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Abstract 
 
Problems in computer vision and computational video often make certain assumptions 
about the input data.  For example, structure from motion algorithms assume a baseline of 
minimal configuration and reconstruction problems often assume a known corresponding 
feature set and calibration parameters.  Often it is the case that these assumptions present 
difficult problems in themselves. 
 
This thesis examines problems that maintain a common thread of video data.  Often 
coined computational video, this emerging field presents a number of interesting prob-
lems that often fall into the assumptions of other research areas.  Specifically, we address 
suitable baseline selection for structure from motion as well as an automated system that 
solves the correspondence problem in large number of cases.  We also address a means 
for automatically computing intrinsic camera parameters for long video sequences and 
we examine a method for synchronizing multiple video streams.  Furthermore, we ad-
dress the problem of accurate segmentation of commercial video streams for subsequent 
use in video databases and search facilities. 
 
Each of the problems addressed in this thesis are often assumed to be solved in the pres-
entation of other research problems such as 3D reconstruction, video abstracting and da-
tabase population.  Each of the proposed solutions provides benefits to the research 
community by providing tools and/or novel algorithms that address these often assumed 
sub-problems.  Furthermore, the findings presented in this thesis remove a number of 
constraints that are generally placed on these types of problems. 
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Guide to Notation 
 
Throughout the paper, we will use a common convention for notation.  In Table 1 below, 
a list of common notation is provided 
 

c : The optical center of the image plane in pinhole camera 
C : The optical center of the focal plane in pinhole camera 
D : The Euclidean transformation matrix, this is a 4x4 matrix  
E : The essential matrix, this is a 3x3 matrix 
F : The fundamental matrix, this is a 3x3 matrix 
f : Intrinsic camera parameter, focal length     
H : The homography matrix, this is a 3x3 matrix 
K : The intrinsic camera parameters, this is a 3x3 matrix 
l : A line in homogeneous form, this is an (N+1)D vector 

M : A point in 3D space, this is a 3D vector 
m : A point in an image, this is a 2D vector 
P : The projection matrix (3D to 2D), this is a 3x4 matrix 
R : The Rotation matrix, this is a 3x3 matrix 
s : Scalar factor 
t : The translation vector, this is a 3D vector 
ℑℑℑℑ : Trifocal Tensor, this is a 3x3x3 cube operator 
U0 : Intrinsic camera parameter, center of projection X 
V0 : Intrinsic camera parameter, center of projection Y 
α : Intrinsic camera parameter, aspect ratio 
θ : Intrinsic camera parameter, sensor skew 
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Chapter 1 

1 Introduction 
 

1.1 From Computer Vision to Computational Video 

Research into computer vision has been ongoing for many decades, with origins 

dating back to the late 50’s and early 60’s.  Due to limited computing power, a lack of 

understanding, and experience with the complexity of three dimensions, most early work 

in computer vision concentrated on what today are largely considered 2D problems such 

as fingerprint processing [1], optical character recognition (OCR) [2], and satellite im-

agery [3].  Other recent areas of research include the use of computer vision techniques in 

practical problems like retrieval from image databases, content-based image and video 

compression, and face recognition to name a few.  However, a lot of this work is largely a 

matter of applying already well-established computer vision methods to new problems 

but require some level preprocessing of the input data to allow the use of known methods.   

 
A consequential step of the early research was the application of computer vision 

techniques for interpreting aerial photographs and satellite imagery. Here the images are 

typically very large and much more complex in their contents and variety, but still are 

mostly 2D in nature (aside from some small 3D effects like shadows cast by tall buildings 

or bridges crossing rivers).  Satellite imagery is still handled using mostly planar method-

ologies due to the distance between features being minute in comparison to the distance 

of the camera to the earth’s surface [4].  Work on these types of images dominated com-

puter vision research throughout the seventies. However, some significant work was done 

on images of simple 3D scenes of the so-called “Blocksworld", a domain of painted toy 

blocks on a plain tabletop.  Still today, many researchers use a blocksworld domain to 

verify effectiveness and test algorithms. 

 
In the eighties, and still today, the main challenge of computer vision research is 

attempting to deal more fully with the 3D world, and with the movement of sensors. A lot 
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of work was supported and influenced by the Autonomous Land Vehicle (ALV)1 Project 

in the United States [5], but its origins appear earlier. The ALV was intended to be a ro-

bot vehicle that could drive itself around the countryside, guided by computer vision al-

gorithms and other sensors.  Within the past decade, the ALV project has added video 

cameras as a standard sensor to be used on the vehicle [6]. 

 
As the video camera plays such an important role in our day to day lives, it is not 

likely that we will see the video camera diminish as a data acquisition source for some 

time to come.  The volume of video data that has resulted since the advent of the video 

camera far exceeds that of still image photography and creates a new set of  unique and 

interesting problems that need resolution.  If there is any one thing that characterizes the 

recent trends and direction of computer vision research today, it is the terms dynamic (ac-

tive) vision and computational video. Researchers are moving away from the implicit 

view that a vision system is merely a stationary recipient of passive images, realizing that 

as part of a robot, a vision system will actively move about and explore while interacting 

with its (dynamic) environment. This new point of view has inspired research in the area 

of dynamic vision recently, leading to robotics and computational video research labs 

with an emphasis on video processing research becoming prevalent.   

 

1.2 Motivation 

There are a number of reasons for dynamic vision based video processing prob-

lems. Primarily (for the author) is that they are interesting practical problems with theo-

retical backgrounds that combine elements of computer vision; artificial intelligence, ef-

ficiency and optimization.   

 
It has often been said that computer vision research is sometimes an exercise in 

finding the right data set, however, as techniques mature and become standardized for 

solving certain problems, the challenge always remains in ensuring that unconstrained 

inputs can be made suitable for the mature algorithms.  Until recently it was thought that 

little work could be done without having the metrics of a calibrated stereo vision system.  

                                                 
1 A complete list of publications related to the ALV project since 1985 can be found a the ALV website at 
Carnegie Mellon University (http://www.ri.cmu.edu/labs/lab_28_pubs.html) 
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Just over a twenty years ago, the Essential matrix was introduced [7], followed shortly by 

the fundamental matrix [8][9] and not long after that, robust methods for determining the 

fundamental matrix [10][11] were introduced offering the capability to take a simple, un-

calibrated vision system, and perform some machine vision tasks.  This work progressed 

to the introduction of 3 view geometry [12][18].  Since then, much research has been fo-

cused on autocalibration and metric reconstructions with uncalibrated stereo rigs.  With 

all these advances, there has been little concentration on video data and the unique prob-

lems associated that come with it. 

 
Specifically, this thesis examines techniques that are used as a precursor to the 

application of well-known photogrammetry and content based video retrieval algorithms.  

Due to the volume of data contained in a video sequence it is impractical, if not impossi-

ble, to effectively apply a standard technique to each and every frame.  Furthermore, 

many algorithms are not well suited for the close proximity of adjacent images produced 

by the high frame rates in video cameras.  Currently, there is still some reliance on tech-

niques such as manual resolution of the correspondence problem or non-linear computa-

tional techniques that do not scale up to volume of images found in a typical video se-

quence.  Therefore, this thesis provides some solutions to these types of problems faced 

by all computer vision researchers who will use video data as an input.  The main contri-

butions of this thesis are outlined next. 

 
 

1.3  Thesis Outline and Contributions 
 

Hopefully the reader is now convinced that the problem of computational video 

processing for computer vision tasks is both interesting and important.  The remainder of 

this section outlines the chapters and the research contributions of this thesis.  

 
Chapter 2 – Background 

This chapter is used as a vehicle for covering certain background information that 

is necessary for the remainder of the work presented.  Theory of multiple view geometry 

applied to computer vision is outlined in this chapter.  Concepts such as homographies, 

the Essential and Fundamental matrices, camera calibration and the trilinear tensor are 
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given.  Finally we provide some coverage of feature tracking in video sequences as it 

forms a fundamental primary part in the solution of many computational video problems. 

 
Chapter 3 – From Video Sequences to 3D Camera Positions  

The correspondence of feature points between image pairs is an important first 

step in many computer vision algorithms that is often assumed, or hand selected.  This 

chapter presents a modular system of robustly computing image pair correspondences 

from a video sequence by utilizing geometric constraints to guide an iterative process 

when computing the putative corresponding match set.  The method allows for the solu-

tion of the correspondence problem in two or more views without human intervention.  

This chapter makes contributions to the field of computer vision by providing a publicly 

available robust and accurate method for solving the correspondence problem over 2 and 

3 views.  Furthermore, it presents a novel methodology to select frames based on the dis-

parity of corresponding features via feature tracking as a precursor to the correspondence 

problem.  Consequently, algorithms that rely on the correspondence problem to be solved 

apriori can now be solved in an automated fashion.  This allows long image sequences to 

be handled where manual selection would no longer be possible and conditions the input 

for photogrammetry algorithms which makes the solutions to these photogrammetry 

problems more tractable.  For example, by appropriately spacing the input images, the 

bundle adjustment is more likely to converge. 

 
Chapter 4 – Video Segmentation 

This chapter is a slight departure from the others in that we steer away from mul-

tiple view geometry based computer vision and use feature-tracking techniques to seg-

ment commercial video clips for use in applications such as content-based video, image 

indexing and retrieval, video index creation and video database population.  There has 

been much work concentrated on creating shot boundary detection algorithms in recent 

years.  However a truly accurate method of cut detection still eludes researchers in gen-

eral.  Cut detection methods can all be classified based on the various inter-frame differ-

encing schemes that they employ.  In this work we present a scheme based on stable fea-

ture tracking for inter frame differencing.  Furthermore, we present a method to stabilize 

the differences and automatically detect a global threshold to achieve a high detection 
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rate.  We compare our scheme against other cut detection techniques on a variety of data 

sources that have been specifically selected because of the difficulties they present for 

other differencing techniques due to quick motion, many small shots and computer-

generated effects.  In this study our goal is to improve the accuracy of cut detection, par-

ticularly for difficult image sequences.  The method improves on both speed and accu-

racy over existing feature-based video segmentation methods.  Our new method also im-

proves accuracy over previously established histogram-based methods.  Finally, our new 

method also allows for annotation of the video clips into categories based on feature mo-

tion vectors.   

 
Chapter 5 – Autocalibrating Long Image Sequences 

In order to get metric information from an image sequence it is required that we 

compute the internal camera (intrinsic) parameters.  Whilst this has been studied in the 

past and complex methods exist that require a projective reconstruction to be computed, 

we examine a simpler method that uses the fundamental matrix and genetic algorithms to 

estimate the camera parameters with similar accuracy to the complex methods.  Finally, 

in situations such as video processing, the complex methods are not well suited because 

they do not scale up as the image sequences become large, whereas the method presented 

is ideally suited for long images sequences.  This chapter makes contributions to the field 

of computer vision and computational video processing by allowing very long image se-

quences used in an autocalibration step necessary for computer vision tasks such as 3D 

reconstruction.  The method presented improves speed while maintaining accuracy when 

compared to other complex methods and therefore allows for the autocalibration of video 

capable cameras. 

 
Chapter 6 – Synchronizing Multiple Video Sequences 

At this stage the thesis has examined techniques for performing computation on a 

single video sequence.  In this chapter, we increase the complexity by trying to utilize 

multiple unsynchronized video streams.  In order to make use of any known stereo vision 

algorithm, we must first synchronize the video streams by identifying the frames that cor-

respond to the exact same moment in time.  We contribute to the field by allowing a fast 

and automated method for temporal synchronization, which is often assumed, of multiple 
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video cameras in 2D without the requirement of forcing extrinsic calibration, requiring 

certain motion or scene constraints. 

 
Chapter 7 – Conclusions and Open Problems 

Finally, in this chapter we will summarize the work and future research opportu-

nities in this area. The main contribution of this chapter is a list of open and interesting 

problems. 
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Chapter 2 

2 Background 
 

The goal of a machine vision system is to create a model of the real world from 

static images [13].  Using these models, applications can perform some function such as 

robot navigation or object tracking.  Although early work in computer vision systems 

mainly concerned itself with static scenes, the importance of dynamic scenes, object mo-

tion and video input can not be ignored.  Research naturally broadened, and the projective 

vision and computational video branches of the computer vision tree evolved. 

 
2.1 Computational Video 
 

A computational video system uses as input a series of consecutive images, where 

each image is of a scene at a given point in time.  Video data, which is typically any-

where from 10 fps (frames per second) to 30 fps, makes an ideal input source for dy-

namic vision applications.  With the increasing availability of multimedia applications 

and hardware for capturing video, it is easy to see how projective vision and computa-

tional video are complimentary technologies.   

 
A sequence of frames offers a lot more information regarding a scene, but obvi-

ously it requires a level of computation that is much higher as well.  For example, one 

such system's aim is to detect changes and subsequently determine the motion of the ob-

jects in the scene as well as the camera positions.  The relationship between object mo-

tion and video camera motion falls into one of the following four models: 
 

1. Stationary Cameras / Stationary Objects 
2. Stationary Cameras / Moving Objects 
3. Moving Camera / Stationary Objects 
4. Moving Cameras / Moving Objects 

 
Each of these categories requires slightly different techniques, but some fundamental 

concepts, mathematical background and practices are common to all four.  A subset of 

the frames from video sequences form an identical computer vision problem that would 
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be formed from single frame cameras located at the exact same position of the video 

camera at the time the frames were taken.   

 
Classical computer vision requires calibrated camera systems, but recent devel-

opments in the field have pushed the requirement of calibration out of the way for some 

problems.  Calibrated computations require a transformation matrix known as the essen-

tial matrix [7] that characterizes the transformation between two calibrated camera view 

points.  In uncalibrated projective vision, a transformation matrix can be estimated using 

the two images [10][11].  This estimated matrix is known as the fundamental ma-

trix[8][9], and has the same basic conceptual uses that the essential matrix has.  The rela-

tionship between the fundamental matrix and the essential matrix becomes clear when the 

fundamental matrix is calculated for a calibrated system.  As expected, the fundamental 

matrix derived from a calibrated system correctly yeilds the essential matrix of the given 

system.  These ideas are covered in more detail later on in the chapter.  In a computa-

tional video system, one core challenge is to determine the appropriate model and then 

apply that correct techniques for that model. 

 
2.2 Camera Models 
 

If we consider the simplest model for a camera, we would be considering the pin-

hole camera, which is also known as the perspective camera.  A pinhole camera consists 

of two planes, with a minute hole punched in the focal plane to allow rays of light 

through to fall upon the image plane.  The rays of light pass through the pinhole on the 

focal plane in such a way as to produce an inverted image on the image plane.  This sim-

ple camera has an optical centre located at C on the focal plane and the image plane is 

located at distance f from the focal plane.  Figure 1 shows the pinhole camera model. 
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FIGURE 2.1: THE PINHOLE CAMERA MODEL. 

Each point M in the object forms a straight line through the optical centre C with 

its corresponding image point m.  This type of projection of the 3D world to a 2D plane 

is known as the perspective projection. From a geometric standpoint, it makes no differ-

ence if we replace the image plane with a virtual image plane in front the focal plane.  

Figure 2 below shows a pinhole camera with a virtual image plane.  

 
FIGURE 2.2: THE PINHOLE CAMERA WITH A VIRTUAL IMAGE PLANE. 

 

The relationship between 3D and 2D coordinates can be written linearly as[14]: 
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where f is the focal length of the camera.   The point lies on the image plane at [x/s, y/s] 

if s > 0.  If s < 0, then the point lies behind the image plane and cannot be projected.  For 

the case where s is exactly 0, we have what is termed 'a point at infinity', and the pro-

jected points are not defined.  The 3x4 matrix above is known as the perspective projec-

tion matrix and is usually denoted by P.   

P = 

f

f0

0

0

0

0

0

1

0

0

0

















        (2.2) 

Digital cameras, scanners and other capture devices mimic this perspective cam-

era model due to much effort put forward to minimize and eliminate lens distortions.  

This allows us to use projective geometry to characterize the geometric relationships be-

tween the images and the real world.  We continue with a brief overview of projective 

geometry. 

 

2.4 Overview of Projective Geometry 
 

When we think of the world and space around us, we think of Euclidean space; so 

it would seem logical that machine vision would work with Euclidean geometry.  This is 

not the case, and a more generalized form of geometry is used.  Euclidean geometry is a 

special case of projective geometry, and questions are often more easily answered in the 

more general context of projective geometry [15].  Not only does this make our computa-

tions simpler, but it is also ideal as we are working with images that are merely projec-

tions of Euclidean coordinates to a plane.  Any projection of a point (in the Euclidean co-

ordinate system) Mw = [Xw, Yw, Zw]T to the image plane m = [x,y,s]T can be described 

using simple linear algebra. 

m = PM          (2.3) 

where m is the projected homogeneous coordinates of the point M in the image.   

 
Any projection of a point (in the world coordinate system) Mw = [Xw, Yw, Zw]T to the im-

age plane m = [x,y]T can be described using simple linear algebra. 

 
sm = PM        (2.4) 



 12 

2.4.1 Projective n-spaces 
Any point p, of an n dimensional projective space Pn, is represented by a vector of 

n+1 elements not all zero.  The elements of this vector are commonly referred to as pro-

jective coordinates or homogeneous coordinates.  Any two vectors x = [x1,…xn+1]
T and y 

= [y1,…yn+1]
T are considered equal (representing the same point) if and only if there ex-

ists a scalar λ ≠ 0 such that xi = λyi for all elements in the vector.   

