
Variable Strength Covering

Arrays

Applications and Challenges

Myra Cohen

Laboratory for Empirically-based Software Quality Research

and Development

Covering Arrays

CA!(N;t,k,v)

– An N x k on v symbols array where each N x t sub-array
contains all ordered t-sets at least ! times.

– t is the strength of the array

1

0

0

1

0

1

0101

1000

1101

0000

0011

1110

CA(6;2,5,2)

Mixed Level Covering Arrays

MCA!(N;t,k,(v1,v2,…,vk))

Is an N x k array on v symbols where:
 v =

And:
– For each column i where (i " i " k)

– The rows of each N x t sub-array cover all t-tuples or values
from the t columns at least ! times.

Shorthand Notation:

 MCA!(N;t,(w1
k1w2

k2 …ws
ks))

 e.g. MCA(12;2,4,(4, 3,3,2)) # MCA(12;2,(41 3221))

! =

k

i i
v
1

d5c1

e4b3

e5a2

e6c0

d6a3

d4b1

e6a1

d5b0

d4c2

e5c3

e6b2

d4a0

 A: 0, 1, 2, 3

 B: a, b, c
 C: 4, 5, 6

 D: d, e

MCA(12;2,413221)

Limitation

• Mixed level covering arrays have practical
applications in software testing.

• But they view a system “flatly”. They
force a (perhaps arbitrary) restriction on
the importance of various parts of the
system.

Motivation

Scenarios:

• When testing a software system certain
components may be closely interrelated

• Operational profiles give us information that
certain areas of the system are used more
often than others

• In modifying a system only certain regions are
changed therefore we want to test more
strongly in this area

• Failures in certain parts of a system are
costlier than in others

Possible Models

t=2

t=3

t=2

t=3

Variable Strength Covering

Arrays

MCA(2,3222)

B

D

A

C

0,1,2

3,4,5

6,7
8,9

DCBA

9630

8751

9752

9742

8641

9650

8632

9731

8740

t=2

t=3

A 3 way array would have 18 rows

Variable Strength Covering

Arrays

MCA(2,3222)

Additional rows to

guarantee subset of 3-

way coverage

B

D

A

C

0,1,2

3,4,5

6,7
8,9

DCBA

8651*

9642*

8730*

9630

8751

9752

9742

8641

9650

8632

9731

8740

t=2

t=3

Variable Strength Covering

Array
• A VCA(N;t,k,(v1,v2,…vk), C) is a t-way

mixed level covering array on v symbols
with a vector, C, of covering arrays each
with strength > t and defined on a subset
of the k columns of the VCA.

Variable Strength Arrays Using

SA1

Size CVCA

305MCA(3,320102) 2 have 10 values)

100CA(3,320)(22 factors: 20 have 3 values,

100-VCA(2,320,102,C)

68CA(3,315)

51CA(3,39)

33CA(3,36)

33CA(3,35)

27CA(3,34)

27CA(3,33)

16 -VCA(2,315,C)

1. [C,C,C,G,M -2003]

An Empirical Study1

• Distributed Quality Assurance (Skoll)

– Distribute instances of the system
configuration for testing in the field

– Results can be returned to a centralized
location

– Includes fault localization techniques

1. [Yilmaz, Cohen, Porter - 2006]

Fault Characterization Process

Identifies configuration options and their settings which are
responsible for the manifestation of failures

PASS220

PASS120

PASS020

PASS210

PASS110

PASS010

PASS200

PASS100

PASS000

ResultConfig

o1 o2 o3

ERR #1221

ERR #1121

ERR #1021

ERR #1211

ERR #1111

ERR #1011

ERR #1201

ERR #1101

ERR #1001

ResultConfig

o1 o2 o3

ERR #2222

ERR #2122

ERR #2022

ERR #2212

ERR #2112

ERR #2012

ERR #2202

ERR #2102

ERR #2002

ResultConfig

o1 o2 o3

Fault Characterization

• Helps developers quickly pinpoint the
root causes of failures

• Fundamental downside of the approach
shown is that it requires testing ALL
combinations of options: It does not
scale

Covering Array Approach

• Systematically sample the configuration
space, test only the selected
configurations, and conduct fault
characterization on the resulting data

• How good are the resulting
characterizations?

