(n) is true
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Mathematical Induction:
Deficient Tiling

= Base Case:
P(1) - Is it true for 21 x 2! grids?
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Mathematical Induction:
Deficient Tiling

Inductive Step:

We assume that we can tile a 2k x 2k deficient
board using our designer tiles. We use this to
prove that we can tile a 2k*1 x 2k+1 deficient
board using our designer tiles.
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Mathematical Induction:
Deficient Tiling

2k <

2k <

2k 2k
A A

Y \

Dr-Zaguia-CSI2101-W08
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Mathematical Induction:
Deficient Tiling

2k <

2k <

2k 2k
A A

Y \
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Mathematical Induction:
Deficient Tiling

Dr-Zaguia-CSI2101-W08
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Mathematical Induction:
Deficient Tiling

So, we can tile a ok x ok
deficient board using our
designer tiles.

FRaTrary

What does this mean for 22*mod 3? =1 (also do direct proof by induction)
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Mathematical Induction — Exercises

.rl!rove that chess knight (horse) can visit every square in an infinite
chessboard.

Prove that n lines separate the plane into (n2+n+2)/2 regions if no
two lanes are parallel and no three lines pass through the same point.

Prove that
1h * 34 % *(2n-1)/2n < 1/43n
e can't really prove it directly, but can prove a stronger statement
1h * 34 %  *(2n-1)/2n < 1/(3n+1)

e sometimes called inductive loading
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What is wrong with the following “proof” of "A/f horses are of the
same colour”

Base step: One horse has one colour

Induction step: Assume k horses have the same colour, we show
that k+1 horses have the same colour.

Take the first k horses of our k+1 horses. By induction hypothesis
they are of the same colour. The same holds for the last k horses.
As these two sets overlap, they both must be of the same colour,

T \
NS

\— _/

i.e. all k+1 horses are of the same colour. last k horses
~

A
first k horses
Dr-Zaguia-CSI2101-W08
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Strong Induction

P(n): a chocolate bar of size nx1 squares needs exactly
n-1 breaks to break it into the basic squares.

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true

Inductive Step: show that v(k) P(k) — P(k+1).

Assume P(k): a chocolate bar of size kx1 squares needs exactly k-1 breaks
to break it into the basic squares. and deduce P(k+1).

We break the chocolate bar into 2 pieces with sizes m and (k+1)-m.

Using the inductive hypothesis .....?7?

How can we use the inductive hypothesis P(k)??? We have a problem!
Use strong induction.
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Strong Induction

Normal induction: To prove that P(n) is true for all
positive integers n:

Base step: prove P(1)
Induction step: prove P(nh) —» P(n+1)

Strong induction: To prove that P(n) is true for all
positive integers n:

Base step: prove P(1)
Induction step: prove P(1)AP(2)A ... AP(N) >
P(n+1)
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Strong Induction

P(n): a chocolate bar of size nx1 squares needs exactly n-1 breaks to
break it into the basic squares.

Using Strong induction:

Base case (n=1): you need 0 breaks and n-1 =0. Thus P(1) true
Inductive Step: show that V(k) P(1) A P(2) A ... A P(k)— P(k+1).

We break the chocolate bar into 2 pieces with sizes m and (k+1)-m.
Since both m and (k+1-m) are less than k+1, then by the strong
induction hypothesis, we need m-1 breaks for the first piece and
(k+1-m)-1= k-m for the second piece.

So in total we will need (m-1) + (k-m)@ k = (k+1)-1 breaks for
the chocolate bar with size k+1

The break used the first time
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1

nrove the following using strong induction; P(n): each postage of n
cents with n at least 18s can be paid by 4c and 7c stamps.

Strong Induction

Show that if in a round-robin tournament there exists a cycle of “player A
beats player B”, then there must be a cycle of length 3.

Theorem: Every simple polygon of n sides can be triangulated into n-2
triangles.

Theorem: Every triangulation of a simple polygon of n > 4 sides has at
least two triangles in the triangulation with two edges on the sides of the

polygon.

Theorem: Show that there is a rational number between any two real
numbers.
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Recursive definition

s Recursion is the general term for the practice
of defining an object in terms of /tse/f
= or of part of itself
= This may seem circular, but it isnt necessarily.

= An inductive proof establishes the truth of
A n+1) recursively in terms of A n).