 
When we do use homogeneous coordinates, the algebra for projective geometry 

becomes very simple.  For example [16], the Cartesian coordinates of the point where 

two lines  ax + by +c = 0 and rx + sy + t = 0 intersect is: 

(bt - cs , cr - at) / as - br    (2.5) 

Whereas in homogeneous coordinates, the intersection of [a,b,c]T with [r,s,t]T is   

[bt - cs, cr - at, as - br]T    (2.6) 

which we easily recognize as the vector (cross) product.  While this example is in projec-

tive 2 space, its truth exists throughout the dimensions.  Notice that we not only made the 

algebra simpler, but we removed the division operation, which is costly on a computer. 

2.4.2 Collineations 
Projective transformations (collineations) are linear transformations.  In other 

words, it maps features in one projective space to the same features in the same projective 

space.  These transformations are characterized by a (n+1)×(n+1) non-singular matrix A 

so that λp2 = Ap1.   The matrix A has the following mapping properties: 

• Collinear features remain collinear 
• Concurrent features remain concurrent 
• Incidence is preserved 

 
It is rather easy to see that the set of collineations transforming Pn onto itself form an al-

gebraic group.  This group is known as the projective group. 

 
Theorem: For any two linearly independent sets of points in projective n space that 

forms a basis; say B = {b1,…,bn+2} and C = {c1,…,cn+2}, there exists a collineation A 

such that δBi = Aci. 
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We borrow this proof from [15]: 

We can choose a matrix P and a set of nonzero scalars α1,…,αn+2  such that: 

Pei = λibi 

Where ei is the projective basis.  Similarly, we chose Q and µ1,…,µn+2   

Qei = µici 

Then 

PQ-1bi = (µi/λi)ci 

Thus we let δi = µi/λi and A = PQ-1 

QED 

2.4.3 The Projective Plane (P2) 
The projective plane is important to us, as it forms the basis of our work.  Sensors 

that produce 2 dimensional projections of the 3D world are common.  In fact, the image 

plane of a typical CCD camera is simply modeled as a 2D projective plane.  There are 4 

basic structures in the projective plane that we need to be concerned with; these are 

points, lines, pencils, and conics. 

2.4.3.1 Points and Lines 
From the previous discussion, we know that points in P2 are represented by a vec-

tor with three elements (m1,m2,m3).  Other than points, we have lines which are also de-

fined by three numbers, not all zero.  The principle of duality states that lines and points 

are represented the same way in two-dimensional projective geometry.  That is, a projec-

tive point m is given as [m1,m2,m3]
T and a projective line l is given as [l1,l2,l3]

T.  The 

point p comes from the perspective projection of three-space down to two (see below), 

and the line equation is simply:  

L1m1 + l2m2 + l3m3 = 0.        (2.7) 

Due to this principle, we can use the terms point and line interchangeably.  This is 

when we discuss lines, we are implicitly discussing points in the exact same manner. 

2.4.3.2 Lines at Infinity 
Of all the possible lines in P2 a special subset exists when the third element of the 

line in homogeneous coordinates is equal to zero.  These lines are known as lines at infin-

ity usually denoted by l∞.  The important implication of all this is that in projective ge-
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ometry, any two distinct lines (even if they are parallel) will always intersect.  Parallel 

lines happen to intersect at the point at infinity! 

2.4.3.3 Pencils of Lines 
Pencils of lines have numerous applications in vision, especially in stereo and mo-

tion.  Pencils are the set of all lines in P2 that pass through a fixed point.  The set of epi-

polar lines for a given fundamental/essential matrix are a pencil because they all pass 

through the epipole. 

2.4.3.4 Conics 
Conics are a set of points on the projective plane that satisfy the equation: 

S(x) = xTAx = 0         (2.8) 

Where A is a 3x3 symmetric matrix.  The equation defines the conic up to a scale factor, 

and is dependent on 5 parameters.   

2.4.4 The Projective Space P3 
In projective 3 space, points are represented by a vector with four elements.  Re-

calling the principle of duality, we see that the dual entity to a point P3 is a plane.  Simi-

larly to P2 a point M = [M1, M2, M3,M4] is contained in a plane ΠΠΠΠ if and only if: 

ΠΠΠΠTM = 0      (2.9) 

Lines in P3 are simply the intersection of two planes, and thus can also be expressed as a 

linear combination of two points.  i.e. L = λaMa + λbMb 

2.4.4.1 Quadrics 
Quadrics are the 3-space equivilant of conics in 2-space are a set of points on the 

projective plane that satisfy the equation: 

ΠTQΠ = 0              (2.10) 

Where Q is a 4x4 symmetric matrix.  The equation defines the conic up to a scale factor, 

and is dependent on 9 parameters.   
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2.4.5 Strata of Geometries 
Our world is a 3D Euclidean space.  When we are dealing with images, we are in 

the simpler structure of projective geometry, between these two spaces lie two intermedi-

ate geometries, affine and metric.  Thus the order of strata from simplest to most complex 

is: projective, affine, metric, and Euclidean.   The strata are defined by their group of col-

lineations and the features that are left unchanged (invariant).  Each strata contains group 

of transformations that maintain a set of invariant properties.  Also, it should be noted 

that each group is a subgroup of the simpler structure.  This means that the metric group 

is a subgroup of the affine group, and both are a subgroup of the projective group.  The 

invariant properties of a geometric strata are not changed during a transformation that 

belongs to the same geometry.  Knowing the invariant properties and being able to re-

cover them allow us to change strati.  Often we wish to upgrade to a higher level in the 

strata, in fact this is what we are doing when we go from a sequence of images to a 3D 

Euclidean model.  In the following sections, we detail each of the geometric strata in 3D 

space, their group of transformations and invariants.  3D space is chosen as it is relevant 

in going from an image sequence to a 3D model.  We simply reconstruct the projection 

matrix and change strata to metric or optimally Euclidean. 

2.4.5.1 Projective Strata 
The least structured of all strata is the projective stratum.  By this, we mean that 

the projective stratum has the least number of invariants and the largest group of trans-

formations.  In 3D space, the projective transformation matrix is a 4x4 invertible matrix. 

 
The invariant property of the projective strata is cross ratio.  The cross ratio is de-

fined as follows: Given any four collinear points M1, M2, M3, and M4; and their respec-

tive projective parameters α1, α2, α3, and α4. The cross ratio is defined as: 

 

{M1,M2; M3, M4} = 
α α
α α

1 3

1 4

−
−

:
α α
α α

2 3

2 4

−
−

            (2.11) 

 
The cross ratio extends simply to higher dimensions.  In the case of P2 in the figure 

below, we see how the cross ratio of four lines is defined as the cross ratio of points that 

intersect with another line.  Obviously we can do a similar operation with planes. 
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FIGURE 2.3: CROSS RATIO OF 4 LINES IN P2 

2.4.5.2 Affine Strata 
The next least structured of all strata is the affine stratum.  In 3D space, the affine 

transformation matrix is also a 4x4 matrix.  The affine strata adds parallelism , relative 

distances, and the plane/line at infinity as invariants.  See table 2 below for complete de-

tails on the form of the affine transformation matrix. 

2.4.5.3 Metric Strata 
The metric stratum is also commonly referred to as the group of similarity trans-

formations.  This group corresponds to the Euclidean group, but only to a scale factor.  

This is the highest level of geometry we can reach without knowing some measurement 

of distance between points.  As with all 3D transformations, we represent a metric trans-

formation with a 4x4 matrix when we use homogenous coordinates. 

 
Due to its close relation to the Euclidean group of transformations, we know that 

we have 3 degrees of freedom from the orthonormal rotation matrix and 3 degrees of 

freedom for the translational aspects in X, Y and Z.  When we add one more degree of 

freedom due to the scale, we end up with a total of seven degress of freedom.  The two 

new invariants are relative length and angles.  Most importantly, at this strata, transfor-

mations leave the plane at infinity unchanged and transforms a conic to a conic of the ex-

act form.  This fact is useful in autocalibration techniques, as it helps in estimating the 

intrinsic camera parameters. 

m1 

m2 

m3 

m4 
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2.4.5.4 Euclidean Strata 
The Euclidean stratum is the one most familiar to us.  Having six degrees of free-

dom, 3 rotational and 3 translational; the invariants are identical to the metric strata with-

out having a scale invariant. 

2.4.5.5 Strata Review 
In table 2 below, the properties of the various strata are reviewed.  In figure 6 be-

low, the visualization of a cube throughout the different strata is shown[17].   

 
GEOMETRIC 
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Table 2: Information regarding the different strata.   
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FIGURE 2.4: SHAPE DISTORTIONS FOR EACH GROUP OF TRANSFORMATIONS IN 3D. 

2.4.5.6 Changing Strata 
When we are going to change strata, it is important to realize that we are in fact 

upgrading our geometric representation to one that has a stronger structure.  It is obvious 

that starting with images, we are in the  projective strata, and that if our goal is model 

building, we would ideally like to progress through to the Euclidean strata.  Thus our 

ideal set of changes will take us from projective to affine, affine to metric, and metric to 

Euclidean. 

2.4.5.6.1 Projective to Affine 

In order to upgrade to affine from the projective strata, one must first locate the 

plane at infinity.  This task can be done if some affine properties of the scene are known.  

Parallel lines or planes intersect at infinity.  For example, it the scene contains a building, 

one can effectively consider the corners of the building simply as the corners of a cube.  

The pairs of edges of this cube that are effectively parallel, will intersect at the plane at 

infinity.  As long as no three points are collinear, we have found the plane at infinity. 

 

Projective Transformation 

Affine Transformation 

Metric Transformation 

Euclidean Transformation 
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With these three points, we can use the invariant property of cross ratio to com-

pute the point at infinity M∞.  I.e. M0,M1,M2 are our points that define the plane, the cross 

ratio is {M0: M1; M2:M∞} 

 
Once the plane at infinity has been successfully identified, the upgrade to affine consists 

only of bringing the plane at infinity to it canonical position [0,0,0,1]T.   The straight-

forward approach would be: 

TPA = 
I x3 3 30

1Π∞









       (2.12) 

Where the bottom row is actually the normalized plane at infinity. 

 

2.4.5.6.2 Affine to Metric 

Going from affine (or projective for that matter) to metric requires us to find the 

absolute conic.  Because we are already in the affine space, we know the location of the 

plane at infinity.  This is important because we know that the conic is located in this 

plane. 

 
Once the conic has been identified, we only need to bring it to its canonical form 

in the metric strata.  On possible choice for the upgrade is[Pol99]: 

TAM = 
A −









1 0

0 0

3

3
       (2.13) 

Thus going form projective to metric is simply 

TPM = TAM TPA       (2.14) 

2.4.5.6.3 Metric to Euclidean 

In order to go from metric to Euclidean, we need to have some actual measure-

ments so that we can determine the scale factor that the metric strata is at.  Once this sca-

lar is computed, it is simply a matter of applying that scale factor to the strata.  
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2.5 Camera Calibration 
 

In many applications a change in coordinate systems is inevitable, and most likely 

occurs quite often. The purpose of calibration is to determine the relationship between 

coordinate systems.  Camera calibration falls into two logical subsets, intrinsic and ex-

trinsic.  Intrinsic calibration concerns itself with the internal geometry of a physical cam-

era, while extrinsic calibration deals with the external properties of the camera such as 

position.   

 
If we have knowledge of the intrinsic parameters, we are able to perform metric 

measurements with the camera.  If we do not have the intrinsic parameters we have what 

is termed an uncalibrated camera, and cannot get exact metric measurements.  We can 

however do many things with uncalibrated cameras including reconstruction, motion de-

tection, and possibly autocalibrate the camera itself. 

2.5.1 Intrinsic 
Intrinsic parameters relate the change in coordinate systems from image coordi-

nates to pixel coordinates.  The main goal of intrinsic calibration is to rectify errors in the 

manufacturing of the capture device.  In practical applications that use physical cameras, 

the intrinsic parameters are very important for several reasons: 

• Typical cameras (such as CCD's) have varying pixel coordinate systems that 
are not necessarily the same as the projection coordinate system. 

• Manufacturing defects cause the axes of capture devices to be at angles other 
than 90 degrees. 

• The projection planes' origin may not coincide with the optical axis of the cap-
ture device due to lens distortion or other effects.  i.e. The pixel grid is not or-
thogonal with the optical axis.  

 
If we examine Figure 2.5 below, we see how non-orthogonal axes cause the need for a 

translation to a different but more accurate coordinate system. 
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FIGURE 2.5: INTRINSIC PARAMETERS 

 
The intrinsic parameters are the skewness (θ) or how rectilinear the pixels really are.  

The optical centre (Uo,Vo).  The aspect ratio (α), which describes the ratio of the width to 

the height of a pixel.   The calibration matrix K is: 
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This transformation from image to pixel coordinates is also linear and can be written as: 
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             (2.16) 

With an image being formed by a perspective projection, followed by intrinsic calibra-

tions gives us, our projective transformation matrix becomes: 

Pnew = KPold            (2.17) 

2.5.2 Extrinsic Calibration 
The main goal of extrinsic calibration is to take coordinates in the world coordi-

nate system and transform them to the camera coordinate system.  Extrinsic parameters 

are commonly used to change views and move through virtual camera views.  To go from 

one system of coordinates to another, we require a rotation R and a translation t as seen 

in Figure 2.6.  The relationship between the world and the camera coordinates are 
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Mc = RMw + t                    (2.18) 

 
Where R is a 3x3 rotation matrix and t is the translation vector.  Figure 2.6 below shows 

the transformation between coordinate systems. 

 

 

Figure 2.6: EXTRINSIC PARAMETERS FOR A GENERIC CAMERA IN THE WORLD 
 

For any given point M in the original coordinate system, the new point M1 can be linearly 

calculated using 

M1 = DM      (2.19) 

where  

D = 
R t

0 1









                    (2.20) 

 

From equation 2.4, we simply add the transformation D 

    sm = PDM     (2.21) 

There are six extrinsic parameters which are the rotational angles between axes and the 

translation along the 3 axes. 

 

2.6 Planer Transformations 
 

When we are dealing with co-planer points (i.e. All points M = [X,Y,Z,1]T where 

Z is equal) in the world coordinate system, we simply have to compute planer transfor-
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mations.  The planer transformations are a special case of the 3D transformations known 

as homographies.  If we choose a world coordinate system such that the plane of the 

points has a zero Z value, the projection matrix P which is normally 3x4, reduces to a 3x3 

matrix that defines a general plane to plane transformation [19]. 

H = P
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          (2.22) 

Where H is simply P with the 3rd column zeroed out and can be effectively ignored yield-

ing 
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    (2.23) 

Where pij is the value from P in row i and column j. 
 

To illustrate how the homographies work in relation to regular 3D transforma-

tions, the example below [19] shows how homographies work only on co-planer points.  

In Figure 2.7 below, we see the same scene taken from two different camera viewpoints. 

 

 
Figure 2.7: TWO VIEWS OF THE SAME SCENE 

 
If we use a homography to translate from one view point to the other viewpoint, and we 

use the paper with the Chinese text as our planer points, we get the image in Figure 2.8. 
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Figure 2.8: TRANSFORMATION OF LEFT IMAGE TO THE VIEW POINT OF THE RIGHT IMAGE 
 

The warped image in Figure 2.8 appears to be a complete image, but if we examine the 

mug closely, we notice that is it not quite right.  To show how planer objects were cor-

rectly transformed while other points not in the plane are warped, we superimpose the 

real camera view with the translated camera view to get Figure 2.9 below. 

 

 
Figure 2.9: RIGHT VIEW FROM FIG. 2.4 SUPERIMPOSED ONTO FIG 2.5 

 
What use does such a transformation have when it is so evidently erroneous?  Sim-

ply put, synthetic view points of co-planer points can be generated.  The error from the 

above example resulted from the points that were not co-planer, i.e. the mug.  The co-

planer points on the sheet of paper were perfectly transformed.  This allows us to easily 

create mosaic images that can be viewed from different angles.  Large scenes that contain 

co-planer surfaces can be rendered as one single image that can be viewed from many 

different angles.  While multiple single images may be required to capture a scene, it may 
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be viewed as a single image.  Consequently, to render a large image we need only mini-

mally overlapping planar input images.   

 

2.7 Stereo Vision 
 

The goal of stereo vision is to generate some depth information about a scene.  

Using the disparity information from two or more images, it is possible to calculate depth 

values for a calibrated system.  Disparity is the distance between two points in an object 

found in both images.  It is easy to see how disparity is involved in depth calculations 

with the following simple demonstration.  Find an object in your field of view that is be-

tween 2 and 3 meters away, and look at it.  Hold your index finger out at arms length and 

look at the scene with your left eye, then with your right.  Notice how the closer object 

(your index finger) ‘moves’ more than the farther object.  This separation of the object in 

your left and right views is known as the disparity.  Objects that are closer to the cameras, 

in this case your eyes, have a larger disparity than do objects that are farther away.  The 

selected points used for calculation of the disparity are known as conjugate  or corre-

sponding pairs.  Automated selection and verification of conjugate pairs is known as the 

correspondence problem.  The geometry that relates conjugate pairs is known as the epi-

polar geometry and exists between any two camera systems [10]. 

2.7.1 Correspondence Problem 
It has been implied that stereo vision requires the selection and searching for 

points to be used as conjugate pairs.  What we have failed to mention is that the detection 

of conjugate pairs in two images is extremely challenging.  This area of research is 

known as the correspondence problem and is covered extensively in Chapter 3. 

