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Abstract— In this work, we present a formalization of the video 
synchronization problem that exposes new variants of the 
problem that have been left unexplored to date.  We also pre-
sent a novel method to temporally synchronize multiple sta-
tionary video cameras with overlapping views that: 1) does not 
rely on certain scene properties, 2) suffices for all variants of 
the synchronization problem exposed by the theoretical dis-
seration, and 3) does not rely on the trajectory correspondence 
problem to be solved apriori.  The method uses a two stage ap-
proach that first approximates the synchronization by tracking 
moving objects and identifying inflection points.  The method 
then proceeds to refine the estimate using a consensus based 
matching heuristic to find moving features that best agree with 
the pre-computed camera geometries from stationary image 
features.  By using the fundamental matrix and the trifocal 
tensor in the second refinement step we are able to improve the 
estimation of the first step and handle a broader range of input 
scenarios and camera conditions.   

 
Index Terms—Video synchronization, video processing, com-

puter vision 

I. INTRODUCTION 

There are many common applications of multiple video 
cameras today that range from video surveillance of large ar-
eas such as shopping centers, parking lots and campuses, to 
filmmaking that utilize multiple cameras when a screenplay, 
and 3D reconstruction of dynamic scenes.  There is the funda-
mental problem of sequence synchronization that needs initial 
resolution before tasks such as those listed above can begin.  

Intuitively, the synchronization problem refers to the fol-
lowing:  Given k different video sequences that overlap in 
time, identify one frame from each of the different sequences 
that refer to the same point in time. Such a set of frames is 
called a synchronized cross camera subset. More formally, for 
each video sequence i, let the frame-time function Ti(f) map an 
integral frame number f of sequence i to a universal time, i.e.  

RNfTi →:)(  (1) 
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The synchronization problem can now be expressed as finding 
a set of frames numbers, f1, f2, … , fk, one from each sequence, 
such that the synchronization equality T1(f1) = T2(f2)= … = 
Tk(fk) holds.  Such a set of frames that exactly solves the syn-
chronization equality is said to be in perfect integral synchro-
nization.  

However, due to possible minute variations in camera start 
times and variations in frame rates, perfect integral synchroni-
zation does not always exist.  In such a case we search for a set 
of frames whose pair-wise difference with respect to the syn-
chronization equality is minimized.  If we remove the restric-
tion of integral frame numbers, the frame-time function maps 
frame values (integral and non-integral) to a point in time, i.e:   

RRfTi →:)(  (2) 

In this case, the frame-time function maps a real frame number 
(sub-frame accurate) to an exact moment in time.  In such a 
case, there will always exist a set of real frame numbers, f1, f2, 
…, fk, such that synchronization equality T1(f1) = F2(f2)= … = 
Tk(fk) holds.   In summary the synchronization problem is:  

1. …referred to as the full frame synchronization 
problem when restricted to integral frame numbers, 
and seeks to minimize the pair-wise differences of 
the synchronization equality.  i.e. |Ti(fi) – Tj(fj)| is 
minimal for all pairs i,j.  

2. …referred to as the exact synchronization problem 
when unrestricted, and seeks to exactly solve the 
synchronization equality.   

We fully explore the details of the functions, the equality and 
their use in both flavours of the synchronization problem in 
section 2. 

Synchronization is often assumed however, since the proc-
essing of large volumes of video data is becoming tractable, 
recent work has investigated the problem of synchronizing 
video sequences.  In [1], the method will require that the frame 
rates be that same for all views in order for the correlation 
phase to properly be modeled.  In [2] the synchronization 
problem is constrained to having a large planar surface pre-
sent.  The method also suffers under certain 3D motions such 
as similar objects moving in a line with constant velocity.  In 
[3], the method is also constrained by a large ground plane 
being present, but further requires intrinsic camera parameters.  
Furthermore, the method assumes a homogenous camera sys-
tem.  In [4] a fixed set of extrinsic camera parameters, identi-
cal frame rates, and a static scene are required so that motion 
of the rig is identical on a frame to frame basis.  In [5], the 
authors also take advantage of the fact that objects moving on 
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a planar surface produce a 3D trajectory contour that is identi-
cal from camera to camera.  In [6,7], the imposition of rank 
constraints on corresponding frame features is examined, 
rather than the epipolar geometry.  In order to determine the 
synchronization a search is performed for frame pairs that 
minimize the rank constraint.   

