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CSI2101-W08- Recurrence Relations

Motivation

• where do they come from

• modeling

• program analysis

Solving Recurrence Relations

• by iteration – arithmetic/geometric sequences

• linear homogenous recurrence relations with constant coefficients

• linear non-homogenous …

Divide-&-Conquer Algorithms and the Master Theorem

• solving recurrence relations arising in analysis of divide&conquer
algorithms
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Recurrence Relations - Motivation

Compound interest

• x% interest each year

• how much do you have in your account after 30 years?

• ay = (1+x/100)ay-1

Rabbit breeding

• one adult pair produces new pair each month

• a pair becomes adult in the second month of its life

• no rabbits die

• rm = rm-1+rm-2

• the Fibonacci sequence
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Recurrence Relations - Motivation

The towers of Hanoi

• move a pyramid of discs from one peg to another, using a third peg

• bigger disc cannot be placed on a smaller one

• the algorithm:

• move the top n-1 discs from A to C using B (recursively)

• move the bottom disc from A to B

• move the top n-1 discs from C to B using A (recursively)

• cannot be done any faster:

• the bottom disc can be moved only after all the discs above it 
have been moved

• let Hn denote the minimal time to solve the problem with n discs

• then Hn = Hn-1+1+Hn-1 = 2Hn-1+1
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Recurrence Relations - Motivation

The number of binary strings without two consecutive 0s

• how many such strings of form X1 (the ones that end in 1)?

• as many as there are such strings X of length n-1

• how many of form X0?

• X must end in 1 (i.e. X = Y1) 

• Y10 – as many as there are such strings  Y of length n-2

• cn = cn-1+cn-2

The number of binary strings without three consecutive 0s

• X1, Y10, Z100

• dn = dn-1+dn-2+dn-3
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Recurrence Relations - Motivation

The number of different ways to parenthesize x0*x1*x2…*xn-1

• corresponding to different orders of computing the product

• n-1 ways to choose which will be the last multiplication

•(x0*x1*…xi-1)*(xi*…xn-1) for i=1 … n-1

• recursively, if we choose to split at i, the number of different ways is is
Ci*Cn-1-i

• summing up for all i we get 

Cn = Σi=1
n-1 Ci*Cn-1-i

• the sequence Cn is called Catalan numbers
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Solving Recurrence Relations

Difficult in general, we will focus on the easier cases:

Linear homogenous recurrence relation of degree k with 
constant coefficients:

• an = c1an-1+c2an-2+…+ckan-k

• linear = only ai appear

• an = an-1*an-2 is non-linear (quadratic)

• homogenous = no additional terms

• an = an-1+n/2 is non-homogenous because of the n/2 term

• constant coefficients = ci s are constants, not functions of n

• an = nan-1 does not have constant coefficients
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Solving Recurrence Relations

So how to solve this recurrence relation? 

an = c1an-1+c2an-2+…+ckan-k

Look for solutions of the form: 

• an = rn for some constant r might work

• it works for k = 1

• an = can-1 = c(can-2) = … cian-i = cna0

Let’s see what that gives us:

rn = c1rn-1+c2rn-2+…+cnrn-k

Which can be rewritten as

rn - c1rn-1-c2rn-2-…-cnrn-k = 0

rk - c1rk-1-c2rk-2-…-cn = 0

Called characteristic equation (also characteristic polynomial) of 
the recurrence relation

// divide by rn-k
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Solving Recurrence Relations

The roots of the characteristic equation are called characteristic roots

• every characteristic root satisfies the characteristic equation

• if the sequence {ai} satisfies the recurrence 

an = c1an-1+c2an-2+…+ckan-k, 

also the sequence {αai} satisfies it, for any constant α

• corresponds to multiplying both sides by α

• actually, we can combine the solutions in a more complicated way

• but let’s do it only for k=2

• we don’t really know how to find characteristic roots for k>2

• the case k=1 leads to simple geometric sequences, we know 
that
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Solving Recurrence Relations

So, we have a recurrence an = c1an-1+c2an-2

The characteristic equation is

• r2-c1r-c2 = 0

• there are two possibilities

• two different roots r1 and r2

• might be complex, shouldn’t detract us too much

• both roots are equal to each other 
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Solving Recurrence Relations

Consider first the case of two roots r1 and r2:

Theorem: The sequence {an} is a solution to this recurrence relation if and 
only if an = α1r1

n+α2r2
n for n=0,1,2,… where α1 and α2 are constants.