2.7.2 Epipolar Geometry 
The simplest form of stereo vision involves a pair of cameras with a fixed x dis-

placement [13].  In Figure 2.10 below, we see that the point M in the scene is in both the 

left and the right image planes as point m.  The plane that passes through the point M and 

both camera centres is the epipolar plane.  The epipolar lines are defined as the intersec-

tion of the epipolar plane and image plane.  The epipoles are defined as the point where 

all epipolar lines intersect.  As well, the epipole is defined as the intersection of the image 
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plane with a line between the optical centres of two cameras.  Figure 2.7 below illustrates 

such an epipolar geometry. 

 

 
FIGURE 2.10: EPIPOLAR GEOMETRY OF TWO CAMERAS WITH FIXED X DISPARITY 

 
Figure 2.11: EPIPOLAR GEOMETRY OF TWO CAMERAS IN AN ARBITRARY POSITION 

 
The fundamental and essential matrices offer a great computational advantage in 

matching a point in one image with the same point in another image.  Since the corre-

sponding points must lie on the epipolar line, our search for corresponding points has 

Epipolar Lines 

C1 C2 

Epipoles 

t 

R 

m1 
m2 
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been reduced from 2 dimensions down to 1.  We now only have to search along the epi-

polar line to find the corresponding point.  This is known as the epipolar constraint [10]. 

 
The epipolar geometry of two stereo images is related by a simple transformation 

characterized by the epipolar equation.  First introduced by Longuet-Higgens [7] in 1981, 

the epipolar equation produces the Essential Matrix.  The Fundamental Matrix character-

izes the epipolar geometry between two uncalibrated cameras. 

2.7.3 Essential Matrix 
Calibrated stereo vision gives us the ability to calculate depth metrics of the 

scene.  These Z values allow applications such as robotic vision and navigation to be pos-

sible.  In calibrated stereo vision we are working with the essential matrix E, which is 

completely encompassed by the rotation and translation between the two cameras.  Be-

cause the cameras have a known calibration, we can work in the normalized image coor-

dinate system.  

 

The relationship between two points in two separate images can be described mathemati-

cally as 

m1
T

 E m2  = 0         (2.24) 
 

where 

E = t × R.     (2.25) 

 

And this is referred to as the epipolar equation. 

2.7.4 Fundamental Matrix 
When we are given two uncalibrated cameras K, the calibration matrix, is un-

known to us and we therefore cannot use K to easily transform the pixel coordinates into 

normalized image coordinates.  This forces us to work in the pixel coordinate system, and 

the epipolar geometry is still characterized by the epipolar equation. 

m1
 T

 F m2 = 0     (2.26) 

where points m1 and m2 are corresponding points in image 1 and image 2 respectively  

 



 28 

F can be characterized in terms of the essential matrix and the camera calibration matri-

ces  

F = K1
-TEK2

-1     (2.27) 

 

Theorem 1([8] [9]) – For any two views I1 and I2 of an uncalibrated scene, there exists a 

fundamental matrix of rank 2 that adheres to the following property:  For all correspond-

ing homogeneous points (m1, m2) in  I1 and I2 

m1
 T

 F m2 = 0           (2.28) 

Proof 

Let M represent a real point in 3D space.  M = (x,y,z).  Also, let m1 and m2 be the homo-

geneous coordinates of the image points in image 1 and 2 respectively.   Assuming the 

initial point m1 is at 0 and the corresponding point m2 is at t.  The unknown intrinsic cam-

era parameters K make the camera transformation matrices to be  

[K|0] and [[K][R]|[K]t] 

before and after the motion t respectively.  Determining the epipolar line in the second 

image for the point x, the camera centre and point at infinity become  

[K]t and [K][R][K]-1m respectively. 

As a result, the epipolar line is given by 

l = [K]t × [K][R][K]-1m 

Since m’ lies on the epipolar line l 

m’ T
 Fm = 0 

thus  

F = [K]t × [K][R][K]-1 

Which is 

F = [K]*[t × R][K]-1 

Where [K]* is the adjoint of K, and from  (2.25) 

F = K1
-TEK2

-1 

Which is (2.27) and known to exist. 

QED 
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From the discussion above, it should be clear that epipolar geometry depends 

upon the orientation and internal physical characteristics of two cameras.  The geometry 

does not depend on the structure of the scene.  i.e.  The 3D points external to the cameras 

have no bearing on the actual geometry. 

 

2.8 Robust Methods for Computing the Epipolar Geometry 
 

The above methods make the assumption that there is no noise present in the cor-

responding pairs, which in practical situations is simply unreasonable.  In [20] it was 

shown that mismatches and noise are unavoidable in practical situations and robust meth-

ods are required to estimate the epipolar geometry.  The generation of the correspondence 

pairs results in two potential types of errors, these are: incorrect location of a pair (inlier 

error) match, and incorrect pairing (outlier error).  Figure 2.12 below shows these two 

types of errors. 

 
Figure 2.12: THE TWO TYPES OF CONJUGATE PAIR ERRORS 

 
Inlier error is assumed to exhibit a Gaussian distribution.  This means that most error 

will be small and within one or two pixels.  However, a few points will be incorrectly lo-

calized with an error of more than 3 pixels.  Error of more than 3 pixels will severely de-

grade the estimation of the fundamental matrix. 

 
Incorrect correspondence (conjugate) pairing is a more serious problem that occurs 

when two points that are not a valid correspondence are selected incorrectly as being a 

valid pair.  Because the epipolar constraint may not yet available, the search for conjugate 

pairs must be conducted in 2D.   Thus, the potential number of incorrect conjugate pairs 
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could be quite high.  These invalid conjugate pairs completely spoil the estimation of the 

fundamental matrix and therefore F would be inaccurate. 

 
The precision of the fundamental matrix is seriously affected by errors of these 

types, and robust methods need to be employed when calculating F.  Robust methods try 

to minimize the error caused by inliers, and remove the inaccuracy caused by outliers.  

Since one outlier will make the estimated fundamental matrix F useless, we need to use 

as many sets of valid pairs as we can to compute F. Several classes of robust techniques 

exist to compute the fundamental matrix, these are highlighted very well in [11] and [21].  

The algorithm that performed best was RANSAC (RANdom Sample Concensus). 

2.8.1 RANSAC 
RANSAC, performs an estimation by randomly selecting the minimum required 

number of correspondences to compute F.   For each F computed, the set of inliers is cal-

culated.  The F with the highest consensus of inliers is selected to be the final computed 

F i.e. the one with the most support.  This computation is repeatedly completed until a 

certain level a certainty is achieved.  

The basic random sampling algorithm is as follows: 

Repeat for M samples 

• Select a random sample of the minimum required correspondences to  
estimate a valid fundamental matrix F. 

• Compute a putative matrix F 
• For all putative correspondences, compute the set of inliers 
• Select the F with the greatest number of inliers over all samples 
 

2.9 Three View Geometry 
 
The next natural step from epipolar geometry is to add a third camera view. The 

trifocal tensor approach is one such extension and maintains its basis in projective ge-

ometry. This model has been proposed and developed by Hartley [18], Sashua [22], Torr 

[23], and Faugeras [24] among others. Figure 2.13 represents the 3-view imaging sce-

nario.  
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In the 3-view situation, the trifocal plane is formed by the three optic centers C’, C’’ and 

C’’’.  The intersection of this plane with the three image planes produces three lines 

called the trifocal lines (not shown in figure 8).  One could use standard epipolar geome-

try and consider three fundamental matrices (one for each pair of optical centres) F12, F23 

and F31.   Intersecting epipolar lines should show the position of the point (shown in fig-

ure 2.13).  However, if a point M is in the trifocal plane, or the optical centres C’.C’’, and 

C’’’ are collinear, the fundamental matrices cannot determine if its 3 images a point be-

long to a single 3D point because the epipolar lines are collinear and therefore intersect at 

more than one point. 

 
FIGURE 2.13: TRIFOCAL GEOMETRY 

 
In the case of two views, given a point in one image, it is possible to construct a line in 

another using the fundamental matrix. However, given a point in the first image and a 

point in the second image, one can directly compute the coordinates of the corresponding 

third point using a structure called the trifocal tensor which is the analog of the funda-

mental matrix for 3 view situations.  

2.9.1 The Trifocal Tensor 
The trifocal tensor is intended to describe line correspondences.  This has been a 

well-known problem to those in the computer vision community dealing with structure 

from motion [25] [26].  Several years had passed before the tensor was formally identi-

fied and defined by Hartley and Shashua [18] [22].  In the projective sense, the tensor is 

known as the trilinear tensor. 

 

M 

C1 C3 

C2 

m1 

m2 
m3 
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The tensor can be considered as a 3 x 3 x 3 cube operator, defined by 27 parameters in 

total.  Typically, one uses this tensor (ℑ) to map a line in image 1 (l1) and a line in image 

2 (l2) to a line in image 3 (l3). This is known as transfer.  This mapping is a linear expres-

sion 

l3  = ℑ(l1,l2)          (2.29) 

which is more formally represented by: 

l l li j k ijk

kj

= ℑ
==
∑∑ ' ' ' ' '

1

3

1

3

     (2.30) 

The tensor can also map corresponding points in two views to their triple corresponding 

point in the third view. Points are transferred via the following formula: 

x x x x xl i k

k

kjl j k

k

kil' ' ' ' ' ' '= ℑ ℑ
=

−
=

∑ ∑
1

3

1

3

       (2.31) 

The same tensor can be used to transfer lines and points due to the principle of duality. 

2.9.2 Constraints on the Tensor 
For every three views of a static scene, there exists a 3 x 3 x 3 tensor with the fol-

lowing properties given any three corresponding image points (m,m’,m’’).  For every 

line l’ through m’ and l’’ through m’’ in their appropriate views, the trifocal constraint is 

described by one equation: 

 l’T[ℑm]l’’ = 0     (2.32) 

where 

[ℑm]ij = ℑ1ijx + ℑ2ijy + ℑ3ij            (2.33) 

It is important to realize that we are not restricted to using lines with the tensor.  In fact, 

the tensor constraints exist for points as well.  If we assume we have a triple correspon-

dence (u, u’, u’’) the trifocal constraints are defined using four equations: 

u’’ℑℑℑℑi13ui – u’’u’ℑℑℑℑi33ui – u’ℑℑℑℑi31ui - ℑℑℑℑi11ui = 0 
u’’ℑℑℑℑi13ui – u’’u’ℑℑℑℑi33ui – u’ℑℑℑℑi32ui - ℑℑℑℑi12ui = 0 
u’’ℑℑℑℑi23ui – u’’u’ℑℑℑℑi33ui – u’ℑℑℑℑi31ui - ℑℑℑℑi21ui = 0 
u’’ℑℑℑℑi23ui – u’’u’ℑℑℑℑi33ui – u’ℑℑℑℑi32ui - ℑℑℑℑi22ui = 0 

Other combinations of image features also allow us to compute the tensor.  The table be-

low shows the feature combinations and the number of equations that describe the trilin-

ear constraints. 
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Image Features # of equations 
3 points 4 

2 points, 1 line 2 
1 point, 2 lines 1 

3 lines 2 
Table 2.3: Overview of trifocal constraints and resulting number of equations 

Since we are concerned mainly with points in images, further derivation of the constraints 

is not necessary to understanding this thesis.  A complete set of derivations of the trilinear 

constraints for points and lines can be found in [30].  

2.9.3 Robust Computation of the Tensor 
In a manner similar to robustly computing the fundamental matrix, we can use the 

RANSAC paradigm to compute the tensor. 

The basic random sampling algorithm is as follows: 

Repeat for M samples 

• Select a random sample of the minimum required triple correspondences to  
estimate a valid tensor. 

• Compute a putative tensor T. 
• For all putative correspondence triplets, compute the set of inliers 
• Select the T with the greatest number of inliers over all samples 
 

2.10 N-View Geometry 
 

The next obvious question that comes to mind when considering multiple view 

geometry is what new constraints if any are found in four views.  Triggs [27] and Hartley 

[28] have examined the concept of the quadrifocal tensor.  Triggs claimed the existence 

of only 3 types of geometric relationships, bilinear (epipolar), trilinear, and quadrilinear 

linking two, three, and four views respectively.  In [29], Faugeras showed that the quad-

rilinear constraint is a natural result due to the epipolar and trilinear constraints.  In fact, 

as the number of views increases, additional constraints can be expressed using epipolar 

and trilinear constraints.   A complete and formal review of multiple view geometric rela-

tionships is given in [30]. 
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2.11 Feature Tracking 

Shi and Tomasi [50] present a feature tracking algorithm based on Kanade and 

Lucas registration technique [49] that selects features which are optimal for tracking in 

the sense that the tracking equations dictate what characterizes a good feature track.  The 

basic principle of the tracker is that a good feature is one that can be tracked well, so 

tracking should not be separated from feature extraction.  In other words, features are se-

lected because they are optimal for the feature tracking equations, rather then developing 

a tracking equation for certain features.  A good feature is a textured patch with high in-

tensity variation in both x and y directions, such as a corner.  We will re-examine the fea-

ture selection process after we present the tracking equations.  Briefly, features are lo-

cated by examining the minimum eigenvalue of a 2x2 image gradient matrix.  The fea-

tures are tracked using a Newton-Raphson method of minimizing the difference between 

the two windows around the feature points. 

2.11.1 The Feature Tracking Equations 
The tracking algorithm defines a measure of dissimilarity that quantifies the 

change in appearance of a window around a feature in the first frame and the current 

frame.  The algorithm allows for affine distortion changes in the window.   However, a 

pure translation model of the motion is used to track the selected best features through the 

sequence. For reliable and fast processing, the maximum displacement is limited, but lar-

ger than that of conventional optical flow approaches.   Feature tracking is performed on 

the luminance channel (grey map) for the video frames.  The luminance channel is com-

puted as follows:  

Luminance = Red*0.299 + Green*0.587 + Blue*0.114 (2.34) 
Given a point p in an image I, and its corresponding point q in an image J, the displace-

ment vector δ between p and q is best described using an affine motion field: 

δ = Dp + t (2.35) 
where 

xx xy

yx yy

d d
D

d d

 
=  
 

 (2.36) 
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is a deformation matrix and t is the translation vector of the centre point of the tracked 

feature window. The translation vector t is measured with respect to the feature in ques-

tion. Tracking feature p to feature q is simply the problem of determining the six parame-

ters that comprise the deformation matrix D and the translation vector t.  In the case of 

pure translation, D will be the identity matrix and thus 

δ = p + t (2.37) 

Because of this, the case of pure translation is computationally simpler and thus prefer-

able due the higher frame rates typically found in video data. Since the motion between 

adjacent frames of standard video is generally quite small, it turns out that setting the de-

formation matrix to identity is a safe computation [50], leaving us with the translation 

vector being exactly the displacement vector.   The displacement vector is computed us-

ing a pyramid of resolutions because processing a high resolution image is computation-

ally intense.  The multi-resolution pyramid within the feature tracker reduces the resolu-

tion of the entire image, say by a factor of 2.  Tracking occurs by tracking a features gen-

eral area in the lowest resolution and upgrading the search for the exact location as it pro-

gresses up the pyramid to the highest resolution.   

 The displacement vector t is chosen as the offsets that minimize the difference 

between the windows surrounding the features.  The difference is referred to as the resi-

due (ε) and is formally defined by the following double integral over the windows in im-

ages I and J: 

wdxxJtxI
W∫∫ −−= 2)]()([ε  (2.38) 

Where w is a weighting function that can be set to one in the simplest scenario, could be 

Gaussian to allow more weight to the centre of the window or could be more complex to 

de-emphasize regions of high curvature.  When the translation vector t is small, the image 

intensity function can be approximated by a Taylor expansion that is truncated to linear 

terms: 

tgxItxI ⋅−=− )()(  (2.38) 

and we can re-interpret the residue function (2.38) to be 

wdxtghwdxxJtgxI
WW ∫∫∫∫ ⋅−=−⋅−= 22 )()]()([ε  (2.38) 
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Where h = I(x)-J(x), and g is the image gradients. 

 This makes the residue quadratic in t and the minimization occurs when the first 

derivative of the residue is 0.  Differentiating the residue and setting it equal to zero re-

sults in 

0)( =⋅−∫∫ wdAgtgh
W

 (2.39) 

and since (g·t)g = (ggT)t we have 

∫∫∫∫ =






WW

T hgwdAtwdAgg )(  (2.39) 

Which is a system of two scalar equations in two unknowns. 

For ease of explanation in the next section, equation 2.39 is reconstructed as 

etG =  (2.40) 

Where G and e are the from 2.39, and t is the displacement vector. 

In plain English: ε is the sum of squared differences of the window gradients, and we 

are looking to find the matching window (at displacement t) that minimizes ε.  

2.11.2 Good Features to Track 
The basic strategy of selecting features is to find areas with sufficient texture 

changes in both the X and Y direction.  Often these “interest” features are thought of as 

texture regions or corners and their detectors usually will find good features to track.  

However, the method looks to find optimal regions to track based on the tracking equa-

tion.  By removing windows that are not optimal, the features selected are optimal by 

construction.  We are able to track features from frame to frame when equation 2.39 is 

easily solved. 