Generally speaking these methods are restrictive because 
of the requirements of identical frame rates, large planar sur-
faces being present, or the requirement that the camera system 
be partially, if not fully, calibrated.  In this work we examine 
the theoretical nature of the synchronization of multiple video 
sequences and prove the maximum upper bound on the differ-
ence between full frame and exact synchronizations.  We pro-
pose a novel method that does not rely on any particular cam-
era configuration or constraints on the objects.  The method is 
performed solely in projective space and does not require tra-
jectory correspondence to be solved apriori.  The main con-
straint of our method is that there are at least three cameras 
that remain stationary throughout the video capture process; a 
very common situation in many multi-video applications, and 
that moving objects have sufficient texture for feature tracking. 
The motion of the moving objects is also slightly constrained 
in that they cannot have a periodic characteristic such as a 
pendulum, nor can the motion be directly along the optical axis 
of one of the cameras.   

This work is organized as follows: Sections 2 and 3 formal-
izes the problem of synchronizing video sequences and intro-
duces terminology.  Section 4 outlines our proposed method 
that includes 1) Computing camera geometries, 2) Generating 
trajectories, 3) using inflection points to grossly approximate 
the synchronization, and 4) using the computed geometries to 
compute the exact synchronization.  Section 4 ends with an 
adaptation to handle errors in the computed geometries.  In 
Section 5, we perform experiments with our proposed method 
and present results.  In section 6, we draw conclusions. 

II. PROBLEM FORMALIZATION 

We first examine some properties of the relationship between 
multiple video sequences and specify terminology.  We let 
Fi:R!{0,1} be the frame-capture function. Fi(x) = 1 if at time 
x, a frame in video sequence i is being captured and Fi(x) = 0 
otherwise.   Close examination reveals that the frame-capture 
function is periodic in nature and therefore the model for video 
capture and synchronization we use is wave based, not linear 
as one might expect.  The time between peaks in the function 
Fi is known as the period (in wave mechanics terminology) 
and what is commonly referred to as the frame rate (ρ), is ac-
tually the frequency.  Recall that frequency and the period are 
inversely related. Figure 1 plots the function Fi. The peaks 
occur when a frame is captured and the valleys occur when 
frames are not being captured.  Notice that in the case of mul-
tiple video sequences there exist what we call primary syn-
chronization points that minimize the distance between the 
exact synchronization time and the full frame synchronization. 

Defintion: A primary synchronization point is a point in time 
that minimizes the difference between the exact synchroniza-
tion function (2) and the full frame synchronization function 

(1) for all sequences.  i.e. The frame numbers that satisfy the 
synchronization equality and minimize the difference of (3).  

  
(a) 

 
(b) 

 

Figure 1: a) Perfectly synchronized video sequences with 
varying frame rates showing primary synchronization points.  
b) Imperfectly synchronized video sequences with varying 

frame rates showing primary and secondary synchronization 
points 

Formally, the difference between full frame and exact syn-
chronization is given by: 

 )5.0()( +− fiTifiTi
 (3) 

Any synchronization time that does not minimize the dif-
ference (3) is termed a secondary synchronization point i.e. 
any non primary synchronization point. As we see in Figure 
1a, given 3 video sequences of differing frame rates that are 
perfectly synchronized in time, clearly visible cycles of pri-
mary synchronization occur.  For perfectly synchronized video 
sequences, these primary synchronization points correspond to 
the full frames that were taken at the exact same moment in 
time.   

Primary synchronization points occur at regular intervals 
that are a function of the frame rates of the individual se-
quences.   
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The time between two primary synchronization points (λ) is 
determined by the maximum frame rate and the least common 
multiplier of (4) for all pairs of sequences. 

{ }   1  s.t. |),(  max NjiijframesLCM ji <<<∀•= ρρρλ  (5) 

We coin the term primary synchronization period, denoted by 
the symbol λ, to be the time between these events.   

In practice however, we do not always have perfectly syn-
chronized video sequences as shown in Figure 1a.  Instead, we 
have a slight synchronization offset.  We can see in Figure 1b, 
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for sequences that are slightly out of sync, that the offset is 
minimal at the primary synchronization points. Furthermore, 
this offset has a maximum bound for any secondary synchroni-
zation point.  We explore this bound next. 