Software System

• ACE+TAO: an open source distributed
CORBA middleware system

– Large code base – 2M+ lines of C++ code

– Over 500 configuration options

– Dozens of OS, compiler and hardware
platform combinations

Mappings

• 10 Static Binary Options (constraints reduce this
to 92 feasible static configurations)

– Only 29 of these compile successfully
• Our model aggregates all of these into a single static option

with 29 values

• 6 run time options with 2-4 values each

The Covering Array: MCA(N;t,291413421)

Mappings

TAO_HAS_AMI

TAO_HAS_AMI_CALLBACK

TAO_HAS_AMI_POLLER

TAO_HAS_CORBA_MESSAGING

TAO_HAS_DIOP

TAO_HAS_INTERCEPTORS

TAO_HAS_MINIMUM_CORBA

TAO_HAS_MINIMUM_POA

TAO_HAS_MINIMUM_POA_MAPS

TAO_HAS_NAMED_RT_MUTEXES

Static Configs

1- ORBCollocation

 global

 per-orb

 NO

2- ORBConnectionPurgingStrategy

 lru

 lfu

 fifo

 null

Some Runtime

1101100001 per-orb lfu reactive thread-per-connection MT LF

1001110001 per-orb fifo reactive reactive RW LF

Configurations

Software System

• Test suite: 96 regression tests

– Each designed to emit an error message in the case
of failure

– The error messages were captured, indexed, and
recorded

• Almost a year of machine time for the
exhaustive testing of 18,792 configurations –
just a small portion of actual space

Constructing Covering Arrays

• Created 5 different t-way covering arrays for

 2 ! t ! 6

• Size of covering arrays:

MCA(N;t,291413421)

49.8-49.7

82.1-82.0

93.5-93.4

98.2

99.4

% reduction

9433-9453

3369-3372

1229-1236

348

116

of configurationst

6

5

4

3

2

Fault Localization

• Covering arrays performed better than
random arrays of same size.

• Did almost as well as full configuration
space at a reduced cost

(Use F Measure to determine how good our
characterization is. It combines precision
and recall)

Fault Localization

But

Given:

• Many of the faults were localized in the
runtime options

• We had a large number of options for the
one static factor

Question:

• Can we improve our fault localization by
using VCAs?

VCAs Created

348MCA t=3

116

2c4r

VCA(2,291413421,MCA(4,413421))

3242c5r

Size

116MCA t=2

367-3683c5r

Results

.88.85.84.83.79.69Win4-18

.67.65.61.65.51.34Linux80-
22

.81.83.81.83.81.78Linux2-17

4-way3c5r3-way2c5r2c4r2-wayOSFailure

Simulation

• Real data was encouraging but
inconclusive

• Most of our characterizations were almost
perfect at lower strengths - we may not
have many high order faults.

• We performed a simulation of 4 way
(runtime) faults in our system at varying
levels of determinism.

Results Constructing VCAs

• Gargano, L., Körner, J., and Vaccaro, U., Capacities: from
information theory to extremal set theory, Journal of
Combinatorial Theory Series A, 68, 2 (1994), 296--316.

• (Biyani) - IBM internal tool (tofu)

• Simulated Annealing - M.B. Cohen et. al

• Constructions: new: C. Cheng 2006

Roux Reference:

• Roux, Gilbert, k-Propriétés dans des tableaux de n colonnes; cas
particulier de la k-surjectivité et de la k-permutivite, PhD
dissertation, University of Paris, Department of Mathematics,
1987.

Constructing VCAs

• If our model of VCA’s, we used a restricted model - the
sub-arrays of higher strength are disjoint. We can easily
adapt simulated annealing (or other algorithms) to
build these.

• Use sum of the missing tuples across all strength arrays
as the cost.

• At any point in time a change to an individual value of
a factor in the array can effect only 2 CA’s - the overall
array and the sub-array containing this factor.

Some Challenges

• Develop constructions and other computational
techniques to build these:

– Can we leverage the don’t care positions?

– Do these need to be disjoint or can we build any
VCA?

• Need a better notation and shorthand for
describing VCAs.

Conclusions

• Variable strength arrays provide a way to model
a software system that is flexible.

• We have successfully applied these to a real
software system. (more work is being done on
other systems….)

• We do not know a lot about bounds or
constructing them.

• The model used to date may be too restrictive

Acknowledgements

• This work was funded in part by an NSF
EPSCoR FIRST award.