Effectively this means that the 2x2 coefficient matrix represented by G must be 

greater than the noise level and well conditioned.  Greater than the noise level means that 

the two eigenvalues of G are large; and well conditioned means that the eigenvalues can-

not differ by several orders of magnitude.  When the eigenvalues are small, we have a 

uniform (non-textured) area.  A large and small eigenvalue correspond to a unidirectional 

texture (i.e an edge) and two large eigenvalues represent a bi-directional texture (i.e. ei-

ther a corner or salt-and-pepper like texture).  Only when the two eigenvalues are large, is 

the equation in 2.39 considered optimal, and therefore can we achieve reliable tracking. 
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As a result, the window for tracking is acceptable when both eigenvalues surpass 

a given threshold.  When we are selecting a certain number of features (N) to track, we 

simply take the windows corresponding to the N largest eigenvalue pairs.  Furthermore, 

we can apply some level of non-maximal suppression to ensure that features we are track-

ing are at least some distance apart. 
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Chapter 3 

3 Computing Camera Positions from Uncali-
brated Video/Image Sequences 

 

3.1 Introduction 
 

Recently, a great deal of research has been done in the field of projective vision [22, 

27, 31, 32].  Furthermore, a number of systems have been implemented [33, 34, 35, 36] 

that can, in theory, compute a 3D model automatically from an uncalibrated image se-

quence.  The idea is to compute photogrammetric information from image sequences 

without requiring a prior camera calibration process.  We believe that there are four pri-

mary reasons for the recent rapid advances in the projective framework. 

 
1. Basic theoretical work defining the fundamental matrix, the trilinear tensor 

and their characteristics.  
2. Simple and reliable linear algorithms for computing these quantities from 

a set of 2D image correspondences. 
3. Robust random sampling algorithms for filtering noisy and inaccurate cor-

respondences. 
4. Advancement of algorithms for performing autocalibration using only the 

projective camera positions. 
 

This combination of advances has made it theoretically possible to create a 3D 

VRML model of a scene from image sequences.  Projective methods are normally used to 

deal with uncalibrated image sequences; however, we believe that even when calibration 

information is available it is often better to use the projective approach to automatically 

compute image correspondences and sparse depth information.  By computing the fun-

damental matrix and the trilinear tensor for image pairs and triplets, it is possible to pro-

duce a reliable and accurate set of correspondences. When calibration information is 

available these correspondences can be used directly by a photogrammetric process to 

compute the camera positions in Euclidean space. 

 
Often it is the case that new research into the field will require the implementation of 

many of these projective algorithms.  These algorithms are often quite complicated to 

implement and result in many months delay before new research can actually begin.  In 
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this chapter, we describe a system that is freely available for researchers to help facilitate 

expedient research into the field of projective vision.  By this, we hope to make it possi-

ble for others to explore and experiment within this paradigm, which we believe will 

have a significant future influence on the field of computer vision.   

 
Beyond merely describing our experience in re-implementing published core algo-

rithms, this chapter makes a number of other contributions that address some outstanding 

issues in the field. 

 
1. These programs are not generally available to the public in either source 

or binary form. As of 2000, the only exception we know of is [36].  The 
systems described in this work have been made publicly available to fa-
cilitate efficient future research and is, to our knowledge, the first publicly 
available system that computes the trilinear tensor. 

2. We show that, in practice, projective methods along with random sam-
pling algorithms solve the correspondence problem for many image se-
quences and that this is relatively simple, even in the presence of known 
calibration parameters. 

3. We present a way to stabilize the corner selection process, and introduce a 
simpler relaxation-like methodology based on the idea of disparity gradi-
ent. 

4. We present a way of dealing with the problem of cumulative error in the 
tensor computation and demonstrate that projective methods can handle 
surprisingly large baselines, in certain cases over one third of the image 
size.  

5. We present a way of dealing with non convergence of the bundle adjust-
ment photogrammetric process that is due to minute baselines. 

 
In most papers on projective vision, the goal is to compute a projective reconstruc-

tion, assuming that camera calibration information is not available [33, 34]. This is gen-

erally followed by an autocalibration process which enables the projective reconstruction 

to be upgraded to metric (Euclidean) form [17]. The implication is that, if calibration in-

formation were available, one should use traditional structure-from motion-algorithms 

(SFM) to process the image sequence. We claim that this is not necessarily the case. Sur-

prisingly, for most image sequences it is not necessarily easier to compute reliable corre-

spondences when calibration information is available. The reason is that the random 

sampling algorithms, which are the key to dealing with bad correspondences, are much 

easier to use in a projective framework than in a calibrated framework [20]. 
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FIGURE 3.1: SYSTEM FOR GOING FROM VIDEO TO 3D CAMERA POSITIONS 

 
Using projective methods in combination with algorithms from the field of robust 

statistics [37, 38], one can automatically obtain very reliable correspondences for many 

image sequences, even those with considerable camera motions (i.e. a wide baseline). 

Producing such accurate correspondences is a multi-step process, where the final result is 

the trilinear tensor and thus indirectly a projective reconstruction. We take a sequence of 

images and show that the correspondences that support the trilinear tensors are correct 

and accurate enough to be input directly to a photogrammetric package to compute a set 

of 3D camera positions, assuming we have a prior camera calibration, or go through an 

autocalibration process such as the one presented in Chapter 5.  To improve the accuracy 

of projective reconstruction across an image sequence it is usual to perform a projective 

bundle adjustment. However, we believe, as do others [39], that the non-linear optimiza-

tion inherent in the bundle adjustment is better done in metric space than projective space 

[40]. For this reason, we will not use the tensor for its projective reconstruction, but only 

to produce a set of accurate image correspondences. In this way, the tensor need only be 

accurate enough to identify individual matching features in adjacent images; a required 

accuracy of only a single pixel. Effectively, this means that the cumulative error of the 

tensor over an image sequence is not an issue. 

 
The correspondences that support the tensor are used as input to a photogrammet-

ric bundle adjustment program to accurately compute camera positions [41].  Once we 

have these camera positions, it is possible to rectify these images so that the Epipolar 

lines are horizontal. Then one can compute dense depth maps using traditional stereo al-
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gorithms [33]. If the goal is to make 3D models, this is not necessarily the best approach 

as stereo algorithms will not work in regions without natural texture. For this reason, we 

believe that it is best to compute dense depth using active methods, since they will suc-

ceed even when there is no texture [42]. However, passive methods are sufficient for 

computing camera positions since this requires sparse, not dense depth, which is much 

easier to obtain.  Furthermore, once these camera positions are known they could be used 

to rectify 3D data acquired from active sensors that are attached to a rig with the passive 

cameras. The passive sensors would be used to find the position of the active sensors, 

which in turn will be used to actually obtain the dense depth necessary to make a 3D 

model. Therefore our goal is to go from an image sequence to a set of camera positions 

using only passive technology because much work has gone into rectifying active scanner 

data [42]. 

 
It is important to note that, in practice, this process is divided into two distinct 

phases.  

The first phase computes correspondences from the overlapping image sequence and re-

sults in a series of fundamental matrices and trilinear tensors.  We dub this stage the cor-

respondence stage, and consists of the following steps: 

 
1. Select images are extracted from image sequences that maximize overlap, 

with the constraint that baselines cannot be too minute. (§ 3.2.1)* 
2. Corner like points are found in each image using a local interest point op-

erator [43, 44] (§ 3.2.2)*. 
3. A feature matcher finds a set of potential corner pair matches between two 

adjacent images in the sequence [36] (§ 3.2.3). 
4. These potential matches are pruned using some type of local consistency 

filter (§ 3.2.4)*. 
5. A fundamental matrix is computed from the pruned matches using a ran-

dom sampling algorithm [14, 20, 34, 45] (§ 3.2.5). 
6. Guided matching using the initially computed fundamental matrix (§3.2.6) 
7. A set of potential triple matches across three consecutive images are found 

from the supporting matches from the fundamental matrix (§ 3.2.7). 
8. A trilinear tensor is computed from these potential triple matches, again 

using a random sampling algorithm [46] (§ 3.2.8). 
 

                                                 
* These marked areas denote that improvements over what is commonly seen in the literature have been 
made. 
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Producing the trilinear tensor is equivalent to creating a projective reconstruction of 

the camera position, along with a projective reconstruction of the matching corner points. 

However, what is more useful in this work is that the final set of correspondences that 

support the tensor are in practice, error free, for the vast majority of cases.  There are a 

number of reasons for this result. First, unlike the fundamental matrix, the tensor encodes 

the constraints among three image pairs. It can therefore produce correct correspondences 

in the degenerate situation in which the epipolar lines of the two image pairs of the image 

triple happen to be collinear. The other reason for the reliable results is the use of robust 

methods to discard bad correspondences. The process begins with a large number of pos-

sibly unreliable corner matches and continually prunes these to a smaller set of more reli-

able matches. 

 

If the final goal is to produce a dense reconstruction of the scene, then once the trilin-

ear tensor is computed the next phase of the process is the reconstruction phase and typi-

cally consists of the following steps: 

 
1. Optionally autocalibrate the image sequence (if calibration information is 

unknown) to allow us move from a projective to a metric reconstruction 
[17].  Alternative methods of auto calibrating are covered in Chapter 5. 

2. Compute camera positions in Euclidean space [41]. 
3. Rectify the image pairs in the sequence so that the epipolar lines are hori-

zontal and coincident [33]. 
4. Run a stereo algorithm to compute dense depth from the rectified image 

pairs [33]. 
 

The set of steps in this last phase makes a number of assumptions, and have been well 

addressed over the years as calibrated stereo vision problems. The first assumption is that 

the goal is actually to create a dense 3D metric reconstruction of what has been viewed 

by the image sequence. However, for some applications, the output of the first phase, a 

set of projective camera positions, may be sufficient. An example occurs the field of 

augmented reality in which the goal is to place synthetic objects in an image of a real 

scene. In this case, the computed tensors can be used to place these synthetic objects in 

appropriate positions without having either dense depth or metric camera positions. As 

previously noted, we believe that for obtaining dense depth it is best to use active, not 
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passive methods. However, for obtaining the position of an active sensor it is feasible to 

use only an image sequence from a passive co-mounted sensor [47]. Also, in many model 

building applications it is not difficult to obtain camera calibration, and we assume this 

information is available either directly or from an autocalibration routine such as the one 

presented in Chapter 5. 

 
Our goal is to find the 3D camera positions from an image sequence using projective 

methods to solve the correspondence problem and well known methods [41] to compute 

the 3D reconstruction. The details of the procedure are described in the next section.  

 

3.2 Processing Steps 
 

We now describe the details of the process that takes a video image sequence and 

computes a set of 3D camera positions. In doing so, we highlight the changes and addi-

tions that have been made over what is described in the literature. 

3.2.1 Selecting Frames that are well suited 
We have noticed that the photogrammetric bundle adjustment software [41] will 

sometimes not converge if the spacing between the image pairs is too minute. This is of-

ten the case with video data.  A good selection of frames from a video sequence can pro-

duce a much better set of input image data so that the bundle adjustment algorithms are 

more likely to converge and therefore ensure a more reliable reconstruction.  Due to the 

wide availability and simplicity of use, video cameras are ideal image acquisition de-

vices.  The high frame rate ensures that full coverage of the scene is possible; however 

this advantage is surprisingly a disadvantage as well.  The large volume of frame data is 

not only impractical to process in a timely manner, but the minute baselines between 

frames can also cause problems during the bundle adjustment phase of the structure from 

motion (SfM) algorithms.  The method described here is a novel approach to preprocess-

ing video image sequences to select a sub-sequence from larger sequence of video frame 

data.  Based on a proven tracking mechanism, the algorithm remains quite simple yet ef-

fective for identifying and extracting salient frame data for subsequent use in computing 

camera positions. 
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The obvious approach of regular frame sampling (effectively reducing the frame 

rate) shows its inadequacies quickly.  Due to banding and interlaced video, the regularly 

selected frames may not be ideal for image processing.  Another problem is that frames 

selected in this manner have not been picked for their suitability to the structure from mo-

tion problem, but rather on a frame rate assumed to be good.  The structure from motion 

algorithms work best on images with large overlap to allow for good feature matching yet 

significantly large baseline to ensure parallax large to enough to keep the problem well 

conditioned.  By simply changing the frame rate it is clear that the images produced by 

this method may cause the structure from motion algorithms to be ill conditioned.  High 

frame rates increase the chance that parallax will not be sufficient and low frame rates 

reduce the amount of overlap required to adequately match features.  Clearly selecting a 

fixed frame rate is not an effective approach to salient frame extraction for the structure 

from motion problem.  In fact, the ideal frame rate turns out to be variable, depending on 

the two factors that make the structure from motion problem well conditioned: overlap 

and parallax. 

3.2.1.1 Motion Estimation and Feature Tracking 

The feature tracker we use is based on the early work of Lucas and Kanade [48] 

that was developed fully by Tomasi and Kanade [49], Shi and Tomasi provide a complete 

description [50] that is readily available.  Recently, Tomasi proposed a slight modifica-

tion, which makes the computation symmetric with respect to the two images; the result-

ing equation is fully derived in [51].   Briefly, features are located by examining the mini-

mum eigenvalue of a 2x2 image gradient matrix that is noticeably very similar to the Har-

ris corner detector [44].  The features are tracked using a Newton-Raphson method of 

minimizing the difference between the two windows.  

We continue by presenting a very brief outline of the work by Tomasi etal 

[48,49,50,51].  Given a point p in an image I, and its corresponding point q in an image J, 

the displacement vector δ between p and q is best described using an affine motion field: 

δ = Dp + t         (3.1) 
 
where  



 45 

D = 







yyyx

xyxx

dd

dd
                (3.2) 

 
is a deformation matrix is a Hessian matrix, and t is the translation vector of center point 

of the tracked feature window.  The translation vector t is measured with respect to the 

feature in question.  Tracking feature p to feature q is simply determining the six parame-

ters that comprise the deformation matrix D and the translation vector t. 

 
Clearly in the case of pure translation, D will be the identity and thus 

δ = p + t                   (3.3) 

Because of this, the case of pure translation is computationally simpler and thus prefer-

able.  Since the motion between adjacent frames of standard video is generally quite 

small, it turns out that setting the deformation matrix to identity is the safest computation 

[50], leaving us with the translation vector being exactly the displacement vector.  A 

complete explanation of the tracking equations is given in Chapter 2, Section 2.11 

In the preprocessing system described in Section 3.2.1, our goal is to monitor the 

parallax and overlap between frames in order to ensure the stability and well conditioning 

of the structure from motion algorithms.  Monitoring the motion through lost features and 

feature parallax via feature tracking allows us to decide when there is suitable parallax 

and overlap between frames for the structure from motion algorithms.  The exact criterion 

for extracting two frames to be fed into the structure from motion algorithms is described 

in the next section.  

3.2.1.2 Salient Frame Extraction 
Once the input video sequence has been segmented into its individual shots, and a 

complete description of once such method is presented in Chapter 4, each shot can then 

be independently processed to extract salient frames and then further processed using the 

correspondence and reconstruction phases of the system.  Since the salient frame extrac-

tion the structure from motion parts of the system are independent, this processing is dis-

tributable and easily made parallel.   
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Briefly, the extraction is done by selecting a set of features smaller than the set 

used by  the structure from motion algorithms and tracking them across adjacent frames.  

A salient frame is signaled when enough features have surpassed a certain user specified 

parallax and/or enough features have disappeared and can no longer be tracked.  This cri-

terion is exactly what is required to ensure the success of the structure from motion algo-

rithms. 

 
In algorithmic form, salient frame extraction 
 
1. Select good features for frame 1 place in feature list FL 
2. For each frame x in the video 

a. Track features from FL in current frame x 
b. Count number of lost features 
c. Count number of features that have passed the parallax threshold 
d. If detecting boundaries (cuts) 

i. If (features lost > boundary threshold) 
1. Signal boundary and extract boundary frame 
2. Refresh the feature list FL using boundary frame 

ii. Endif (i) 
e. Endif (d) 
f. If (features lost + features over parallax threshold) > threshold  

i. Signal & extract frame 
ii. Refresh feature list FL using current frame x 

g. Endif (f) 
3. Endfor (2) 
 

The number of features to track the parallax threshold will vary depending on 

video dimensions, however a good rule of thumb is the following: 25 features for every 

10000 pixels, the parallax threshold should be 1/8 of the smallest dimension, and a sensi-

tivity threshold of 75 percent.  For example, a video that is 320x240 would have 192 fea-

tures to track, a parallax threshold of 30 pixels (240/8), and a sensitivity threshold of 75 

percent.  This will supply images with significant overlap and sufficient parallax.  When 

detecting images, a boundary threshold of 95% or greater is sufficient. 

3.2.1.3     Salient Frame Extraction Results 
A series of small video clips was created to test the accuracy and capabilities of 

the algorithm.  These master clips consist of three smaller subsequences that are cut to-

gether.  These sequences were created using a standard analog video camera commonly 

found in many stores and digitized using a video capture card and converted to an MPEG 

sequence. 
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Master  
Sequence 

Sub-Sequence 
Frame 
count 

Selected 
frames 

Reduction 
rounded to 
nearest % 

1 Medical Centre 350 13 96 
1 Warehouse 336 13 96 
1 Body Shop 153 6 96 
2 KFC 207 6 97 
2 Caisse Populaire 252 10 96 
2 Doctors Office 319 5 98 
3 House 1 333 16 95 
3 House 2 542 15 97 
3 House 3 369 12 97 
4 Play structure 653 25 96 
4 Little House 662 20 97 
4 Slide 375 12 97 
5 Barn ** 374 26 93 
5 Temple 1 481 7 99 
5 Temple 2 ** 429 36 92 

Table 3.1:  Frame reduction for image sequences 
 

The cut detection capabilities proved flawless and correctly identified all se-

quence start and end points.  Surprisingly, this was more accurate than a pixel level cut 

detection mechanism used to initially verify the sequence start and end points.  The pixel 

level cut detection missed one of the sequence starting points.  We explore these capabili-

ties in detail in Chapter 4. 