Given two imperfectly synchronized video sequences, the 
maximum full frame sync offset is half the maximum differ-
ence between two frame captures (period) of the higher frame 
rate sample.  As we can see in Figure 1b for any pair of se-
quences, a frame in the slower frame rate sample straddles two 
frames of the higher frame rate sample, and thus full frame 
synchronization will be with the closest frame, in time, of the 
higher rate sample.  For two video sequences, the quality of 
full frame synchronization is bound by: 
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(6) 

For N video sequences, the error is bound to a maximum error 
defined by (6) for all camera pairs and is characterized by: 

{ } NjiijVjVoffset i <<<∀=∆ 1  s.t.   ),(max  (7) 

It turns out that the maximum error will always be between the 
slowest and the 2nd slowest video frame rates, and thus for N 
cameras, ∆ can be easily determined using (6) and the two 
slowest frame rates. 
 

Lemma 2.1 For N video sequences, the maximum full frame 
offset is bound by half the 2nd slowest camera period. 
 

Proof: Let γ1, γ2 and γ3 be the three slowest frame periods 
(γi=1/ρi) from N sequences such that: γN < …< γ3 < γ2 < γ1.  
For all sequence pairs, the offsets defined by (6) are γ2/2, γ3/2, 
and γ3/2 respectively.  Since γ2 is greater than γ3, γ2/2 is greater 
than γ3/2.  As γ3, γ2 and γ1 are the three slowest rates, any other 
frame rate γi (i>3) from the N sequence is less than γ3 resulting 
in an application of (6) resulting in γi/2 which is less than our 
largest value γ2/2.  Therefore, the error is bounded by γ2/2, half 
of the 2nd slowest frame period.  □ 

Given two frames from a single video sequence i, the 
amount of time that elapses between frame f1 and f2 is (f2-
f1)*ρi. We let Ei represent the amount of time that has elapsed 
between the first frame and the fth frame (denoted fi) in se-
quence i. Specifically, the fth frame (ni) in sequence i will be 
taken at elapsed time Ei and is given by the following equation: 

iii fE ρ⋅=  (8) 

Because the sequence start time is the beginning of the se-
quence, we have a simple linear relationship between the 
frame rate and the frame number.  However, since we want to 
synchronize video cameras that were not necessarily started at 
the same point in time, it is necessary to determine the elapsed 
time within the context of a universal timeline, and not simply 
within the time line of the single sequence itself.  We now 
specify the exact nature of the functions given by (1) and (2): 

iiii SEfT +=)(  (9) 

where the start time of the sequence i, is at some offset Si from 
the universal start time.  This offset in the universal time line 

represents a phase shift in wave mechanics terminology.  As 
we see in Figure 2, three cameras started at different points in 
time have different phase shifts with respect to the universal 
time line.  We see that there are phase shifts Si, Sj, and Sk that 
correspond to the differences in time for which the cameras 
started capturing video sequences. 

 
Figure 2: Video sequences relative to a universal time line. 

Given multiple video sequences, the synchronization con-
sists of the frame numbers that were taken at the same instant 
in universal time, within the known bounded error ∆ given in 
(7).  For 3 video sequences (i, j, k), the universal time line 
obeys the synchronization equality: 

kkjjii SESESET +=+=+=  (10) 

The problem of synchronization is now, in fact, two fold.  1) 
finding the inter-sequence times (Ei) where a synchronization 
point occurs and 2) solving for the universal time phase shifts 
(Si).  In practice, we can impose the constraint that S1 be set to 
universal time 0 and base our phase shift values on a time 
frame dictated by camera start events.  We can determine the 
camera start order by examining the elapsed sequence times in 
the order of highest to lowest. 

The goal of synchronization is now to solve for the syn-
chronization equality (10).  This can be done on an integral 
frame basis, knowing that we can only be accurate to within 
the time frame given by (7), or it can be solved exactly by al-
lowing sub frame accuracy determination in equation (10).  If 
we choose to only support integral frame numbers, equation 
(10) has constraints that account for the maximum error ∆. 