= There are also recursive algorithms,
definitions, functions, sequences, sets, and
other structures

Dr-Zaguia-CSI2101-W08
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Recursive definition

2

Recursive (Inductive) Definition of a Function:

Define f(1) (perhaps also f(2), f(3)...f(k) for some constant k)
Define f(n+1) using f(i) for i smaller then n+1

Example 1:

f(1) = 2, f{(n+1) = 2f(n) What is the explicit value of f(n)?
Example 2:

g(1l) =1,g(n+1) = (n+1)g(n) Whatis the explicit value of g(n)?

We can guess the solution and then use proof by induction to do a
formal check
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Recursive definition

Example 1:

f(1) = 2, f(n+1) = 2f(n) What is the explicit value of f(n)?
Proof by induction thatf(n) = 2" for every n >1.

Base step: n=1 f(1)= 2 = 21. True

Inductive step: Assume that f(k) = 2k and deduce that f(k+1)=2k+1

By definition of the function f, f(k+1) = 2 f(k). By induction hypothesis f(k)
= 2k and therefore f(k+1) = 2*2k = 2k+1 This finishes the inductive
step.

= Example 2: g(1) =1, g(n+1) = (n+1)g(n)

Proof by induction thatg(n) = n! for every n >1.

Base step: n=1 g(1)=1 = 1!. True.

Inductive step: Assume that g(k) = k! and deduce that g(k+1)=(k+1)!

By definition of the function g, g(k+1) = (k+1) f(k). By induction
hypothesis g(k) = k! and therefore g(k+1) = (k+1)*k!= (k+1)!. This
finishes the inductive step.
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Recursive definition

~ '
Example 3: f(n) — Fibonacci numbers

f(1)=1,1f(2) =1,

f(n+1) = f(n) + f(n-1)
How fast do the Fibonacci numbers grow?
Theorem: vn>3, f(n) > o(™2) where a=(1+5)/2

Proof: By induction. How can we prove this?
ebasestep: n =3:f(3) =2 > ¢, f(4) = 3 >(3+V5)/2 = o2

e induction step: note that a2 = a+1, since o is a root of x2-x-1 = 0.
Therefore ot = o203 = (o+1)o"3 = gn-24gn-3

e by induction hypothesis, f(n) < o2, f(n-1)<o"-3, therefore as
f(n+1) = f(n)+f(n-1), also f(n+1)<oa™2+4+g"3 = gn-1

Dr-Zaguia-CSI2101-W08
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Careful with Recursive Definitions

4

The function defined has to be well defined

* it is defined for each element of its domain (often positive integers)

» it is defined unambiguously (no two different values)

Consider:

+ F(n) = 1+F(Ln/2]) for n>1 and F(1) = 1

- F(n) = 1+F(n-2) for n >1 and F(1) = 0

* F(n) = 1+F(n/3) for evenn>3, and F(1) = F(2) = 1
- F(n) = 1+F(F(n-1)) for n >2 and F(1) = 2

Dr-Zaguia-CSI2101-W08
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Recursively Defined Sets and Structures

= An infinite set S may be defined recursively, by
giving:
= A small finite set of base elements of S.

= A rule for constructing new elements of S from previously-
established elements.

= Implicitly, S has no other elements but these.

Example:
Let 3¢5, and
let if x,yeSthen x+yeS.

What is S?
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Recursively Defined Sets and Structures

4

Example: Set of strings ~* over alphabet >
Base step: the empty string yex*

Induction step: If wex* and x 2 thenalso wx e >*

Dr-Zaguia-CSI2101-W08
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Recursively Defined Sets and Structures

Example: Let X be a set of symbols (the alphabet) and =* be a set of
strings over this alphabet. Concatenation (denoted by ".") of two
strings is recursively defined as follows:

Base step: If weX™ then, w.y = w, where vy is the empty string

Induction step: If w,e>* and w,X* and x<%, then w,.(w,)x=(wl.w2)x

Well-formed formulae of propositional logic:

Base step: T, F and s, where s is a propositional variable, are well-
formed formulaes

Induction step: If E and F are well-formed formulae, then also
(—-E), (EAF), (EvF), (E—F) and (E<>F) are well formed formulae

* how would you define well-formed arithmetic expressions?

Dr-Zaguia-CSI2101-W08 31



Recursively Defined Sets and Structures

The set of full binary trees can be defined recursively:

Basic step: There is a full binary tree consisting only of a single
vertex r.

Recursive step: If T1 and T2 are disjoint full binary tree, there is a
full binary tree denoted by T1.T2, consisting of a root r together
with edges connecting the root to each of the roots of the left
subtree T1 and the right subtree T2.

We define The height h(T) of a full binary tree T recursively
Basic step: The height of the full binary tree consisting of only a
root r is h(T)=0.