       

       

                                                 
** the sequence was taken from a moving vehicle, the higher camera speed results in more 
frames being selected as an overall percentage. 
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FIGURE 3.2: EVERY 2ND
 EXTRACTED FRAME FROM EXAMPLE SEQUENCE 

 

As one can see from Figures 3.2 and 3.3, the spacing of the extracted frames is very con-

sistent and regular.  These baselines also make the structure from motion algorithms well 

conditioned and hence the images taken from the sequences are well suited by construc-

tion.. 

 

   

  
 

FIGURE 3.3: ALL FRAMES FROM EXAMPLE SEQUENCE 

3.2.2 Finding corners/interest points 
The next step is to find a set of corners or interest points in each extracted image. 

These are the points where there is a significant change in image gradient in both the x 

and y direction. We offer the use of Smallest Univalue Segment Assimilating Nucleus 

(SUSAN) corner detector [43] or the more commonly used Harris corner detector [44].  

Studies have shown the Harris detector to be the more stable of the two [52].   

 

Both methods typically require a user selected threshold to determine whether or 

not a pixel and its surrounding area represents a corner.  Instead of setting a corner 

threshold, we return a fixed number of corners from each method by sorting the appropri-

ate gradient values, that have had a non-maximal suppression operator applied, and return 

the top N strongest corners.  This relatively simple addition to the standard corner detec-

tors tend to stabilize the results when the images have differening contrast and brightness 

because the proper threshold is selected automatically and only the strongest corners are 

returned.  Furthermore, the running time of the sorting algorithm represents the upper 

bound on this addition to the corner finding.  The final results are not particularly sensi-
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tive to the number of corners that the user finds, and typically we use in the order of 800 

corners selected from an image.  This stage returns a set of corners Ci for image i in the 

sequence. 

3.2.3 Matching Corners 
The next step is to match corners between adjacent images. A local window 

around each corner is correlated (using normalized cross correlation at a sub-pixel level) 

against all other corner windows in the adjacent image that are within a certain distance 

that represents the upper bound on the image disparities.  We generally set this upper 

bound to approximately 1/3 the length of the longest dimension. Any corner pair within 

the specified image disparity that passes a minimum correlation threshold is flagged as a 

potential match.  This gives us a one-to-many relationship in the putative match set which 

is complicated.  We reduce the complexity by enforcing a simple symmetry test. 

 

The symmetry test is effectively reducing the one-to-many relationship to a one-

to-one relationship where corners strongly match one another. For example, consider a 

corner p in the left image, and a corner q in the right image of an image pair. Assume that 

the strongest match for p in the opposite image, the right image, is labeled Right(p). Simi-

larly for q the strongest match in the left image, is labeled Left(q). The symmetry test re-

quires the correlation be maximal in both directions. In other words a match (p; q) is ac-

ceptable if and only if p = Left(q), and q = Right(p). 

 

The symmetry test reduces the number of possible matches significantly and 

forces the remaining matches to be one-to-one. The total number of possible matches be-

tween images is therefore less than or equal to the total number of corner points.  Without 

the symmetry test constraint there are far more matches; but these matches are much less 

reliable. For wider baseline images, it is useful to relax the symmetry test and to accept 

the n best matches (usually in the order of 4). In this case we still require that the results 

be symmetric, that is that each of these matches actually be one of the n best in a sym-

metric fashion.  
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3.2.4 Local consistency filtering 
The next step is to perform some type of local filter on these matches. The idea is 

that just by looking at the local consistency of a match relative to its neighbours it is pos-

sible to prune many obvious false matches. This is not always done in the literature, but is 

a sensible step, since the computational cost of using a local filter is low. One possible 

approach to prune matches is to use relaxation [14]. We use a simpler relaxation-like 

process to prune false matches, one based on the concept of disparity gradient [53]. The 

disparity gradient is a measure of the compatibility of two correspondences between an 

image pair. Assume the first correspondence maps a corner point pl (x1left; y1left) in the 

left image to another corner point pr (x1right; y1right), in the right image. Similarly, a sec-

ond correspondence maps corners (x2left; y2left) into (x2right; y2right). The disparity of these 

two correspondences are the vectors d1 = (x1left – x1right; y1left – y1right) and d2= (x2left – 

x2right; y2left – y2right).  The cyclopean separation of the vectors d1 and d2 (cs(d1,d2))is de-

fined as the vector that joins the midpoints of d1 and d2.  The disparity gradient is the ra-

tio of the magnitude of the difference of the two disparity vectors d1 and d2 and the mag-

nitude of the cyclopean separation 

),(
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Corner points that are close together in the left image should have similar disparities, and 

the disparity gradient is a measure of this similarity. Thus, the smaller the disparity gradi-

ent, the more the two correspondences are in agreement and vice-versa. The disparity 

gradient measure has been used in some calibrated stereo algorithms to prune invalid cor-

respondences. Typically, these algorithms reject any correspondence with a disparity gra-

dient greater than 1.5. In our case, we compute the disparity gradient of each correspon-

dence with respect to every other correspondence. The sum of all these disparity gradi-

ents is a measure of how much this particular correspondence agrees with its neighbours. 

 

We iteratively remove correspondences until they all satisfy the condition that the 

correspondence with maximum disparity gradient sum is within a small factor (usually 

2.0) of the correspondence with minimum disparity gradient sum. Using this simple dis-

parity gradient heuristic we are able to remove significant numbers of bad correspon-
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dences at a very low computational cost. Typically, at least 40% of the total number of 

incorrect correlation matches is removed by this process.  There is an additional benefit 

derived by performing this localized filtering: Efficiency in the next step.  By reducing 

the number of false matches in the set the random sampling process requires fewer sam-

ples to converge to correct answer.  This is because the numbers of correct matches ap-

pear in a higher proportion and random selection of a subset of these matches will result 

in a higher proportion of the selected matches being correct.  The number of iterations (n) 

required to get a good fundamental matrix is given by the following equation: 

)1log(

))Pr(1log(
8p

Fgood
n

−
−=       (3.5) 

where Pr(Fgood) is the probability of computing a good fundamental matrix F, and p is 

the proportion of good matches in the putative match set.  This step results in a set of pu-

tative matches DMij for image pair i and j. 

3.2.5 Computing the fundamental matrix 
The original matches between image i and j produced by the correlation process 

are labeled as the set Mij , and the filtered matches that pass the disparity gradient test as 

the set DMij. The next step is to use these filtered matches to compute the fundamental 

matrix which is the uncalibrated version of the essential matrix. This process must be ro-

bust, since it can not be assumed that all of the correspondences in DMij are correct. Ro-

bustness is achieved by using concepts from the field of robust statistics, in particular, 

random sampling [10, 11, 12, 21, 23] as outlined in Chapter 2. A fundamental matrix, Fij, 

is then computed from this minimal set. The set of all corners that support this fundamen-

tal matrix is called the support set SFij. The fundamental matrix Fij, with the largest sup-

port set SFij is returned by the random sampling process. 

 

While this fundamental matrix has a high probability of being correct, it is not necessarily 

the case that every correspondence that supports the matrix is valid.  This is because the 

fundamental matrix encodes only the epipolar geometry between two images. A pair of 

corners may support the correct epipolar geometry by accident (this is known as degener-

acy []). This can occur, for example, with a checkerboard pattern when the epipolar lines 
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are aligned with the checkerboard squares. In this case, the correctly matching corners 

can not be found using only epipolar lines (i.e. computing only the fundamental matrix). 

This specific type of ambiguity can be dealt with by computing the trilinear tensor. 

 

The PVT supports the computation of the fundamental matrix from a variety of 

different algorithms, including Affine, Hartley’s 8 point algorithm, Phil Torr’s algorithm, 

and Kanatani’s renormalization procedure.  Furthermore the toolkit allows the computa-

tion of homographies for planar warps and rotations. 

3.2.6 Guided matching 
Once a putative fundamental matrix has been computed we revert back to match-

ing corners phase as outlined in section 3.2.3.  Again we use normalized cross correlation 

but we restrict our matching criteria even further by only looking for putative matches 

that fall near the epipolar lines defined by the previously computed fundamental matrix.  

This back step allows us to generate a new set of correspondences have a higher probabil-

ity of being a proper corresponding pair.  One the new putative guided match set GMij has 

be computed, we again perform a disparity gradient filter followed by a final computation 

of the fundamental matrix (Fij) that in practice gives us a larger support set (SFij) than 

was computed by the previous stage. 

3.2.7 Computing putative triple correspondences 
This stage is a simple matching using the transitive property of equality.  In prac-

tice, 10 to 25 percent of these putative triplets are not exact matches and are often mis-

matched by several pixels.  These putative triple correspondences are then used to com-

pute the trilinear tensor in a random sampling process.  We compute the trilinear tensor 

from the correspondences that form the support set of two adjacent fundamental matrices 

in the image sequence. Consider three adjacent images, i, j and k and their associated 

fundamental matrices Fij and Fjk. Each of these matrices has a set of supporting corre-

spondences, which we call SFij and SFjk. Say a particular element of SFij is (xi yi  ; xj yj ) 

and similarly an element of SFjk is (x'j y'j ; xk yk). Now if these two supporting correspon-

dences overlap, that is if (xj yj) equals (x'j y'j) then the triple created by transitivity then is 
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a member of PTijk, the putative triplet set. The set of all such possible supporting triples is 

the input to the random sampling process that computes the tensor.   

3.2.8 Computing the trifocal tensor 
The trilinear tensor relates the image coordinates of matching corners in three im-

ages instead of two images. It is therefore inherently a more stable, and a more discrimi-

nating quantity that the fundamental matrix [31].   We use the putative triple matches, 

PTijk, over three views to robustly computer the trifocal tensor using techniques outlined 

in Chapter 2.  The result is the trifocal tensor Tijk, for three views i,j,k, computed using a  

random sampling method [21].  Furthermore a set of triples (corner in the three images) 

that actually support the computed tensor is output, which we call STijk.  The toolkit al-

lows the computation of an affine tensor, and projective tensors using methods outlined 

by Hartley [18] or by Torr [23]. 

3.2.9 Computing the 3D information 
We have gone from a set of corner points Ci; Cj , and Ck; to a set of matches Mij , 

and Mjk; to a set of filtered matches DMij , and DMjk; to a pair of fundamental matrices 

Fij; Fjk and support SFij and SFjk; to a set of putative triplets PTijk, to a tensor Tijk  with 

support STijk.  The cardinality of each of the supporting match sets always decreases, but 

the confidence that each match is correct increases. The entire process begins with many 

putative matches, and refines these to a few high confidence matches. The final matches 

STijk that support the tensor Tijk range in cardinality from 20 to 100, and in practice, have a 

very high probability of being correct.  As we stated in the introduction, the goal is to 

compute the 3D camera positions from the image sequence, not to compute dense depth. 

We therefore do not perform the steps in the second phase; rectification and stereo.  In-

stead, we take the correspondences that support the overlapping tensors and send them to 

a photogrammetric bundle adjustment program [41]. Assume that we have a sequence of 

images numbered from 1 to n, and have computed a set tensors T123, T234, … T(n-2)(n-1)(n) .  

Consider the tensors Tijk  and Tjkl which have supporting correspondences (xi yi , xj yj , xk 

yk) in STijk and (x'j y'j , x'k y'k , x'l y'l ) in STjkl. Those correspondences for which (xj ; yj ; 

xk; yk) equals (x'j ; y'j ; x'k ; y'k ) represent the same corner in images i, j, k and l. This cor-

responding corner list is then sent directly to the commercial bundle adjustment program 
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Photomodeler [41] which, as a commercial product, uses established algorithms. Since 

we know the camera calibration, either aproiori or via an autocalibration method such as 

the one as outlined in Chapter 5, we use these correspondences, the calibration informa-

tion and Photomodeler to compute the 3D camera positions, along with the 3D co-

ordinates of the matching features. 

 

3.3 Experiments 
 

Over 20 experiments have been conducted under a variety of lighting conditions 

and camera motions.  Some of these experimental data samples come from the computer 

vision literature, while others have created using modern digital cameras.  All of the ex-

perimental results can be found as a part of the Projective Vision Toolkit example sets2.  

Due to limitations in space, only a few are presented in this thesis, particularly those ex-

amples that are found in the previous literature because the capture process was not under 

our control. 

 

In our first example we begin with a complete video sequence taken of an indoor 

scene.  The camera operator is performing some “sky writing” motions.  The video se-

quence, which has 1400 frames, has the frame extraction process described in section 

3.2.1 executed to reduce the frames in the sequence down to only 81.  In figure 3.4 we 

see a selection of 9 frames from the reduced original video sequence.  We proceed to run 

the 81 selected frames through the modular process described above to automatically 

solve the correspondence problem for the selected subsequence.  The correspondences 

and the camera calibration parameters are fed into the structure from motion software and 

the 3D reconstruction of the 2355 correspondence points and the 80 camera positions are 

computed.  As we can see in Figure 3.5, the “sky writing” experiment is effectively cap-

tured when the camera positions and points are reconstructed in a virtual rendering of the 

3D points and cameras and spell out the letters N, R, and C. 

 

                                                 
2 The Projective Vision Toolkit webpages can be found here: http://cg.scs.carleton.ca/~awhitehe/PVT/ 
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FIGURE 3.4  SELECTION 9 OF IMAGES FROM VIDEO SEQUENCE 

 

 
FIGURE 3.5 RECONSTRUCTED CAMERA POSITIONS AND POINTS FROM A VIDEO CAMERA 

 
Attempts to run the entire 1,400 frames through the process and then into the struc-

ture from motion algorithms would be computationally intense and the bundle adjustment 

phase would have problems converging due to the minute baselines present that are 

caused by the high video frame rate.   
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In our next example, we present results using the well-known Carnegie Mellon House 

sequences.  In this sequence, the camera was moved with deliberate fixed motions that 

offer us a known ground truth.  In the tables below, we see how the number of matches 

decreases as we step through each of the previously described phases of computation.   

   
FIGURE 3.6 3  SAMPLES FROM THE CMU-BIGHOUSE SEQUENCE, FRAMES 1,6 & 11. 

 
For two views, we have an approximate 10 percent drop in matches for each stage, and a 

50 percent drop when we generate putative triples and finally another 20 percent drop for 

those triples that support the computed tensor.  

 

Image Pair Correlation 
Matches 

Locally filtered 
Matches 

Fundamental 
Matches 

1-2 417 389 363 
2-3 349 321 313 
3-4 470 447 420 
4-5 487 479 455 
5-6 393 373 366 
6-7 531 530 518 
7-8 422 405 393 
8-9 509 506 494 

9-10 505 504 487 
10-11 433 411 398 

Table 3.2 Match counts for pair wise phases 
 

Image Triplet Putative Matches Tensor Support 
Matches 

1-2-3 185 156 
2-3-4 209 196 
3-4-5 279 236 
4-5-6 269 236 
5-6-7 278 168 
6-7-8 311 243 
7-8-9 310 238 

8-9-10 378 353 
9-10-11 287 225 
Table 3.3 Match counts for triplet phases 
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Once we have computed these high confidence correspondences, we proceed by 

passing the correspondence information and camera calibration information (obtained 

either via a calibration process or autocalibration) into the photogrammetry software to 

compute the camera positions and sparse depth information for the corresponding points.  

As we can see in Figure 3.7, the major structures of the scene such as the peaks in the 

roof are quite evident.  Furthermore, the camera positions show the deliberate well con-

ceived motions. 

 

 
FIGURE 3.7 RECONSTRUCTED CAMERA POSITIONS AND FEATURE POINTS 

 
For those not familiar with the CMU-Bighouse sequence, the cameras were deliberately 

moved forward and backward in certain cases and the cameras are not visible in the re-

construction as shown in Figure 3.7.  However as we can see in Figure 3.8, a close up 

view of the cameras shows the backs of the cameras in their original positions.  However 

the rendering of the cameras in their new positions effectively overwrites the front of the 

cameras in the original position.   

 

Finally, in Figure 3.9 we present an image taken from the sequence with the re-

constructed points in black re-projected and overlaid onto the image.  The camera posi-
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tions are also re-projected back onto the image plane, and we can see that the points are 

quite accurately projected to their original locations. 

 

 
FIGURE 3.8 RECONSTRUCTED CAMERA POSITIONS WITH OVERLAPS HIGHLIGHTED 

 

 
FIGURE 3.9 ORIGINAL IMAGE WITH FEATURES AND CAMERAS OVERLAID 

 
In our final example, we have another well known sequence, the Oxford basement.  

This example is particularly difficult because the camera is moving in a forward motion 

that similar to that of a change in focal length along the Z-axis.  An interesting effect to 

note here is that because the focus of expansion falls within the image plane, the localized 

filtering does not appear to be useful way to prune false matches.  Upon reflection of dis-

parity gradient, this result makes sense because the magnitude of the individual corre-
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spondence vectors decrease in size as they near the location of the focus of expansion.  

This will result in the cyclopean separation generally being much larger than the magni-

tude of the difference of the two vectors.  This will result in very small disparity gradient 

values and therefore prevent pruning of correspondences. 