∆≤

∆≤

∆≤

+−+

+−+

+−+

)()(

)()(

)()(

kki

kkjj

jjii

SESiE

SESE

SESE

 

(11) 

 Additional cameras are a simple extension of the equality 
from (10) and the constraints from (11).  Primary synchroniza-
tion points minimize the constraints given by (11), and in prac-
tice should be sought.  The E’s are solved by finding a primary 
synchronization point, and the S’s by setting S1 to be zero, 
therefore becoming the universal start time, and using alge-
braic manipulation to solve for the remaining. 

III. TERMINOLOGY 

We continue by specifying terminology that defines the 
core concepts behind the proposed solution.  A camera se-
quence (CS) is the linear sequence of frames from a single 
video camera; like a single reel of film.  A cross camera subset 

time 
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(CCS) is a set of N images, where each image in the subset 
comes uniquely from one of the N cameras.  A cross camera 
subset is not necessarily aligned in time, we denote a CCS to 
be simply a selection of N frames, one from each of N camera 
sequences.  A synchronized CCS is a cross camera subset 
where each frame of the set is full frame synchronized as out-
lined in equation (1).  The problem of camera synchronization 
is that of determining the same moment in time for each of the 
video sequences, i.e. finding a synchronized CCS. 

We further sub-classify cross camera sets into dynamic-
CCS and static-CCS.  As their names elude, a static-CCS is 
comprised of those images that have the same static content (or 
in practice, a majority of static content).  The term static-CCS 
is not to say that there is no dynamic motion within the frames, 
but rather we are interested only in the static content of each 
frame.  A dynamic-CCS is the set of images in which we are 
utilizing the dynamic objects of the cross camera set.  Again 
this is not to say that all pixels within a set are moving, but 
rather they contain the same moving objects. 

 

 
Figure 3: 3 camera sequences in a three video camera setup 

with varying frame rates, with a synchronized cross camera set 
in gray. 

IV. RECOVERY OF SYNCHRONIZATION  

Because we are utilizing multiple stationary video cameras, 
we can use the fundamental matrices [8] and the trifocal tensor 
[9] of the three views to determine the synchronization.  There 
is one instant in time where all moving and non-moving fea-
tures will have perfect consensus on the camera geometries, 
and this is when the moving objects are captured at that same 
instant in time.  When dynamic-CCS objects concur with the 
geometry computed from the static-CCS, the frames that com-
prise the dynamic-CSS are full frame synchronized.  More-
over, the best geometric support will come from a primary 
synchronization point.  Space constraints prevent us from pro-
viding complete details, but a full and complete technical re-
port is available from the authors. 

A. Computing Camera Geometry from the Static-CCS 

Because the cameras are stationary, and the features con-
sidered in a static-CCS are also stationary and we can select 
any frames, so long as they minimize the effect of the moving 
objects.  Selecting frames that are relatively close to the syn-
chronized frames should be avoided in this step to prevent 
outliers from being included, resulting in a degenerate compu-
tation of the camera geometry.  However, due to the large ratio 
of frames to cameras, we can simply sample frames from each 

camera sequence so that they are well distanced in time.  Once 
the static-CCS has been selected, it is used to first compute 
information about the camera geometry.  The fundamental 
matrix and the trifocal tensor, are required from a 3 camera 
system and can be computed robustly using techniques out-
lined in [8][9]. 

B. Generating the Trajectory Images 

Because we are not assuming trajectory correspondence, 
we must have enough interest points tracked to ensure corre-
spondence between the 3 views.  This will result in cluttered 
trajectory images; however we can reduce the trajectory im-
ages in the presence of inflection points.  The feature tracker 
we use is based on the work of Lucas and Kanade in [10].  We 
generate the trajectory images by tracking features from frame-
to-frame, and plotting the feature location into the trajectory 
image.  During the creation of the trajectory images, we asso-
ciate a list of frame numbers to each tracked pixel position of 
the dynamic objects in the trajectory image.  An example tra-
jectory image is given in Figure 4 where an object was moved 
purposely to show a point of inflection.  In order to effectively 
track moving objects, they need a distinguishable texture.  

 
Figure 4: a trajectory image generated by tracking features 

on moving objects. 

C. Gross approximation of synchronization  

We begin by performing a gross approximation of the full 
frame synchronization by looking for inflection points.  An 
inflection point is found examining the trajectories for changes 
in direction.  In the presence of object motion where direction 
is changed suddenly; the trajectories show this change at a 
very obvious as point shown in Figure 4.  In practice this al-
lows us to get within a few frames of correct synchronization, 
but is never guaranteed to be exact.  The reason for this is due 
to differing frame rates combined with perspective distortions 
of the fluidly moving objects causing a many-to-one, frame-to-
pixel location of inflection points in the trajectory images. 

