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CSI 2101- Complexity 

Having an algorithm for a given problem that does not mean that the problem can
 be solved. 

The procedure (algorithm) may be so inefficient that it would not be possible to
 solve the problem within a useful period of time. 

So what is inefficient?  
What is the “complexity” of an algorithm? 
number of steps that it takes to transform the input data into the desired output. 

Each simple operation (+,-,*,/,=,if, etc) and each memory access corresponds to a
 step. In general this depends of the problem. 

The complexity of an algorithm is a function of the size of the input (or size of the
 instance). We’ll denote the complexity of algorithm A by CA(n), where n is the
 size of the input. 
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Different notions of complexity 

In general this 
is the notion  
that we use to 
characterize the  
complexity of 
algorithms  
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•  Algorithm “Good Morning” 
•  For I = 1 to n 
•     For J = I+1 to n 
•        ShakeHands(student(I), student(J)) 

Running time of “Good Morning”:  
 Time = (# of HS) x (time/HS) + overhead 

Want an expression for T(n), running time of  
“Good Morning” on input of size n.   How many handshakes? 
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But do we always characterize the complexity of algorithms with such a
 detail? What is the most important aspect that we care about? 

Complexity 

T(n) = s(n2- n)/2 + t 
s is time for one HS, and t is time for getting organized 
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CA2(n) = 5 n ≥ CA1(n) = 0.5 n2   for n ≤ 10 

Two algorithms A1&A2 
    CA1(n) = 0.5 n2 

    CA2(n) = 5 n 
Which one is better? 
Better Complexity? 

Growth of Functions 
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Main question: how the complexity behaves asymptotically – 
i.e., when the problem sizes tend to infinity! 

Two algorithms A1&A2 
    CA1(n) = 0.5 n2 

    CA2(n) = 5 n 
Which one is better? 
Better Complexity? 

Growth of Functions 



Dr-Zaguia-CSI2101-W08 7 

Growth of Functions 

In general we only worry about growth rates because: 

  Our main objective is to analyze the cost performance of algorithms
 asymptotically. (reasonable in part because computers get faster
 and faster every year.) 

  Another obstacle to having the exact cost of algorithms is that
 sometimes the algorithms are quite complicated to analyze. 

  When analyzing an algorithm we are not that interested in the
 exact time the algorithm takes to run – often we only want to
 compare two algorithms for the same problem – the thing that
 makes one algorithm more desirable than another is its growth
 rate relative to the other algorithm’s growth rate. 
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Growth of Functions 

Algorithm analysis is concerned with: 

•  Type of function that describes run
 time (we ignore constant factors
 since different machines have
 different speed/cycle 

•  Large values of n 
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Growth of Functions 

Size 
Complexity 

10 20 30 40 50 60 

n .00001s .00002s .00003s .00004s .00005s .00006s 

n2 .0001s .0004s .0009s .0016s .0025s .0036s 

n3 .001s .008s .027s .064s .125s .216s 

n5 .1s 3.2s 24.3s 1.7 mn 5.2 mn 13 mn 

2n .0001s 1.0s 17.9 mn 12.7 days 35.7
 century 

366
 century 

3n .059s 58 mn 6.5
 years 

3855
 century 

2x108

 century 
1.3x1013

 century 

Assuming 106 operations per second 
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Growth of Functions 

n0 

c.g(n) 

f(n) 

n 
f(n) is O(g(n)) 

There exist two constants c and n0 such that   
for 

We say “f(n) is big O of g(n)” 
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 Growth of Functions 

How to prove that 5x + 100 is O(x/2) 
  Need ∀ x> ___, 5x + 100 ≤ ___ * x/2 

Try c=11 and n0= 200 

∀ x> 200, 5x + 100 ≤ 11 * x/2 
(If x> 200 then x/2 > 100.  Thus 11 * x/2 = 5x + x/2 >5x +100.) 
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Growth of Functions 

C = 4 
k = 1 
also 
C = 3 
k = 2 

x2 + 2x + 1 is O(x2) 
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Growth of Functions 

x2 vs. (x2 + x)  
(x <=20) 
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Growth of Functions 

x2 vs. (x2 + x)  
 (x2 + x) is O(n2) 
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Growth of Functions 

Very useful:   f(n)=aknk + ak-1 nk-1 + ... + a1n + a0   then   f(n) is O(nk) 

 f(n)   ≤ ( |ak| + |ak-1 / n | + ... + |a0 / nk | )  nk    
 ≤  ( |ak| + |ak-1 | + ... + |a0 | )  nk        for every n≥1. 

Guidelines: 
  In general, only the largest term in a sum matters.  

a0xn + a1xn-1 + … + an-1x1 + anx0 is O(xn) 
  n dominates lg n. 

n5lg n = O(n6) 
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 Growth of Functions 

1   Constant
 time 

n   Linear time 
(n lg n) 
n2  

  Quadratic time 
n3 
… 
2n  Exponential time 
n!  

List of common functions in increasing O() order:  
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Growth of Functions 

If we have f(n) is O(g(n)) then we may say too that
 g(n)  is Ω(f(n))    (g(n) is omega of f(n)).  

g(n)  is Ω(f(n)) if and only if there exist constants c and
 n0 such that: g(n)  ≥ c f(n) for all  n ≥n0 

A function    g(n)  is Θ(f(n)) (g(n) is Theta of f(n)) if 
  g(n) is O(f(n))  and  g(n) is  Ω(f(n)) . 

The f(n) and g(n) functions have the same growth rate. 
When we write f is O(g), it is like f ≤ g 
When we write f is Ω(g), it is like f ≥ g 
When we write f is Θ(g), it is like f = g. 
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Growth of Functions 

n 0 

c 2 .g(n) 

f(n) 

n 
f(n) is   Θ  (g(n)) 

There exist 3 constants  c 1 ,c 2  and  n 0  such that 
c1g(n)≤ f(n)≤ c2g(n) 

c 1 .g(n) 

for n ≥ n0 
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Growth of Functions 

 0     then  g(n) is O(f(n))  
   [but g(n) is not Θ(f(n)] 

c >0  then  g(n) is Θ(f(n)) 
     

∞      then  g(n) is Ω(f(n)). 
    [but g(n) is not Θ(f(n)] 

limn  →  ∞ g(n)/ f(n) = 

Use the limit for comparing the order of growth
 of two functions. 
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Estimating Functions 

Estimate the sum of the first n positive integers 
1 + 2 + … + n = n(n+1)/2 = n2/2 + n/2 is Θ (n2) 

   (1 + 2 + … + n) is Θ (n2) 

What about f(n) = n! and log n! 
n!= 1*2* … *n  ≤ n*n* …*n = nn. Thus n! is O(nn). 
log n! ≤ log nn = n logn. Thus log n! is O(n logn). 
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Note: log scale on y axis. 