 
FIGURE 3.10 EXAMPLE IMAGE WITH OVERLAID CAMERA POSITIONS AND POINTS 

 

Image Pair Correlation 
Matches 

Locally filtered 
Matches 

Fundamental 
Matches 

0-1 281 280 241 
1-2 288 286 263 
2-3 291 289 236 
3-4 273 272 233 
4-5 277 276 240 
5-6 254 252 219 
6-7 279 275 242 
7-8 238 232 145 
8-9 229 226 148 

9-10 256 252 212 
Table 3.4 Match counts for pair wise phases 

 

Image Triplet Putative Matches Tensor Support 
Matches 

0-1-2 198 167 
1-2-3 184 134 
2-3-4 171 140 
3-4-5 180 135 
4-5-6 170 144 
5-6-7 168 132 
6-7-8 114 66 
7-8-9 79 46 

8-9-10 103 54 
Table 3.5 Match counts for triplet phases 
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As we can see from Table 3.4 the disparity gradient filtering results in very little change 

in the number of correspondence, while the support sets for both the fundamental matrix 

and the tensor reduce the correspondence count by approximately 10-20% each.   

 

Finally, we conclude the experiments section with a tabular review of all the ex-

periments conducted and presented as part of the Projective vision toolkit.  The exact 

match counts for each image pair and triplet can be found in Appendix A. 

Sequence 
Average 

Correlation 
Matches 

Average 
Filtered 
Matches 

Average 
Fund. 

Support 
Matches 

Average 
Putative 
Triple 

Matches 

Average 
Tensor 
Support 
Matches 

Ex1a 452 437 421 278 228 
Ex1b 293 214 192 57 44 
Ex1c 239 123 81 22 18 
Ex1d 236 204 148 44 26 
Ex2a 185 166 141 31 25 
Ex2b 140 138 86 12 12 
Ex2c 276 230 115 32 23 
Ex3a 233 171 94 24 20 
Ex3b 215 173 124 44 35 
Ex3c 375 325 157 54 29 
Ex3d 343 264 222 104 71 
Ex4a 270 218 148 48 36 
Ex4b 222 181 90 18 14 
Ex4c 175 166 45 7 6 
Ex5a 267 264 218 152 113 
Ex5b 322 238 199 108 73 
Ex5c 193 153 135 61 45 

Table 3.6 Reduction in feature correspondence for PVT example sets. 
 

3.4 Conclusions and Discussions 
 

We have presented a modular system for computing a reconstruction of the cam-

era positions from an image sequence. Since our goal is to find the metric camera posi-

tions we do not need to create a dense 3D reconstruction.  We assume that we have cam-

era calibration information available, but we do not use this calibration information when 

computing the correspondences. Instead reliable correspondences are computed using the 

uncalibrated projective method. However, the calibration information is used for comput-

ing the 3D camera positions from these correspondences. The final correspondences, 

those that support the trifocal tensor, are error free in the vast majority of cases. The re-
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sults are demonstrated experimentally on a number of examples.  There is no doubt that 

reliable results can be obtained for a wide variety of images, both indoor and outdoor.  

 

In performing our experiments we have drawn some conclusions about the best 

approaches for each step of the projective reconstruction process. We have described a 

novel method for extracting a manageable subset of frames from a video sequence  and 

we have also described a way to locally filter invalid correspondences based on the dis-

parity gradient. We believe that projective methods in combination with random sam-

pling solve the correspondence problem for many image sequences. The support set of 

the fundamental matrix and trifocal tensor are correct correspondences in the vast major-

ity of cases. If the goal is to compute the metric camera positions and the camera calibra-

tion is known, we believe that it is best to send the supporting correspondences of the 

tensor directly to photogrammetry software. Our justification is that a bundle adjustment 

process is necessary to compute the camera positions accurately and we believe that this 

is better done in metric space, rather than projective space.  

 

The software used in these experiments has been made publicly available to facili-

tate expedient future research into the field.  To our knowledge, this is the first publicly 

available software that allows the computation of the trifocal tensor.  The toolkit runs on 

most Unix systems, along with Windows NT/2000/XP/98. The input is a sequence of 

overlapping images, and the output is a series of fundamental matrices and trifocal ten-

sors, pair wise and triplet correspondences.  A more complete description of the toolkit is 

given in Appendix C. 
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Chapter 4 

4 Segmenting Video Sequences 
 

4.1 Introduction 
 

Recently, investigation into shot boundary detection schemes has gathered much 

momentum [54-63].  Cut detection is seemingly easily solved by an elementary statistical 

examination of inter-frame characteristics; however a truly accurate and generalized cut 

detection algorithm still eludes researchers.   Reliable shot boundary detection forms the 

cornerstone for video segmentation applications as shots are considered to be the elemen-

tary building blocks that form complete video sequences.  Applications such as video ab-

straction, video retrieval and higher contextual segmentation all presuppose an accurate 

solution to the shot boundary detection problem [60, 64, 65, 66]. Automatic recovery of 

these shot boundaries is an imperative primary step, and accuracy is essential. 

 
Shot transitions can be classified into four classes based on the 2D image transforma-

tions applied during transition production [54]. 

 
• Identity class: Neither of the two shots involved are modified, and no 

additional edit frames are added. Only hard cuts qualify for this class. 
• Spatial Class: Some spatial transformations are applied to the two 

shots involved. Examples are wipe, page turn, slide, and iris effects. 
• Chromatic Class: Some color space transformations are applied to the 

two shots involved. Examples are fades and dissolve effects. 
• Spatio-Chromatic Class: Some spatial as well as some color space 

transformations are applied to the two shots involved. All morphing 
effects fall into this category.  

 
In this work, we concentrate only on the identity class, as our goal is to improve the accu-

racy of cut detection by introducing a new differencing metric based on stable feature 

tracking from frame to frame.  The basic idea behind the technique has been shown to 

detect fades [62], but we concentrate solely on cuts in this work.   

 

 



 63 

4.2 Additional Background 
 

In 1965, Seyler developed a frame difference encoding technique for television 

signals [67]. The technique is based on the fact that only a few elements of any picture 

change in amplitude in consecutive frames. Since then much research has been devoted to 

video segmentation techniques based on the ideas of Seyler.  Much work has been com-

pleted in the area of scene detection, shot detection and annotation and as a result, the 

methods and algorithms are quite mature. However, a truly accurate cut detection algo-

rithm has yet to be introduced.  Any improvements in cut detection will ultimately im-

prove the applications that rely on it.   

 
Hard cuts are the most common transition between shots.  A hard cut is the direct 

concatenation of two shots without the presence of transitional frames.  Formally, the re-

sulting sequence S(x,y,t)is composed by joining two shots S1(x,y,t) and S2(x,y,t) and is 

characterized by the following:  

-1 hardcut 1 -1 hardcut 2S (x, y, t) =  [[1 - u (t - t )]  S (x, y, t)] + [[u (t - t )]  S (x, y, t)]⋅ ⋅        (4.1) 

where thardcut denotes the time stamp of the first frame after the hard cut and u-1 (t) is the 

unit step function (1 for t ≥ 0, 0 otherwise). [56] 

 

FIGURE 4.1: HARD CUT BETWEEN FRAMES 206 AND 207 OF A VIDEO SEQUENCE. 

A hard cut produces a visual discontinuity in the video stream as we see in Figure 1.   Ex-

isting hard cut detection algorithms differ in the feature(s) used to measure the inter-

frame differences and in the classification technique used to determine whether or not a 

discontinuity has occurred. However, they almost all define hard cuts as isolated peaks in 

the features time series.  In [56] a complete survey is given on techniques to compute in-

ter-frame difference and classify the type of transition.  A variety of metrics have been 

suggested to work on either raw video or compressed data and we briefly outline methods 
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that have been used in the past, or are currently in use, forming the basis of our compari-

sons.  We will briefly outline the techniques next. 

4.2.1 Quantifying Inter-frame Differences 
The basic idea behind shot/scene detection is to evaluate the similarity of adjacent 

frames using some metric.  When the similarity measures cross a certain threshold, a 

scene change or shot boundary will be classified as occurring.  By selecting a better 

method to quantify the inter-frame differences results in the classification algorithm be-

coming more accurate and easier to implement.  In this section we outline several known 

inter-frame difference quantification techniques. 

4.2.1.1 Individual Pixel Differences  
Equations (2) and (3) describe a pixel level change metric and a cut classifier respec-

tively.   

    DIi(x,y) = 1 if |Ii(x,y)-Ii+1(x,y)| > t      

       0 otherwise                  (4.2) 

           
1 1

( , )

( * )

X Y
i

x y

DI x y
T

X Y= =
>∑∑                            (4.3) 

In (4.2), we compute the difference between pixel values between images i and i+1 to 

create a difference image DI, where t is a threshold signifying individual pixel difference. 

We then compute the overall image difference using (4.3). If the percentage of image 

change is greater than a threshold T, we declare a shot boundary.   The pixel level detec-

tion metric displayed in (4.2) and (4.3) is the most basic form for raw, uncompressed 

video. 

 
Unfortunately, this simple metric measure is very susceptible to object and cam-

era motion. Even if camera motion is compensated and pixels are transformed before be-

ing compared, object motion still poses significant difficulties.  More sophisticated meth-

ods use optical flow, the number and distribution of motion vectors and the strength of 

the residual derived by block matching as features [57, 58].  In addition, performance of 

the segmentations relies directly on the adequate selection of two threshold values. 
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4.2.1.2 Intensity/color histograms 
Histogram change metrics utilize histogrammed values of the pixel data rather 

than the pixel values themselves.  This makes the entire system more robust to noise and 

small object motion.  There exist many different histogram possibilities that could be 

used as there exist many different color spaces.  Color spaces such as RGB, YUV, HSV, 

HIS, YIQ, Lab, Luv, Munsell and opponency colors can all be easily converted from one 

to another.  As such they can be considered equivalent.  In practice, simple histogram dif-

ferencing has shown to be capable and quite efficient.  Performance capabilities have 

been outlined in [56, 57].  Specific examples of histogram techniques are presented in 

[67, 68, 69].  Note that in general, for histogram techniques, greater improvements in cut 

detection performance can be attained by making a proper choice for the categorization 

algorithm than can be attained by using alternate color spaces or by fine tuning the histo-

gram difference functions [55]. 

4.2.1.3 Edge based features 
The edges of objects between two adjacent frames in a cut cannot usually be 

found and appropriately put in correspondence.  An edge based feature approach was pre-

sented in [70] that used the so-called Edge Change Ratio (ECR) and was further refined 

in [71].  The ECR is defined as number of dilated edge pixels in two adjacent frames that 

do not conform.  Edges are detected using a Canny [72] edge detector, and in order to 

handle object motions a dilated edge is compared in a windowed area around the pixels 

rather than a single pixel.  Such a method is prone to failure in the presence very fast 

camera or object motion, multiple moving objects, moving cameras with moving objects, 

and occlusions.  A comparison of histogram techniques against the edge change ratio 

technique has shown that the histogram techniques provide similar results without the 

added complexities [55]. 

 
While the ECR methods provide advances in capabilities, especially for fades and 

dissolves, they suffer greatly increased runtimes due to the added complexities.  A recent 

review [73] managed to get real time capabilities of the edge feature-based method pre-

sented in [71] but only on micro-frames of 88x72 pixels.  When the frame sizes were in-
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creased to 352x288 (a more standard resolution) the frame-processing rate dropped to 

approximately 2 frames per second.   

4.2.2 Classifying Differences as cuts and non-cuts 
Once a metric that quantifies the inter-frame differences has been defined, a clas-

sifier is required to separate the differences into cuts and non-cuts.  Two basic classifica-

tion techniques that revolve around thresholding techniques as linear discriminators have 

been proposed; they are global and adaptive thresholding. 

4.2.2.1 Global threshold 
The input to a global thresholding technique is all of the difference values for a 

given video, which in the ideal case is supposed to show a single large peak at hard cut 

locations. A hard cut is declared each time the feature difference value surpasses a glob-

ally fixed threshold.  A common problem of global thresholding is that in practice it is 

impossible to find a single global threshold that works with all kinds of video material 

[55]. 

4.2.2.2 Adaptive threshold 
The input to an adaptive thresholding technique is a windowed subset of differ-

ence values for a given video, which in the ideal case is supposed to show a single large 

peak at cut locations. A hard cut is detected based on the difference of the current feature 

values with respect to its local neighborhood. Usually a temporal sliding window of size 

w centered on the current frame is chosen to represent the local neighborhood [55].  A cut 

is classified when the ratio between the largest and the second largest value in the win-

dow surpasses a second threshold [59]. 

 
In Figure 4.2, shots are easily seen to be length 2 (664-665) and length 4 (666-

669).  Both adaptive thresholding techniques in combination with color histogram differ-

ences between frames have been shown to lead to higher performance [59, 60].  However 

this type of adaptive thresholding is prone to false negatives in highly edited sequences.  

We have found that in commercial video sequences, shots of length two, three and four 

frames are more common than one would expect.  Figure 2 shows a sequence with sev-
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eral cuts that may be missed when the window in an adaptive thresholding technique is 

too large. 

 
FIGURE 4.2: SEQUENCE FROM THE MOVIE PSYCHO

3. 
 

4.3 Feature Tracking for Quantifying Dissimilarity 
We propose in this paper a new approach that uses feature tracking as a metric for 

dissimilarity.  Furthermore we propose a methodology to automatically determine a 

threshold value by performing density estimation on the squared normalized per-frame 

lost feature count.  It has been reported that the core problem with all motion-based fea-

tures is due to the fact that reliable motion estimation is far more difficult than detecting 

visual discontinuity, and thus less reliable [55].  Effectively, a simple differencing tech-

nique is replaced with a more complex one.  Experimentally we have found that the pro-

posed feature tracking method performs flawlessly on all simple4 examples where pixel 

and histogram based methods did not achieve such perfect results.   

 

FIGURE 4.3: DIAGRAM OF SYSTEM TO COMPUTE CUTS 
 
We continue by outlining the feature tracking method, an outlier pruning algorithm and a 

signal separation methodology.  We follow up in the next section with a method to dy-
                                                 
3 All copyrights © belong to their respective owners.  Psycho is an Alfred Hitchcock movie, produced by 
Shamley Productions and distributed in North America by Universal Pictures. 
4 Here we define simple to be cases of clearly obvious cuts, which were well separated over time and space. 
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namically select a global threshold.  In Figure 4.3 we see the entire flow chart for com-

puting the positions of cuts in a video sequence.  Each block within the diagram is de-

tailed in this section and the next. 

 

4.3.1 Feature Tracking 
Previous feature based algorithms [70, 71] rely on course-grained features such as 

edges and do not track edge locations from frame to frame.  Rather they rely on sufficient 

overlap of a dilated edge map and search a very small local area around the original edge 

locations.  In contrast, the proposed method of tracking fine-grained features (corners) on 

a frame-by-frame basis in less constrained by the original location due to the pyramidal 

tracking approach.  This allows the proposed method to be more robust to object and 

camera motions.  Cuts are detected by examining the number of features successfully 

tracked (and lost) in adjacent frames, refreshing the feature list for each comparison. 

 
We utilize a corner-based feature tracking mechanism to indicate the characteris-

tics of the video frames over time.  As we track corner features over time, we detect pro-

duction features within the video and can annotate the sequence depending on the fea-

tures that are successfully tracked over time versus those that are lost.  Feature tracking is 

performed on the luminance channel (grey map) for the video frames.  The luminance 

channel is computed as follows: 

Luminance = Red*0.299 + Green*0.587 + Blue*0.114    (4.4) 

The feature tracker we use is based on the work of Lucas and Kanade in [48].  This work 

was further developed by Tomasi and Kanade in [49] of which Shi and Tomasi provide a 

complete description in [50].  

 
Briefly, features are located by examining the minimum eigenvalue of a 2x2 im-

age gradient matrix that is noticeably similar to the Harris corner detector [44]. The fea-

tures are tracked using a Newton-Raphson method of minimizing the difference between 

the two windows around the feature points. We continue by presenting a very brief out-

line of the work by Tomasi et al [48, 49, 50]. 

 



 69 

Given a point p in an image I, and its corresponding point q in an image J, the displace-

ment vector δ between p and q is best described using an affine motion field: 

δ = Dp + t               (4.5) 

where 

xx xy

yx yy

d d
D

d d

 
=  
 

           (4.6) 

is a deformation matrix and t is the translation vector of the centre point of the tracked 

feature window. The translation vector t is measured with respect to the feature in ques-

tion. Tracking feature p to feature q is simply the problem of determining the six parame-

ters that comprise the deformation matrix D and the translation vector t.  In the case of 

pure translation, D will be the identity matrix and thus 

δ = p + t                (4.7) 

Because of this, the case of pure translation is computationally simpler and thus 

preferable. Since the motion between adjacent frames of standard video is generally quite 

small, it turns out that setting the deformation matrix to identity is a safe computation 

[50], leaving us with the translation vector being exactly the displacement vector.   Com-

plete details for the tracking equations and feature selection can be found  in Chapter 2, 

Section 11.   

 

FIGURE 4.4: END RESULT FOR FEATURE TRACKING OVER SEVERAL FRAMES.   
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In Figure 4.4, stationary objects in the foreground and a quickly moving object (noted by 

the long motion vectors) in the background.  Gray squares are lost features; white squares 

represent the tracked feature and its original position. 