In practice, the presence of obvious inflection points may 
be quite difficult to find, especially when the motions of the 
dynamic objects are not under control of the application or on 
non-rigid objects.  However, in the absence of inflection 
points, or in cases where inflection points cannot be reliably 
found, the gross approximation stage can be omitted and we 
use the larger trajectory images in the consensus stage.  This 
will  result  in  many  more  consensus  trials  being  performed 
because the epipolar lines will potentially intersect with many 
more trajectories causing the candidate set to be larger.   

t t 
t 

Cross 
Camera 
Subset 

Point of 
inflection 
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Figure 5: Frame vales to sub-frame accuracy via epipolar and tensor transfer 

Once we have identified an inflection point, the synchroni-
zation is grossly determined by frames associated to the inflec-
tion point.  The synchronization can then be further refined by 
creating a reduced trajectory image around the point of inflec-
tion and a geometric consensus stage is applied.  To improve 
efficiency, we then generate a “reduced” trajectory image 
around the inflection.  The reduced trajectory image consists 
of trajectory data for ± four frames around the inflection point. 

D. Refinement of synchronization  

We can now effectively compute the synchronization to 
sub-frame accuracy using the camera geometry and the trajec-
tory images.  We do this by selecting a point x in any trajec-
tory in the first image.  We then compute the epipolar line that 
will intersect the corresponding trajectory in the second trajec-
tory image.  The epipolar line will also cross other trajectories 
in the second image, and we use the intersections of the epipo-
lar line and the trajectories to create a candidate set of match-
ing points.  As shown in Figure 5, these candidate frames can 
be computed to sub-frame accuracy as the intersection of the 
trajectory line joining two point positions in adjacent frames.  
For each point in the candidate set, tensor transfer is applied 
along with the first point to compute a third point in the third 
trajectory image.  The computed 3rd point (via tensor transfer) 
is used to find the closest trajectory point.  This closest point is 
also computed to sub frame accuracy as shown in Figure 5.   

Once the 3 points have been associated to their respective 
trajectories, the nearest full frames are selected for a consensus 
trial.  We compare a window around each point using normal-
ized cross correlation to determine whether or not the three 
points are similar enough to perform the consensus trial.  
When the points agree, we verify that a variety of features in 
the selected frames support the given geometry by generating 
corner features and performing matching that is guided by the 
pre-computed geometries.  The putative CCS with the highest 
consensus overall is selected as the synchronized CCS.  

E. Synchronization in the face of erroneous geometries 

In the presence of error in the computed geometries, an exact 
answer cannot be trusted.  Even a single pixel displacement of 
the epipolar line will result in an incorrect location of the in-
tersection of trajectories and the epipolar line, which will re-
sult in inexact time localization.  In the presence of larger in-
accuracies, it is beneficial to examine a broader range of 

frames when operating our consensus trials.  We examine a 
number (ε) of complete frames on either side of the epipolar 
line.  This will increase the number of consensus trials by a 
factor of (2ε+1)2 times the number of trials where we have 
absolute confidence in the computed geometries.  The optimal 
epsilon is function of the frame rate and the primary synchro-
nization period (5) and guarantees us to search at least one 
primary synchronization point.  For each sequence, i, epsilon 
is: 









=

iρ
λε

2
 (12) 

V. EXPERIMENTAL RESULTS 

We have applied the algorithm to various sequences, both 
synthetic and those captured by a variety of different cameras 
of varying quality and frame rates.  We compare to known 
ground truth where possible, while in the other cases, we com-
pare to hand selected ground truth.  Due to space constraints, 
we present the results in condensed form.   

In our synthetic data set, the frame rates are the same and 
constant for each generated sequence.  The offsets were set to 
be 0, 5 and 10 frames respectively.  The trajectory images 
were generated using the projected positions of the 3D vertices 
of the cube.  Due to the simplistic motion, there were no in-
flection points in the trajectory image, thus application of the 
consensus algorithm was all that was necessary.  Under these 
ideal conditions, the synchronization was computed exactly to 
be frame deltas 0, 5 and 10 respectively.   In our next synthetic 
example, the sequences are not perfectly synchronized and 
frame deltas of 0, 5.25 and 10.75 were used to represent a sys-
tem similar to Figure 1b.  Under these conditions, the synchro-
nization was computed exactly to be frame deltas 0, 5.25 and 
10.75 respectively.  

