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Covering Arrays

CA!(N;t,k,v)

– An N x k  on v symbols array where each N x t sub-array
contains all ordered t-sets at least ! times.

– t is the strength of the array
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Mixed Level Covering Arrays

MCA!(N;t,k,(v1,v2,…,vk))

Is an N x k array on v symbols where:
   v =

And:
– For each column i  where (i  " i " k)

– The rows of each N x t sub-array cover all t-tuples or values
from the t columns at least ! times.

Shorthand Notation:

 MCA!(N;t,(w1
k1w2

k2 …ws
ks))

 e.g. MCA(12;2,4,(4, 3,3,2)) # MCA(12;2,(41 3221))

! =

k

i i
v
1

d5c1

e4b3

e5a2

e6c0

d6a3

d4b1

e6a1

d5b0

d4c2

e5c3

e6b2

d4a0

  A:   0,  1, 2, 3

          B:   a,  b,  c
             C:   4,  5,  6

        D:   d,  e

MCA(12;2,413221)



Limitation

• Mixed level covering arrays have practical
applications in software testing.

• But they view a system “flatly”. They
force a (perhaps arbitrary) restriction on
the importance of various parts of the
system.

Motivation

Scenarios:

• When testing a software system certain
components may be closely interrelated

• Operational profiles give us information that
certain areas of the system are used more
often than others

• In modifying a system only certain regions are
changed therefore we want to test more
strongly in this area

• Failures in certain parts of a system are
costlier than in others

Possible Models
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A 3 way array would have 18 rows
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Variable Strength Covering

Array
• A VCA(N;t,k,(v1,v2,…vk), C) is a t-way

mixed level covering array on v symbols
with a vector, C, of covering arrays each
with strength > t and defined on a subset
of the k columns of the VCA.

Variable Strength Arrays Using

SA1

Size CVCA

305MCA(3,320102)                 2 have 10 values)

100CA(3,320)(22 factors:  20 have 3 values,

100-VCA(2,320,102,C)

68CA(3,315)

51CA(3,39)

33CA(3,36)

33CA(3,35)

27CA(3,34)

27CA(3,33)

16 -VCA(2,315,C)

1. [C,C,C,G,M -2003]

An Empirical Study1

• Distributed Quality Assurance (Skoll)

– Distribute instances of the system
configuration for testing in the field

– Results can be returned to a centralized
location

– Includes fault localization techniques

1. [Yilmaz, Cohen, Porter - 2006]



Fault Characterization Process

Identifies configuration options and their settings which are
responsible for the manifestation of failures
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Fault Characterization

• Helps developers quickly pinpoint the
root causes of failures

• Fundamental downside of the approach
shown is that it requires testing ALL
combinations of options: It does not
scale

Covering Array Approach

• Systematically sample the configuration
space, test only the selected
configurations, and conduct fault
characterization on the resulting data

• How good are the resulting
characterizations?

Software System

• ACE+TAO: an open source distributed
CORBA middleware system

– Large code base – 2M+ lines of C++ code

– Over 500 configuration options

– Dozens of OS, compiler and hardware
platform combinations



Mappings

• 10 Static Binary Options (constraints reduce this
to 92 feasible static configurations)

– Only 29 of these compile successfully
• Our model aggregates all of these into a single static option

with 29 values

• 6 run time options with 2-4 values each

The Covering Array: MCA(N;t,291413421)

Mappings

TAO_HAS_AMI

TAO_HAS_AMI_CALLBACK

TAO_HAS_AMI_POLLER

TAO_HAS_CORBA_MESSAGING

TAO_HAS_DIOP

TAO_HAS_INTERCEPTORS

TAO_HAS_MINIMUM_CORBA

TAO_HAS_MINIMUM_POA

TAO_HAS_MINIMUM_POA_MAPS

TAO_HAS_NAMED_RT_MUTEXES

Static Configs

1- ORBCollocation

     global    

     per-orb

     NO

2- ORBConnectionPurgingStrategy

       lru

       lfu

       fifo

      null 

Some Runtime

1101100001  per-orb  lfu  reactive  thread-per-connection  MT  LF

1001110001  per-orb  fifo  reactive  reactive                       RW  LF 

Configurations

Software System

• Test suite: 96 regression tests

– Each designed to emit an error message in the case
of failure

– The error messages were captured, indexed, and
recorded

• Almost a year of machine time for the
exhaustive testing of 18,792 configurations –
just a small portion of actual space

Constructing Covering Arrays

• Created 5 different t-way covering arrays for

 2 ! t ! 6

• Size of covering arrays:

MCA(N;t,291413421)
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Fault Localization

• Covering arrays performed better than
random arrays of same size.

• Did almost as well as full configuration
space at a reduced cost

(Use F Measure to determine how good our
characterization is. It combines precision
and recall)

Fault Localization

But

Given:

• Many of the faults were localized in the
runtime options

• We had a large number of options for the
one static factor

Question:

• Can we improve our fault localization by
using VCAs?

VCAs Created

348MCA t=3

116

2c4r

VCA(2,291413421,MCA(4,413421))

3242c5r

Size

116MCA t=2

367-3683c5r



Results

.88.85.84.83.79.69Win4-18

.67.65.61.65.51.34Linux80-
22

.81.83.81.83.81.78Linux2-17

4-way3c5r3-way2c5r2c4r2-wayOSFailure

Simulation

• Real data was encouraging but
inconclusive

• Most of our characterizations were almost
perfect at lower strengths - we may not
have many high order faults.

• We performed a simulation of 4 way
(runtime) faults in our system at varying
levels of determinism.

Results Constructing VCAs

• Gargano, L., Körner, J., and Vaccaro, U., Capacities: from
information theory to extremal set theory, Journal of
Combinatorial Theory Series A, 68, 2 (1994), 296--316.

• (Biyani) - IBM internal tool (tofu)

• Simulated Annealing - M.B. Cohen et. al

• Constructions: new: C. Cheng 2006

-------------------------------

Roux Reference:

• Roux, Gilbert, k-Propriétés dans des tableaux de n colonnes; cas
particulier de la k-surjectivité et de la k-permutivite, PhD
dissertation, University of Paris, Department of Mathematics,
1987.



Constructing VCAs

• If our model of VCA’s, we used a restricted model - the
sub-arrays of higher strength are disjoint. We can easily
adapt simulated annealing (or other algorithms) to
build these.

• Use sum of the missing tuples across all strength arrays
as the cost.

• At any point in time a change to an individual value of
a factor in the array can effect only 2 CA’s - the overall
array and the sub-array containing this factor.

Some Challenges

• Develop constructions and other computational
techniques to build these:

– Can we leverage the don’t care positions?

– Do these need to be disjoint or can we build any
VCA?

• Need a better notation and shorthand for
describing VCAs.

Conclusions

• Variable strength arrays provide a way to model
a software system that is flexible.

• We have successfully applied these to a real
software system. (more work is being done on
other systems….)

• We do not know a lot about bounds or
constructing them.

• The model used to date may be too restrictive
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