 

The displacement vector is computed using a pyramid of resolutions because 

processing a high resolution image is computationally intensive.  The multi-resolution 

pyramid within the feature tracker reduces the resolution of the entire image, say by a 

factor of 2.  Tracking occurs by tracking a features general area in the lowest resolution 

and upgrading the search for the exact location as it progresses back up the pyramid to 

the highest resolution.  An example of tracked feature and displacement vectors is given 

in Figure 4.4. 

 
While tracking features it is possible that an extremely large object motion be-

tween frames does occur.  It has been noticed that in such cases the tracking mechanism 

begins to fail because the disparity between adjacent frames is too large. The result, fea-

tures are lost and cannot be tracked any further. This fact indicates that some large shift 

in the adjacent frames has occurred and can be handled at the cost of substantially higher 

processing time by increasing the pyramid dimensions or by removing the identity con-

straints of the matrix D. 

4.3.2 Pruning False Tracking 
In the case of a cut at frame i, all features being tracked should be lost from frame 

i to i+1.  However, there are often cases where the pixel areas in the new frame coinci-

dentally match features that are being tracked.  In order to prune these coincidental 

matches, we examine the minimum spanning tree of the tracked and lost feature sets.   

We can see from Figure 4.5 a, in the case of a cut, that there is a very small percentage of 

features that are tracked.  This is clearly an erroneous situation because the two consecu-

tive frames are so obviously different.  We can remove some of these erroneous matches 

by examining properties of the minimum spanning tree of the tracked and lost feature 

sets.  By severing edges that link tracked features to lost features we end up with several 

disconnected components within the graph.  Any node  (feature) in the graph that be-

comes a singleton (not connected to any other feature) has its status changed from tracked 
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to lost, and is subsequently included in the lost feature count.  The property we are ex-

ploiting here is the fact that erroneously tracked features will be minimal and surrounded 

by lost features.  Clusters of tracked (or lost) features have localized support that we use 

to lend weight to our assessment of erroneous tracking          

  

  

(a) (b) 

       

(c) 

FIGURE 4.5: THREE CONSECUTIVE FRAMES FROM A SEQUENCE.   
(a) shows a very high proportion of successfully tracked features from the previous frame to current frame 
(b) shows successfully tracked features from (a) (previous) to (b) (current) (c) shows those features cannot 
be found in very high proportion indicating a cut. Above each frame is the minimum spanning tree for each 

of the feature sets, (+) are tracked features, (X) are lost features. 
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FIGURE 4.6: THE RESULTS OF SQUARING. 

Top is the original signal, bottom is the squared signal.  The separation between the cuts 
and the non-cuts has been greatly increased. 

 

Our inter-frame difference metric is the percentage of lost features from frames I 

to i+1.  This corresponds to changes in the minimum spanning tree, but is computation-

ally efficient.  Because we are looking to automatically define a linear discriminator be-

tween the cut set and the non-cut set, it is advantageous to separate these point sets as 

much as possible.  In order to further separate the cut set from the non-cut set, we square 

the percent feature loss which falls in the range [0..1].  This has a beneficial property of 

ensuring the densities of the cut set and the non-cut set are further separated and thus ease 

the computation of a discriminating threshold.  The idea here is that in the case of optimal 

feature tracking, non-cut frame pairs score 1 (all features tracked) and cut frame pairs 

score 0, no features tracked.  Squaring, in the optimal case, has no effect as we are al-

ready maximally separated. However, in practice, squaring forces the normalized values 
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for non-cut frame pairs closer to zero.  Figure 4.6 shows the effect of stretching on the 

inter-frame differences. 

 

4.4 Automatically Determining a Linear Discriminator  
 

Having a difference metric and a method to further separate the cut set from the 

non-cut set, we can now compute the linear discriminator for the two sets.  There is no 

common threshold5 that works for all types of video.  Next we present an algorithm to 

auto-select a global threshold.  There are two classes of frame differences, cuts and non-

cuts; and our goal is to find the best linear discriminator that maximizes the overall accu-

racy of the system.  The cut set and the non-cut set can be considered to be two separate 

distributions that should not overlap, however in practice they often do, as illustrated in 

Figure 7b.  When the two distributions overlap a single threshold results in false positives 

and false negatives.  An optimal differencing metric would ensure that these two distribu-

tions do not overlap; in such a case the discriminating function is obvious and accuracy is 

perfect.  The quality of the difference metric directly affects the degree to which the two 

distributions overlap, if any.  Until an optimal difference metric is proposed, the problem 

of optimal determination of the discriminator must be considered. 

 
To avoid the problems illustrated in Figure 2 that may occur with a windowed adaptive 

threshold, we have opted to examine the density of the recorded inter-frame difference 

values for an entire sequence.  The idea here is that there should be two distinct high-

density areas, those where tracking succeeded (Low feature loss) and those where track-

ing failed (high feature loss).  In practice, this situation appeared about 50% of the time in 

our data set.  We will introduce the idea of a candidate set in section 4.4, which is the set 

of features that can be discriminated by zero crossings of the probability density function 

that characterizes the densities of the inter-frame differences.  It needs to be noted here 

that while we examine the density for the entire sequence to determine a global threshold, 

it is possible to apply the method outlined next in a windowed manner to determine local-

ized thresholds.    

 

                                                 
5 Note that a threshold is a linear discriminator with the function y = some_value. 
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FIGURE 4.7: (A) NON-OVERLAPPING DISTRIBUTIONS, (B) OVERLAPPING DISTRIBUTIONS 
(a) the discriminator is obvious.  (b) the cut set on the right and the non-cut set on the left.  

The ideal discriminator lies within the overlap region. 
 

4.4.1 Density Estimation 
In order to auto-select a threshold, we examine the frequency of high and low fea-

ture loss.  We are looking to exploit the fact that the ratio of non-cuts to cuts will be high, 

and therefore the ratio of low feature loss frame pairs to high feature loss frame pairs will 

also be high.  As the frame to frame tracking of features is independent of all other video 

frames, we have n independent observations from an n+1 frame video sequence.  The ex-

trema of the probability density function can be used to determine the threshold to use.  

We can use the statistical foundations of density estimation to estimate this function. 

 
The intention of density estimation is to approximate the probability density function f(●) 

of a random variable X.  Given that we have n independent observations x1, …, xn (our 

tracked feature percentage squared) from the random variable X (our video sequence).  

The kernel density estimator for the estimation of the density value f(x) at point x is de-

fined as  

1

1ˆ ( )h
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 

∑  (4.8) 

Where K(●) is the so-called kernel function, h is the bandwidth (window size), and n is 

the number of samples (number of frames-1).  There have been variety of kernel func-
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tions presented in the past and we performed an empirical evaluation of the 9 kernel func-

tions listed in Table 1 to determine which kernel is the most appropriate for our problem.   

Table 1: Density Estimation Kernel functions. 

Kernel Name Kernel Function K(α) 
Uniform ½ α 

Rectangle α 
Epanechnikov ¾ (1 – α2 ) 

Biweight 15/16 (1 – α2 ) 2 
Triweight 35/32 (1 – α2 )3 

Gaussian 
1 2
2

1

2
e

α
π

−
 

Triangular | α | ) 

Cosine Trace cos
4 2

π π α 
 
 

 

Laplacian 
1

2
eα

 
 

 

We want a kernel estimator that will facilitate the identification of extrema in the 

probability density function.  In Figure 8 we examine each of the kernels in detail to 

evaluate the effects the smoothing kernel has on each.  It is important to select a kernel 

that does not over smooth, resulting in a loss of discrimination capabilities.  As well, we 

must not select a kernel that under-smoothes, resulting in a ragged signal and thus a mis-

representation of the position of extrema.   In the case where the distributions overlap, we 

determined that the triangular kernel provided the best smoothing properties.   

 
Generally speaking, we found that the Laplacian, Uniform and Rectangular ker-

nels under smoothed the signal, leaving too many extrema for reliable subsequent analy-

sis.  We also found that the Gaussian, Triweight, and Epanechnikov kernels over 

smoothed the signal, making accurate determination of extrema difficult.  The remaining 

3 kernels, Biweight, Cosine Trace and Triangular appeared to have a very similar effect 

on the original signals.  The triangular kernel was selected from the remaining three be-

cause it did not over-smooth locally, making the determination of extrema easiest of the 

three.  In Figure 4.8 we see an analysis of the all kernels for a single data source with 

non-overlapping distributions.  The results presented were consistent across many differ-

ent samples from our data set.  From Figure 8 we draw the conclusion that in the case that 
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the two distributions do not overlap, a smoothing of the function will not destroy the ob-

vious discriminating threshold.   
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FIGURE 4.8: DETAILED EXAMINATION OF KERNEL FUNCTIONS.  
 (a) Examination of all 9 kernels for the same video sequence.      (b) all nine kernels at 
the high feature loss areas.   (c) Biweight, Cosine Trace, and Triangular kernels 
 

Now that the triangular kernel has been selected to smooth our function, we need 

to determine the bandwidth (window size) for the kernel.  We performed a analysis with 

kernel widths 3,5,7,9,11,13,and 15.  In Figure 9 we show a triangular kernel for window 

sizes 3,7,11 and 15.  Widths 9 through 15 represented almost identical curves and thus 

any kernel width over 7 provided no further information and likely is over smoothing.  
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The apparent extrema that appeared in widths 3 and 5 indicated under smoothing.  By 

elimination, we were left with a kernel width of 7, which has provided good results in our 

experiments. 
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FIGURE 4.9: TRIANGULAR KERNEL AT VARIOUS BANDWIDTHS (WINDOW SIZES) 

 

4.4.2 Computational Considerations 
In the case of an exact computation of the density estimates, the kernel function 

must be evaluated O(hn2) times. This increases the computation time as the number of 

frames becomes large (keep in mind that a 2 hour movie contains 216,000 frames).  An 

alternative, and faster, way is to approximate the kernel density estimate is to use the 

WARPing (Weighted Average of Rounded Points) method [15]  The core concept behind 

WARPing is to effectively histogram the data into bins of length d.  The bin centre of its 

corresponding bin then replaces each observation point for subsequent computation.  A 

typical choice for d is to use h/5 or (xmax-xmin)/100. In the latter case, the effective sample 

size i can be at most 101.  This property nicely reflects our situation, where we are keep-

ing track of the percentage of features tracked per frame pair, which is in the range of 0 to 

100 percent, or 101 bins.   

 
For the WARPing method, the kernel function needs to be evaluated only at O(h·r/d) plus 

the initial pass to histogram the data being O(n).  In total, the number of steps is O(n) + 
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O(h·r/d) where h is our window width (7), the range I is 101 and the bin length is 1.  This 

reduces the number of steps to O(n) + O(h·r).  Since n greatly exceeds h·r (707 in our 

experiments), we are have an upper bound of O(n).  This is considerably faster than the 

exact computation, when the sample size is large. 

4.4.3 Non-Overlapping Distributions 
Non-overlapping sets of distributions are very easily determined by looking for a 

large plateau of zero density.  The first appearance (traveling the curve from 0 to 100) of 

a large plateau indicates the range of the separation point.  Selecting the extreme end 

point (closest to the non-cut set) for the threshold has yielded the correct result on all 

cases of non-overlapping distributions in our test suite.  

 
4.4.4 The Candidate Sets (Overlapping Distributions) 

We now introduce the ideas around what we term the candidate sets.  We define 3 

candidate sets, where each set contains the frames that maximize the precision, F1 and 

recall rates.  Precision is the portion of the declared cuts that were correct.  Recall is the 

portion of the cuts that were declared correctly.  F1 is a combination of precision and re-

call.  A complete description of these terms and their formulae are given in the experi-

ments section.  Depending on user need, precision, recall or best overall performance, 

these candidate set thresholds are now able to be determined.   

 
The candidate sets are 3 sets that for convenience we will call the precision set (P), 

the F1 set (F) and the recall set I.  These sets have the following property: 

• R ⊆ F ⊆ P 

In the case of non overlapping sets, precision, recall and F1 scores are all 1.0 and the 

frames in each set are the same.  In the case of overlapping sets, the frames in the preci-

sion set appear in the F1 set, and those in the F1 set appear in the recall set. 

 
The candidate sets are determined by examining zero crossings of the first deriva-

tive of the computed probability density function (PDF).  There are often many consecu-

tive zero crossings of the function over time, so we use a modified function G(x) to make 
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the large changes in density more apparent. The first derivative of the PDF f(x), is modi-

fied to a function G(x) using the following rules: 

( ) ( ) ( 1) :

ˆif ( ) 0 then ( ) 0

ˆif ( )  0 then ( ) 1

G x g x g x

f x g x

f x g x

= + +

′ ≤ =

′ > =

    (4.9) 

In Figure 10, we see the original first derivative function and the modified function. 
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FIGURE 4.10: (A) ORIGINAL PDF (B) MODIFIED FIRST DERIVATIVE (G(X))  

 
The zero crossings, starting from 1.0 and following G(x) as x decreases are used to 

determine the thresholds for each of these sets using the criteria listed here: 

• (P) is The first zero crossing  

• (F) The position of the minimum of PDF corresponding to the plateau of G(x) 
given: 

If the next zero crossing has opposing direction as the first (i.e. is not u or 
n shaped) and is part of the plateau of first zero crossing use this plateau, 
otherwise use the next plateau. 

• The next subsequent zero crossing 

P 

F 

R 
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The arrows in Figure 4.10(b) point to the zero crossings used.  The first zero crossing is 

at 0.98 (P) and because the next zero crossing at 0.93 is also an upwards direction (u 

shaped), we skip to the next plateau to determine F.  The next zero crossing (not on the 

plateau) is used for R. 

 

4.5 Experiments 
 

In this section we perform a variety of experiments on data sources that were 

deemed to be difficult6.  We outline our metric for comparing the proposed method 

against other methods followed by the experimental results.  We conclude this section 

with some information on running time and how feature count and selection will affect 

the system. 

4.5.1 Comparison Metrics 
Contingency tables are often used in the quantification of the results categoriza-

tion systems.  Considering the system to be a 2-category classifier (cuts and non-cuts) we 

can do the evaluation of the effectiveness using a contingency table and its associated sta-

tistics.  Commonly, precision and recall are used, however we will also address accuracy, 

error and the so-called F1 score as means of evaluating the effectiveness of the cut detec-

tion. 

 
We continue by defining each statistic available for use in our evaluation.  All of 

the statistics are calculated based on a so-called contingency table, where our classifier 

(cut detector) detects cuts (positives) or non-cuts (negatives).  The cut detector can prop-

erly detect a cut (true positive), improperly detect a cut (false positive), properly detect a 

non-cut (true negative), or improperly detect a non-cut (false negative).  The elements in 

the set of cuts and non-cuts will never intersect because a frame cannot be double classi-

fied as both a cut and a non-cut.  Our contingency tables have this form:  

 True Cut True Non-Cut 
Classified Cut True Positive (T+) False Positive (F+) 
Classified Non-Cut False Negative (F-) True Negative (T-) 

                                                 
6 By difficult we mean frames with quick motion, both camera and object, many cuts in short succession. 
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T+, F+, F-, and T- are the counts that reflect how the classified categories matched the cor-

rect categories.  From the contingency table we can compute the following statistics: 

 
Accuracy – This measures the percentage of all decisions that were correct decisions.  

Range: 0 to 1, with 1 being the best score.  It is defined as: 

+ -

+ - + -

T + T

T + T + F + F
Accuracy =      (4.10) 

Error – This measures the percentage of all decisions that were incorrect decisions.  

Range: 0 to 1, with 1 being the best score.  It is defined as: 

+ -

+ - + -

F + F

T + T + F + F
Error =  or: 1-Accuracy     (4.11) 

Precision – This measures the percentage of the classified categories that were correct.  

Range: 0 to 1, with 1 being the best score.  It is defined as: 

+

+ +

T

T + F
Precision =          (4.12) 

Recall – This measures the percentage of the correct categories that were classified.  

Range: 0 to 1, with 1 being the best score.  It is defined as: 

+

+ -

T

T + F
Recall =                   (4.13) 

F1-score – This measures a combination of precision and recall. Range: 0 to 1, with 1 

being the best score.  It is defined as: 

2 Precision Recall
1

Precision + Recall
F

× ×=               (4.14) 

In terms of T+, F+, and F-: 

−++

+

++×
×=

FFT

T
F

    2

2
1                (4.15)  

The F1 score is the only statistic that is worth trying to maximize on its own.  Per-

fect precision can be achieved by never detecting a cut and perfect Recall by always de-

tecting a cut.  A truly accurate system will assign the correct categories and only the cor-

rect categories, maximizing precision and recall at the same time, and therefore maximiz-

ing the F1 score. 
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Attempting to maximize the accuracy score, thus minimizing error, is an inappropriate 

measure in the case because the size of the non-cut set is so large in comparison to the cut 

set.  Simply declaring all frames as non-cuts will result in a high accuracy.  Any metric 

for cut detection that uses the True negative number in its evaluation is not a good indica-

tor of quality because of the distribution of cuts to non-cuts in video data.  This is casu-

ally confirmed if we consider the redundancy that video data contains. 

 
In [28], the authors suggest an alternate computation for accuracy as: 

Accuracy = 1 F F

T F T F

− +

+ − + +− −
+ +

            (4.17) 

With some algebraic manipulation, we can see their definition of accuracy is simply 

Accuracy = Precision + Recall – 1           (4.18) 

As Matter and Robinson’s metric is a function of precision and recall, we will omit using 

it and rely on the more standard metrics of precision, recall and the F1 score. 