In our next experiment, we used a system of 3 cameras that 
grabbed frames on a synchronized basis, we then offset the 
video sequences by 5 and 10 frames for the second and third 
cameras respectively to be used as our ground truth.  This sce-
nario represents a system of cameras with identical frame rates 
that are full frame synchronized and the capture process was 
started simultaneously (as in Figure 1a).  As we can see in  
Table 1 the computed full frame synchronization is correct.

 

T 

x epipolar line   
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frame n 
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Camera 
Gross Ap-
proxima-

tion 

Exact 
Sync 

First 
Primary 

Sync 
Point 

Exact 
Time 
Ei (s) 

Uni-
versal 
Time 
Shift 
Si (s) 

Exact 
First 
Full 

Frame 

Ground 
Truth 

1 141 141 0 0 1.994 0 0 
2 146 146.05 5.05 1.010 0.984 5 5 
3 151 150.97 9.97 1.994 0 10 10 

Table 1: Synchronization Results 

Camera 
Frame 

Rate 
Gross 
Appr. 

Time 
(s) 

Universal 
Time Shift 

(s) 

Exact 
Sync 

Exact 
Time 

(s) 

Universal 
Time Shift 

(s) 

Nearest  
Full 

Frame 
Time 

1 15 127 8.467 7.533 126.75 8.450 7.450 127 8.467 
2 15 228 15.20 0.800 229.33 15.289 0.611 229 15.267 
3 10 160 16.00 0 159 15.900 0 159 15.900 

Table 2: Synchronization Results 

However due to minor errors in computed geometry, the exact 
synchronization exhibits the minor errors.  The error falls well 
within the expected maximum error of ½ a frame period.   

In our next experiment, we utilize 3 off the shelf digital 
cameras with video capture capabilities.  The cameras were of 
varying quality and frame rates.  This reflects the situation 
depicted in Figure 1b.  Ground truth was user selected to be 
frames 127, 229, and 159 respectively.  In this example, an 
object was moved such that an obvious change of direction 
(inflection points) occurred (figure 4).  These very sharp in-
flection points allow the gross approximation method to 
achieve very close results to the synchronized frames with 
maximal consensus.  We can see in Table 2 that the gross ap-
proximation in the presence of inflection points are accurate to 
within a few frames of the exact full frame synchronization.   

In our final set of experiments, we artificially added error to 
the computed geometries to simulate degenerate geometries.  
We then ran the examples again using the robust strategy out-
lined in section 3.5 for dealing with erroneous geometries.  
The results all fell within 1 frame of the ground truth. 

VI. CONCLUSIONS 

In this work we introduce the theoretical groundwork that 
formalizes the problem of video synchronization and intro-
duces several variants of the problem not previously exposed 
in the literature.  We elucidate the necessary concerns around 
the utilization of a non-homogenous set of cameras and show 
that, in the case of varying frame rates, there are areas of syn-
chronization that are superior to others and dub these primary 
synchronization points.  This is important for applications that 
use computer based USB cameras for video capture as the 
driver software generally will make the frame rates variable 
through frame dropping.  Furthermore, we present a novel 
method for synchronizing multiple video sequences using fea-
ture tracking and geometric consensus solely in projective 2D 
space.  The proposed method has the least constraints placed 
on the camera setup, the scene being viewed, and does not 
require the trajectory correspondence problem to be solved 
apriori.  The method also provides two levels of accuracy by 
using a two step process of grossly approximating the frame 

synchronization followed by a refinement step that examines 
selected frames for their consensus with the camera geometry.  
The method has been successfully used on both synthetic data 
and real data with substantial noise, differing frame rates and 
varying levels of initial synchronization.  Even in the presence 
of erroneous geometries, it is possible to get accurate synchro-
nization results at the cost of performing more consensus trials 
to account for the geometric inaccuracies.   Space constraints 
prevented a full disclosure of our experiments; however, a full 
and complete technical report is available from the authors. 
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