• if r1 and r2 are roots → {an} is a solution for any constants α1 and α2

using r1
2=c1r1+c2 and r2

2=c2r2+c2

• there are constants α1 and α2 such that {an} satisfies the initial 
conditions for a0 and a1

• for fixed a0 and a1, the solution is unique
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Solving Recurrence Relations - Examples

1. Consider an = an-1+2an-2, a0=2, a1=7

• characteristic equation?

• the roots?

• α1 and α2?

2. Fibonacci numbers fn = fn-1+fn-2, f1 = f2 = 1.
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Solving Recurrence Relations

OK, but what if both roots are equal?

• characteristic equation is r2-c1r-c2 = (r-r0)2 = 0 for some r0

• α1r0
n is still a solution, but it does not represent all possible solutions

• it might not be enough to satisfy both a0 and a1

Theorem: Let r2-c1r-c2 = 0 has one double solution r0. A sequence {an} is a 
solution of the recurrence relation an=c1an-1+c2an-2 if an only if                  
an= α1r0

n+α2nr0
n, where α1 and α2 are constants.

Example: What is the solution for the recurrence relation                
an=6an-1-9an-2, with a0=1, a1=6?
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Solving Recurrence Relations – k>2

Hm, what about the case k>2?

Analogous theorem holds:

Let c1, c2, … ck be real numbers and the characteristic equation                
rk-c1rk-1-…-ck = 0 has k distinct roots r1, r2, … rk. Then a sequence {an} is a 
solution of the recurrence relation an=c1an-1+c2an-2…ckan-k if and only if 
an=α1r1

n+α2r2
n+…+αkrk

n for n=0,1,2…, where α1, α2, … αk are constants.

OK, we are given a recurrence relation of order k

• can we find the characteristic equation?

• easily

• can we find the roots?

• now, this is tough, but we might get lucky and be able to factorize

• can we find α1, α2, … αk?

• tedious but straightforward solving of linear equalities
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Solving Recurrence Relations – k>2

What about the case of multiple roots?

• analogous theorem holds (see Theorem 4 on p. 466)

• don’t need to remember exact details, but know that it exists and once 
you have the roots, you can solve the recurrency, even if the roots are not 
all distinct
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More exercises

How many ways are there to cover 2xn checkerboard using 1x2 and 2x2
tiles?

Find the solution for

• an = 4an-1-4an-2 for n>1, with a0=6, a1=8

• an = 7an-1-10an-2 for n>1, a0=2, a1=1

• an = 7an-2+6an-3 with a0=9, a1=10 and a2=32
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Non-homogenous Recurrences

What about non-homogenous recurrences of the following form:

an=c1an-1+c2an-2…ckan-k +F(n) for n=0,1,2…, 

where c1, c2, … ck are constants?

Imagine that we have two solutions {an} and {bn}

Then {an-bn} is a solution to the homogenous recurrence relation

Theorem: If {an
p} is a particular solution to a non-homogenous recurrence 

relation  an= an=c1an-1+c2an-2…ckan-k+F(n), then every solution is of the form 
{an

p+an
h}, where {an

h} is a solution of the associated homogenous recurrence 
relation.
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Non-homogenous Recurrences

We know how to solve homogenous recurrence relation

If we find one solution to the non-homogenous one, we can find all of them

But how to find that first solution?

• difficult, in general

• but we can do it when F(n) is good

• product of a polynomial and sn for a constant s

• for example F(n)= (n2+5)3n
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Non-homogenous Recurrences

Theorem: Suppose {an} satisfies the linear non-homogenous recurrence 
relation an= an=c1an-1+c2an-2…ckan-k+F(n), where c1, c2, …, ck are real 
numbers and F(n) = (btnt+bt-1nt-1+…+b1n+b0)sn, where b1, b2, … bt and 
s are real numbers. 

When s is not a root of the characteristic equation of the associated 
homogenous recurrence relation, there is a particular solution of the form 

(ptnt+pt-1nt-1+…p1n+p0)sn.

When s is a root of this characteristic equation of multiplicity m, there is a 
particular solution of the form

nm(ptnt+pt-1nt-1+…p1n+p0)sn.
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Exercises

Consider recurrence relation an = 3an-1+2n with a1 = 3.

