
Variable Strength Covering Arrays **Applications and Challenges** Myra Cohen Laboratory for Empirically-based Software Quality Research and Development

Covering Arrays

$CA_{\lambda}(N;t,k,v)$

- An N x k on v symbols array where each N x t sub-array contains all ordered *t*-sets at least λ times.
- t is the strength of the array

Mixed Level Covering Arrays

$MCA_{\lambda}(N;t,k,(v_1,v_2,...,v_k))$

Is an N x k array on v symbols where:

$V = \sum_{i=1}^{k} v_i$

And:

ESQuaReD

ESQuaReD

- For each column *i* where $(i \le i \le k)$
- The rows of each N x t sub-array cover all t-tuples or values from the t columns at least λ times.

Shorthand Notation:

 $MCA_{\lambda}(N;t,(w_1^{k_1}w_2^{k_2}...w_s^{k_s}))$

e.g. $MCA(12;2,4,(4, 3,3,2)) = MCA(12;2,(4^{1} 3^{2} 2^{1}))$

Nebraska

Nebraska

MCA(12;2,4¹3²2¹)

0	a	4	d	
2	b	6	е	
3	с	5	е	
2	с	4	d	
0	b	5	d	
1	a	6	е	
1	b	4	d	
3	a	6	d	
0	с	6	е	
2	а	5	е	
3	b	4	е	
1	с	5	d	
ESQuaReD				

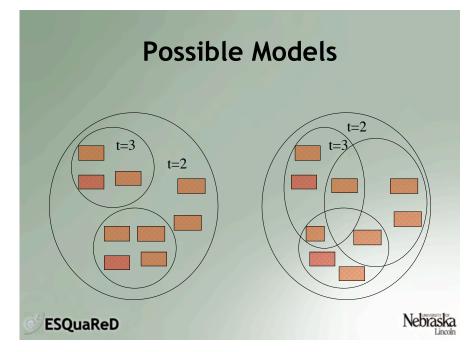
A: 0, 1, 2, 3 B: a, b, c C: 4, 5, 6 D: d, e

Limitation

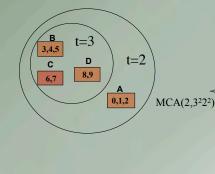
- Mixed level covering arrays have practical applications in software testing.
- But they view a system "flatly". They force a (perhaps arbitrary) restriction on the importance of various parts of the system.

ESQuaReD

Nebraska

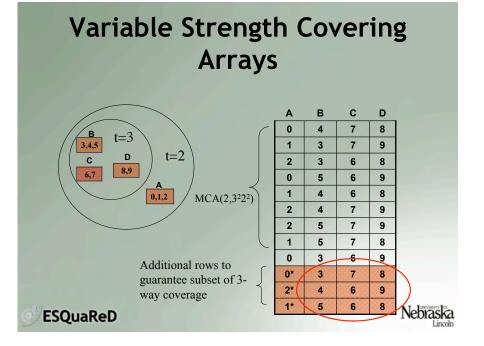

Motivation

Scenarios:


- When testing a software system certain components may be closely interrelated
- Operational profiles give us information that certain areas of the system are used more often than others
- In modifying a system only certain regions are changed therefore we want to test more strongly in this area
- Failures in certain parts of a system are costlier than in others

ESQuaReD

Variable Strength Covering Arrays



A 3 way array would have 18 rows

ESQuaReD

Variable Strength Covering Array

• A VCA(N;*t*,*k*,(*v*₁,*v*₂,...*v*_k), *C*) is a *t*-way mixed level covering array on v symbols with a vector, *C*, of covering arrays each with strength > t and defined on a subset of the k columns of the VCA.

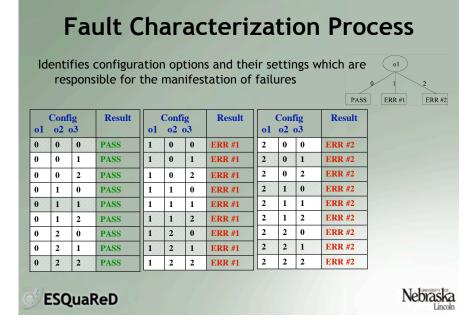
ESQuaReD

Variable Strength Arrays Using SA¹

VCA	C	Size
VCA(2,3 ¹⁵ ,C)	-	16
	CA(3,3 ³)	27
	CA(3,3 ⁴)	27
	CA(3,3 ⁵)	33
	CA(3,3 ⁶)	33
	CA(3,3 ⁹)	51
	CA(3,3 ¹⁵)	68
VCA(2,3 ²⁰ ,10 ² ,C)	-	100
(22 factors: 20 have 3 values,	CA(3,3 ²⁰)	100
2 have 10 values)	MCA(3,3 ²⁰ 10 ²)	305

1. [C,C,C,G,M -2003]

ESQuaReD

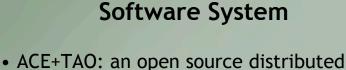

An Empirical Study¹

- Distributed Quality Assurance (Skoll)
 - Distribute instances of the system configuration for testing in the field
 - Results can be returned to a centralized location
 - Includes fault localization techniques

1. [Yilmaz, Cohen, Porter - 2006]

Nebraska

Fault Characterization


- Helps developers quickly pinpoint the root causes of failures
- Fundamental downside of the approach shown is that it requires testing ALL combinations of options: It does not scale

ESQuaReD

Nebraska

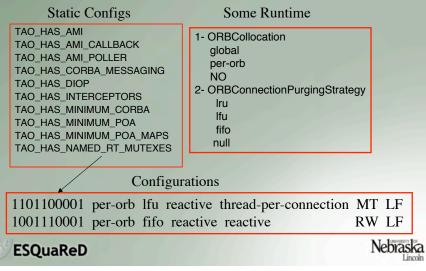
Covering Array Approach

- Systematically sample the configuration space, test only the selected configurations, and conduct fault characterization on the resulting data
- How good are the resulting characterizations?