Recursive step: If T1 and T2 are full binary tree, then the full
binary tree T=T1.T2 has height h(T)= 1 + max(h(T1), h(T2)).
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Recursively Defined Sets and Structures

= Give recursive definition of
= a rooted tree
= a binary tree
= internal and leaf vertices of a tree
= length of a string

Dr-Zaguia-CSI2101-W08
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Structural Induction

Prove that every well-formed formula of propositional logic has
equal number of left and right parenthesis

Base step: T, F and propositional variables do not contain
parenthesis

Induction step: in every way to construct well-formed formula,
the number of left and right parenthesis is the same

Structural induction of P(x) for every element x of a
recursively defined set S:

Base step: prove P(x) for each element x of the base step
definition of S

Induction step: for every way to construct an element x of S
from elements y,, ¥, .- Y\, show that P(y,)AP(y,)... AP(y,)
— P(X%)
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Structural Induction

Theorem: Let T be a full binary tree with n(T) vertices and height h(T),
then n(T) < 2 h(D+1 -1

Proof using structural induction:

Basis step: for the full binary tree consisting of just the root r, n(T)=1 and
h(T)=0, thus n(T)=1 < 20+1 -1 =1. Inequality is true.

Inductive step:

We assume that n(T1) < 2 (TH+1 -1 and n(T2) < 2 NT2)+1 -1 for two full
binary trees T1 and T2. According to the recursive formulae:
Nn(T)=n(T1)+n(T2)+1 and h(T)= 1 + max(h(T1), h(T2)), thus

N(T)=n(T1)+n(T2)+1 < (2 hTD+1 -1) + (2 h(T2+1 1) +1
< (2 h(T1)+1 + 2 h(T2)+1) _1

< 2*¥max (2 h(T1)+1, 2 h(T2)+1) -1
< 2% max (h(T1)+1, h(T2)+1) -1

< 2% h(T) -1 = 2 h(M+1 -1
Recursive definition of height
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T

Exercises

Structural Induction

Let I(x) denote the length of a string x. Prove that
1(x.y) =1(x)+I(y).

Every quantified formula has an equivalent one which
is in prenex normal form.

Dr-Zaguia-CSI2101-W08
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Recursive Algorithms

Recursive definitions can be used to describe algorithms.

Typical problem solving approach: solve the problem for
smaller/simpler subproblems and obtain the result from that:

int fact(int n) {
if (n ==1) return 1,
else return n*fact(n-1);

}

int gcd(int g, int ) {
if @ == 0 return b,
else return gcd(6 mod g, a);
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T2 Recursion and Iteration

-/
hat about the Fibonacci sequence?

int fibRec(int n) {

if (n <=2 ) return 1;

else return fib(n-1)+fib(n-2)
)

can we do it iteratively?

int fibIter(int n) {
inta=b=c=1;
for(i=2; i<n; i++) {

C = a+b;
a=>b;
b=c

by

return c

Dr-Zaguia-CSI2101-W08
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Recursion and Iteration

n Search for an element in a list

We traverse sequentially the array starting from the first cell until
we find x or we finish the array

procedure searc/A a. series; J, . integer; x: item to be found)

if a,= xreturn /
if /= jreturn 0
return searci(i+1, j, x)

No real advantage in using recursion here

location :=i
while (location < j) and (S[location] # x) do
location := location+1

if location > j then
location := 0
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Recursion and Iteration

When the list is already sorted, we can use a faster search:

Binary search

procedure binarySearcia, x, i, j)

m =L+ ))/2]

if x=a, return m

if x<a, A /<mreturn
binarySearci a,x,i,m-1)

else if 3, <x A m<jreturn
binarySearci a,x,m+1,))

else return 0

Dr-Zaguia-CSI2101-W08
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Recursion and Iteration

Complexity of sequential search: Te(n) = T(n-1) + n

Complexity of sequential search: Tg(n) = T(n/2) + 1

Since 1 = n/2k then k = log n and thus Binary search needs
log n + 1 comparisons.
Sequentiel search needs at most n comparisons

Number of recursive calls Number of comparisons par call

\ /

Tge(n) = (k+1) * 1 = k+1

Dr-Zaguia-CSI2101-W08
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-’ Recursion and Iteration
By . o
= Comparing both search algorithms
Size Sequential Binary
128 128 8
1024 1024 11
1,048,576 1,048,576 21
4,294,967,296 4,294,967,296 33

Binary search is much faster however the list
must be sorted
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