The homogenous relation is an = 3an-1, and its solutions are an = α3n where 
α is a constant.

The characteristic equation is r-3 = 0, with a root of 3. In our case, s= 1, i.e. 
different from the root.

By the theorem, we are looking for a solution of the form (cn+d)1n = cn+d

So, substitute it into the recurrence relation:

cn+d = 3(c(n-1)+d)+2n 

cn+d = 3cn+2n-3c+3d

3c-2d = n(2c+2)          

this must hold for every n, therefore 3c-2d = 0 and 2c+2 = 0, i.e. c = -1
and    d = -3/2 and all solutions are of form an = α3n + (-n-3/2)

To get a1 = 3, we set 3 = a1 = α31 + (-1-3/2), and α = 11/6
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More Exercises

Consider recurrence relation an = 6an-1 – 9an-2+F(n) with for F(n)=

• 3n

• n3n

• n2n

• (n2+1)3n

What form does a particular solution have for each choice of F(n)?

Find a particular solution for F(n) = n2n

• at least start

How to continue if we want a solution for a1 = 2, a2 = 12?
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Divide and Conquer & Recurrences

Consider binary search algorithm. Let BS(n) be the number of comparison to 
perform the binary search of n elements. Then

BS(n) = BS(n/2)+2

Consider recursively finding maximum: 

max(A[0..n-1] = max(max(A[0..n/2-1]), max(A[n/2..n-1])
M(n) = 2M(n/2)+2

Merge Sort: 

Merge( MergeSort(A[0..n/2-1), MergeSort(A[n/2..n-1]))
• the cost of merging two sequences of n/2 is at most n

• MS(n) = 2MS(n/2)+n
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Divide and Conquer & Recurrences

Fast multiplication of 2n-bit integers:

x = 2nA1+A0, y = 2nB1+B0

xy = (22n+2n)A1B1 + 2n(A1-A0)(B1-B0) + (2n+1)A0B0

Total number of bit operations:

FM(2n) = 3FM(n)+Cn

Stassen Matrix Multiplication algorithm

• similar – divide each nxn matrix into 4 n/2 x n/2 matrices

• obtain the result as a sum of products of submatrices

• 7 matrix multiplications and 15 additions are need (of size n/2 x n/2)

• S(n) = 7S(n/2)+15(n/2)2
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Divide and Conquer & Recurrences

General form:

f(n) = af(n/b)+g(n)

• but how to solve them?

• they are really not of the standard form we know so far

• we use f(n/2), or, in general, f(n/b) instead of f(n-1), f(n-2)…f(n-k)

Let’s try expanding the general form to get some insight…

We get f(n) = akf(1) + Σj=0
k-1ajg(n/bj) where k = logb n

The result depends on the relationship of a and b and on g(n)
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Divide and Conquer & Recurrences

First, simple case of g(n) being a constant c:

• the second term Σj=0
k-1ajg(n/bj)=cΣj=0

k-1aj is a geometric progression

• if a =1, we get O(ck) with k = log b n ∈ O(log n) and f(n) ∈O(log n)

• if a >1 we get the sum of diverging geometric progression

• f(n) = akf(1)+c(ak-1)/(a-1) = ak(f(1)-c/(a-1)) -c(a-1) = 

= C1nlogba+C2
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Divide and Conquer & Recurrences

Applications for the case g(n) is constant:

• Consider binary search algorithm. Let BS(n) be the number of 
comparison to perform the binary search of n elements. Then

BS(n) = BS(n/2)+2

• b = 2, a = 1, we get BS(n) = O(log n)

• Consider recursively finding maximum: 

max(A[0..n-1] = max(max(A[0..n/2-1]), max(A[n/2..n-1])
M(n) = 2M(n/2)+2

• b = 2, a = 2, we get M(n) = O(nlog22) = O(n)
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Divide and Conquer & Recurrences

What about more general g(n)?

Master Theorem: Let f be an increasing function that satisfies

f(n) = af(n/b)+cnd

Whevever n = bk, where k is a positive integer, a ≥1, b is integer greater 
then 1 and c and d are real numbers with c positive and d nonnegative. Then

O(nd) if a<bd

f(n) is       O(nd log n) if a=bd

O(n logba) if a>bd

Applications:

• merge sort, quasi-parallel merge sort, fast integer multiplication, 
Strassen’s algorithm

• closest pair problem