- ACE+TAO: an open source distribute CORBA middleware system
 - Large code base 2M+ lines of C++ code
 - Over 500 configuration options
 - Dozens of OS, compiler and hardware platform combinations

ESQuaReD

Mappings


- 10 Static Binary Options (constraints reduce this to 92 feasible static configurations)
 - Only 29 of these compile successfully
 - Our model aggregates all of these into a single static option with 29 values
- 6 run time options with 2-4 values each

The Covering Array: MCA(N;t,291413421)

ESQuaReD

Nebraska

Mappings

Software System

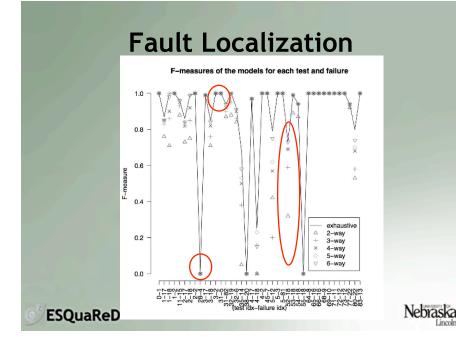
- Test suite: 96 regression tests
 - Each designed to emit an error message in the case of failure
 - The error messages were captured, indexed, and recorded
- Almost a year of machine time for the exhaustive testing of 18,792 configurations just a small portion of actual space

Constructing Covering Arrays

- Created 5 different t-way covering arrays for $2 \leq t \leq 6$
- Size of covering arrays: MCA(N;t,29¹4¹3⁴2¹)

t	# of configurations	% reduction
2	116	99.4
3	348	98.2
4	1229-1236	93.5-93.4
5	3369-3372	82.1-82.0
6	9433-9453	49.8-49.7

Nebraska



Fault Localization

- Covering arrays performed better than random arrays of same size.
- Did almost as well as full configuration space at a reduced cost
- (Use F Measure to determine how good our characterization is. It combines precision and recall)

ESQuaReD

Nebraska

But

Given:

- Many of the faults were localized in the runtime options
- We had a large number of options for the one static factor

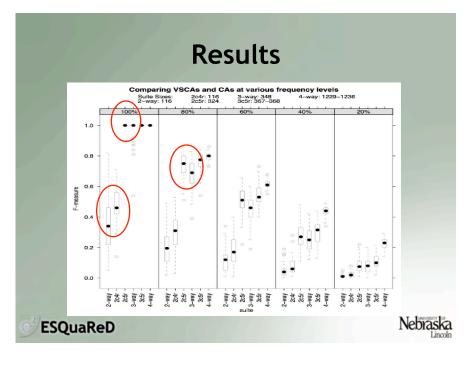
Question:

• Can we improve our fault localization by using VCAs?

ESQuaReD

VCAs Created

	Size
MCA t=2	116
2c4r VCA(2,29 ¹ 4 ¹ 3 ⁴ 2 ¹ ,MCA(4,4 ¹ 3 ⁴ 2 ¹))	116
2c5r	324
MCA t=3	348
3c5r	367-368


			Res	sult	S		
Failure	OS	2-way	2c4r	2c5r	3-way	3c5r	4-way
2-17	Linux	.78	.81	.83	.81	.83	.81
80-	Linux	.34	.51	.65	.61	.65	.67
22							
4-18	Win	.69	.79	.83	.84	.85	.88
SQua	ReD						Nebr

Simulation

- Real data was encouraging but inconclusive
- Most of our characterizations were almost perfect at lower strengths - we may not have many high order faults.
- We performed a simulation of 4 way (runtime) faults in our system at varying levels of determinism.

ESQuaReD

Nebraska

Constructing VCAs

- Gargano, L., Körner, J., and Vaccaro, U., Capacities: from information theory to extremal set theory, *Journal of Combinatorial Theory Series A*, 68, 2 (1994), 296--316.
- (Biyani) IBM internal tool (tofu)
- Simulated Annealing M.B. Cohen et. al
- Constructions: new: C. Cheng 2006

Roux Reference:

• Roux, Gilbert, *k*-Propriétés dans des tableaux de *n* colonnes; cas particulier de la *k*-surjectivité et de la *k*-permutivite, PhD dissertation, University of Paris, Department of Mathematics, 1987.

Constructing VCAs

- If our model of VCA's, we used a restricted model the sub-arrays of higher strength are disjoint. We can easily adapt simulated annealing (or other algorithms) to build these.
- Use sum of the missing tuples across *all strength* arrays as the cost.
- At any point in time a change to an individual value of a factor in the array can effect only 2 CA's - the overall array and the sub-array containing this factor.

ESQuaReD

Nebraska

Some Challenges

- Develop constructions and other computational techniques to build these:
 - Can we leverage the don't care positions?
 - Do these need to be disjoint or can we build any VCA?
- Need a better notation and shorthand for describing VCAs.

ESQuaReD

Nebraska

Conclusions

- Variable strength arrays provide a way to model a software system that is flexible.
- We have successfully applied these to a real software system. (more work is being done on other systems....)
- We do not know a lot about bounds or constructing them.
- The model used to date may be too restrictive **ESQuaReD**

Acknowledgements

• This work was funded in part by an NSF EPSCoR FIRST award.