4.5.2 Experimental Results 
To start, we perform a set of experiments to compare the proposed method against 

a histogram-based method, specifically ‘cutdet’ from the MOCA project [27].   We used 

the precompiled version of cutdet and treated the internals as a black box.  We ran a se-

quence through cutdet with various threshold settings to determine its characteristics.  We 

examined the precision, recall, and F1 score.  The sequence is from a television show and 

the quality of the capture is quite high.  The action and motion is not extreme, and the 

colours are vibrant and distinct.  It was assumed, based on the ideas behind histogram 

comparisons, that this sample would highlight the capabilities of the cutdet system.  In 

Figure 11 we see that the F1 score has platitude at threshold 0.45 which indicates the best 

threshold for cutdet on this particular sequence.  The exact values of precision, recall and 

F1 score are: 1, 0.941, and 0.969 respectively.  In the case of perfect detection, precision, 

recall and the F1 score will all be 1.  As the F1 score hit a platitude at 0.969, the cutdet 

method would be unable to achieve a perfect score in this example.  
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FIGURE 4.11: GRAPH OF PRECISION, RECALL AND F1 SCORES FOR A SEQUENCE RUN THROUGH THE CUTDET 

SYSTEM. 

When the proposed method was run against the same sequence, it received a perfect de-

tection rate.  The clear selection of threshold can be seen in Figure 12 as the feature track-

ing was clearly working very well and the separation between the cut set the non-cut set 

is obvious due the large space of zero density between the cut and non-cut sets. 
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FIGURE 4.12: DENSITY ESTIMATION GRAPH. 

 
In the experiment that follows, a selection of video clips that represent a variety of 

different video genres are used for cut detection.  In Table 2, we present the data set with 

explanation why it is being used in the experiments.  We compare the results of the pro-

posed method against a pixel-based method with localization information and a histo-

gram based method (specifically cutdet, from the MOCA project [27]).  The localization 

information in the pixel based method relies on the statistical improbability that the posi-

tions of pixel values will remain the same over a cut frame pair.  In this experiment, we 

are attempting to maximize the F1 score.  For the proposed method, we ran each sample 
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through the system once and computed the F1 candidate set threshold.  For cutdet, and 

the pixel based method we ran 13 different thresholds and computed the precision, recall 

and F1 scores for each of the runs.  The best F1 score was selected for comparison.  This 

effectively required the two methods to be executed 13 times in comparison to the 1 time 

for the proposed method. 

Table 2: Experimental data set 

Source 
Label 

Characteristics of video data Genre 

A Cartoon clip.  Substantial object motion. Cartoon 

B 
Substantial object motion.  This clip is taken from a 
film where a blue filter was used to simulate low 
lighting conditions. 

Action 

C 
Black and white movie.  Substantial action and mo-
tion.  Many close proximity cuts.  This clip is the 
murder scene from the movie psycho. 

Horror 

D High quality �pipolar�ct� of a television show. Drama 
E Low quality �pipolar�ct� of a television show. Sci-Fi 

F 
Commercial, no cuts, quick motion, many produc-
tion effects.  Meant to show that dissolves are not 
mistakenly classified as cuts. 

Commercial 

G Commercial sequence from the MOCA Project Commercial 
Q Video abstract from the MOCA Project Comedy/Drama 
I News Sequence from the MOCA Project News/Documentary 

J 
Trailer for a film.  This clip has many computer gen-
erated features, many close proximity cuts.  Trailer 
for the movie Lawnmower Man. 

Trailer/Sci 
Fi/Action 

 

In Table 3, we present the results of running the 3 methods on the dataset.  The 

proposed method outperforms both the histogram-based method and the pixel based 

methods.  In most cases (8 of 10) the proposed method provides the maximal F1 score.  A 

simple statistical analysis of the overall capabilities is given at the end of Table 3.  The 

average, variance and standard deviation for the 10 samples were computed.  On average, 

the proposed method significantly outperforms the other two methods.  The variance and 

the standard deviation show that the results offered by the proposed method are also more 

stable across a variety of different video genre.   
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Table 3: Results on data set. 

 Proposed feature 
tracking method 

Pixel Based 
method with lo-

calization 

Histogram 
MethodCut Det 

(MOCA) 

D
ata 

Source 

P
recision 

R
ecall 

F
1 

P
recision 

R
ecall 

F
1 

P
recision 

R
ecall 

F
1 

A 1 1 1 1 1 1 1 1 1 
B 1 1 1 .825 .825 .825 1 .375 .545 
C .595 .870 .707 .764 .778 .771 .936 .536 .682 
D 1 1 1 1 1 1 1 .941 .969 
E .938 1 .968 .867 .867 .867 .955 .700 .808 
F 1 1 1 0 0 0 1 1 1 
G .810 .944 .872 .708 .994 .809 1 .667 .800 
H .895 .895 .895 .927 1 .962 .971 .895 .932 
I 1 1 1 1 1 1 1 .500 .667 
J .497 .897 .637 .623 .540 .591 .850 .395 .540 

AVG .874 .961 .908 .774 .800 .783 .971 .701 .794 
VAR .034 .003 .018 .090 .101 .093 .002 .060 .036 
STD. 
DEV 

.185 .054 .134 .301 .318 .304 .048 .246 .190 

 
It is not surprising that ‘cutdet’ out performs the proposed system in H, because 

the abstract was created by the MOCA project from which cutdet originates.  However, it 

is surprising that the pixel based method outperformed both.  In examples C and J, the F1 

score was not maximized as the heuristic to determine the F1 candidate set threshold did 

not achieve the best value, rather a good value.  Within the range of the F1 candidate set 

threshold plateau, maximum F1 was achievable. 

4.5.3 Processing Speed 
For all the experiments given in Table 3, we tracked 100 features with a minimum 

inter-feature distance of five pixels.  The processing time for a frame pair is approxi-

mately 70 milliseconds on a 2.2 GHz Intel processor on frames sized 320x240.  This is 

significantly faster than [28] without a loss in granularity.  Unlike the pixel and histogram 

based methods, the running time of the tracker is not a function of the size of the video 

frames and remains constant regardless of the video size.  Tracking over an n-frame in-

terval can cut this time by a factor of n.  By skipping every other frame, we still maintain 

the 70ms processing time per frame pair, but have reduced the number of frames by a 
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factor of 2.  By increasing the number of frames skipped, we decrease the frame accuracy 

to which we can report, and risk losing tracking context in the presences of large object 

and camera motions.  We ran several data samples through the system set to skip one and 

two frames between tracking.  As expected the running times reduced to approximately 

half and a third respectively.  However, we experienced a reduction in the F1 scores in 

half the samples and all the samples for skipping one and two frames respectively.  Play-

ing with the tracking parameters may reduce the error, but is beyond the scope of this 

work. 

4.5.4 The Effect of Feature Selection 
We have chosen the number of features to track to be 100.  However it should be 

noted that the optimal number of features to track has yet to be determined, if at all possi-

ble.  Logically, there must be enough features to track and ensure a certain amount of 

coverage of the frame, however selecting too many features will result in features that are 

less than ideal being selected for tracking and therefore increase the likelihood that those 

features will not be reliably tracked from frame to frame.  We have performed some ru-

dimentary experiments that show as the number of features selected to be tracked de-

creases, and thus the overall quality of those features (for tracking purposes) increases, 

the percentage of lost features in a cut situation increases overall.  Specifically, when the 

number of features tracked decreases, the threshold that is automatically selected ap-

proaches 100 on simple sequences.  However, when the number of features tracked de-

creases, the system becomes more susceptible to object motion, occlusions and very 

quick camera motion because we lack spatial coverage of the frame, therefore reducing 

the accuracy on more difficult sequences. 

 
Another selection option that needs consideration is how wide the non-maxima 

suppression window should be.  This option is effectively selecting the best corner fea-

ture within a given radius.  By selecting a radius that is too large will result in features 

being selected that are less optimal for tracking while a radius that is too small results in 

feature clustering that is prone to loss due to object motion and occlusions.  We have 

found empirically that a radius of five pixels provides good results; a radius of fifteen 

pixels provides worse results. 
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4.5.5 Known Problem Areas 
There are some very clear restrictions on this feature-based method for detecting 

cuts.  Primarily, the quality of the digital video plays a fundamental role because we are 

tracking fine-grained features (corners) rather than coarse-grained features such as edges, 

color blobs, and histograms.  Overly noisy digitization will result in the feature tracking 

having a difficult time properly tracking selected features and will result in a higher over-

all percentage loss of tracked features.  This will result in an overlapping of the cut set 

distribution and the non-cut set distribution and therefore result in an overall lower accu-

racy.  As well, dropped frames in the digitization process may result in unnatural spaces 

between frames.  This will also cause the feature tracker to potentially lose features and 

categorize a cut.  To complicate the matter, it is not clearly defined whether or not these 

situations should be classified as cuts.  Other anomalous glitches in the digitization proc-

ess will result in feature loss as well.  The figure below illustrates digitization artifacts 

that can cause problems for our fine-grained feature tracker because of the high gradient 

changes on the digitization scan lines. 

     

(a)               (b) 

FIGURE 4.14: DIGITIZATION ARTIFACTS 
(a) original frame (b) exemplary amplification of artifact errors.  Notice the lines around 

the explosion. 
 

Each of the examples in Figure 15 represents problems that the proposed cut de-

tection method faces. Because we are tracking features in the luminance space, we are 

subject to feature loss when large changes in brightness occur.  The system is robust to 

gradual dissolves, however high speed dissolves (over a small number of frames) cause 

problems because of the large the number of pixels that change greatly.  This results in 

the tracking windows being very different and the correlation computations result in re-

siduals that are simply too large.  Finally, we have noticed in several cases that problems 
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occur with computer-generated video data.  This is usually due to the fact that the objects 

in computer generated video move at rates that are unusually quick.  Take for example 

the 3 consecutive frames from Figure 15, part e: The motion exceeds what a normal ob-

ject videotaped at 30 frames per seconds (often because animation is at 10 frames per 

second), and failure occurs. 

 

 

a)  Sudden flash, causing 
an abrupt change in lu-
minance, improperly 
declared a cut. 

 

b)  A longer sequence of 
changed illumination, 
returning to original il-
lumination. 

 

c) A quick dissolve.  
Changes in luminance 
declared as cuts, or fade 
to black because the 
large change in pixel 
values caused the track-
ing systems correlation 
checks to fail. 

 

d)  A quick dissolve 
over two frames.  Often 
declared as two consecu-
tive cuts because the 
pixel changes cause the 
tracking systems resid-
ual checks to fail. 

 

e) Computer generated 
graphics that move 
sharply.  There is also 
little texture allowing 
inferior selection of fea-
tures for tracking. 

FIGURE 4.15: EXAMPLES
7
 OF PROBLEM SITUATIONS. 

 
 

                                                 
7 All copyrights © belong to their respective owners.  Lawnmower Man is a Brett Leonard movie, produced 
and by distributed in North America by New Line Cinemas. 
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4.6 Conclusions and Discussion 
 

We have presented a fine-grained feature-based method for video segmentation, 

specifically cut detection.  By utilizing feature tracking and an automatic threshold com-

putation technique, we were able to achieve F1, recall and precision rates that generally 

match or exceed current methods for detecting cuts.  The method provides significant im-

provement in speed over other feature-based methods and significant improvement in 

classification capabilities over other methods.   The application of feature tracking to 

video segmentation is a novel approach to detecting cuts. 

 
Due to problems associated with a window based adaptive thresholding, we have 

introduced the concept of candidate sets that allow the user to prejudice the system to-

wards results that are suitable to individual needs.  This kind of thresholding is a novel 

approach to handling the overlapping region of two distributions, namely the cut set and 

the non-cut set in video segmentation. 

  
 



 90 

Chapter 5 

5 Autocalibration from the Fundamental Matrix 
 

5.1 Introduction 
 

Calibration is the process of computing internal physical quantities of a camera’s 

geometry.  Parameters such as focal length, center of projection, and CCD sensor array 

dimensions are required in order to get 3D information from a series of images.  Auto-

calibration has become popular recently because of the desire to create 3D reconstruc-

tions from a sequence of uncalibrated images without having to rely on a formal calibra-

tion process. The standard calibration model for a pinhole camera has five unknown in-

trinsic parameters defined in a 3x3 calibration matrix (K). These parameters are the focal 

length, aspect ratio, sensor skew and the center of projection x and y (the principal point). 

The accurate estimation of these 5 parameters directly from an image sequence without 

having a formal calibration process is the ultimate goal of autocalibration.   

 

Autocalibration works by computing aforementioned quantities directly from 2D 

image correspondences, and then using invariants of these quantities to find the camera 

calibration. The fundamental matrix, and the full projective reconstruction are two quan-

tities that can be computed from a set of 2D image correspondences, and they are the ba-

sis of most autocalibration algorithms.  As such autocalibration algorithms can be divided 

into three classes that we will refer to as classes A, B and C. In class A algorithms, we 

compute the calibration matrix K from the fundamental matrix (the recovered epipolar 

geometry) [75, 76, 77, 78, 79].  In Class B algorithms (K) is computed from a projective 

reconstruction [17, 80, 81] of the scene.  Class C algorithms autocalibrate from homo-

graphies and planar features within an image sequence [82, 83].  

 

While Class C algorithms can compute intrinsic camera parameters from a set of 

inter-image homographies [84], we loosely consider them autocalibration routines.  Be-

cause a homography is a planar transformation, Class C algorithms require the use of 

planar targets [85, 103] or the automatic detection and correspondence of planar regions 
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within an image sequence.  While it has been shown that planar regions may be robustly 

detected in images [52], it is highly probable that an image sequence will exist where 

there are no planar objects, or the existing planar objects are not suitable for robust detec-

tion.  The aforementioned requirements must be known apriori to the computing the cali-

bration parameters and therefore Class C algorithms are not generalized, rather they rely 

on specific features that may not be present.  Due to these facts, it is questionable whether 

or not a Class C algorithm is truly an autocalibration routine in the sense that it requires a 

target (therefore not autocalibration), or is presupposed by the planer region detec-

tion/correspondence problem (therefore not generalized).  Because of these problems, 

Class C algorithms are not considered in this work.  

 

In this work we compare against class B algorithms with are thought to be nu-

merically superior to other calibration methods. Since the projectively reconstructed 

frames must all be warped to a consistent relative base, Class B algorithms are computa-

tionally difficult in comparison to simply finding the fundamental matrix between image 

pairs. It is often claimed that Class B autocalibration algorithms are superior to Class A 

and Class C algorithms because those algorithms do not enforce the constraint that the 

plane at infinity (an invariant between projective and Euclidean space) be the same over 

the entire image sequence [86]. It is precisely this constraint that makes Class B algo-

rithms computationally difficult.  In this paper, we provide evidence that Class A algo-

rithms combined with the use of evolutionary systems produce as accurate an autocalibra-

tion as their Class B counterparts.   

 

Another concern with Class A algorithms is the existence of extra degenerate mo-

tions, these being pure rotations, pure translations, affine viewing and spherical camera 

motions [86, 87]. However, there exist many practical situations that do not contain these 

degenerate motions. Also, in many cases autocalibration is the only option, and even a 

less accurate autocalibration result is better than no calibration at all. For example, there 

are many photographs and video clips in existence for which there is no knowledge of the 

camera. In order to reconstruct the 3D world from those image sequences, autocalibration 

is the only option.   
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Autocalibration has been criticized in the past [88] because many different cali-

brations will provide a 3D reconstruction with reasonable Euclidean structure. In other 

words, the corresponding reconstruction will usually look good because the different 

right angles look square and the different length-ratios look correct.  However, this de-

pends considerably on the image sequence, and the camera used to acquire that sequence. 

All that we can conclude from this fact is that using the “look” of a reconstruction to 

evaluate the autocalibration results is unreasonable. It is necessary to have the ground 

truth camera calibration to do a proper performance evaluation. In this paper we evaluate 

the proposed autocalibration algorithms on image sequences for which the ground truth 

camera calibration is known a-priori as well as comparing against results of the Class B 

algorithms. 

 

The constraining equations for the two autocalibration methods presented in this 

work are non-linear and based on the fundamental matrix. In what follows, we will show 

that it is possible to reformulate the process of autocalibration into the minimization of a 

cost function of the calibration parameters. While this type of reformulation has been 

achieved for class A algorithms and is clearly evident in Class C algorithms, this is not 

the case for class B algorithms. For example, in [17] the basis of the class B autocalibra-

tion algorithm is the modulus constraint.  The modulus constraint is a non-linear relation-

ship between the camera calibration parameters and the projective camera matrices that 

makes autocalibration possible [80]. The application of the modulus constraint produces a 

set of X polynomial equations for every pair of images, and a system of polynomial equa-

tions for the entire image sequence. Given an M image sequence, we have XM-1 equations 

in the system.  The solution of such a polynomial system is very difficult to compute. 

One possibility is to find all the permutations of exact solutions in closed form and then 

to combine the results [79]. This is rather cumbersome.  Another way to solve such a 

polynomial system is to use a continuation method [89]. Unfortunately, continuation 

methods only work well for a small number of equations, and are not suitable for the 

large polynomial systems generated by long image sequences.  By contrast, the methods 

presented in this work are computationally efficient (with a known upper bound on the 
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number of times the cost function will be executed) even for large image sequences.   

Furthermore, the accuracy of these algorithms improves as the image sequence lengths 

increase. 

 

In this work, we examine two class A autocalibration algorithms based on the 

fundamental matrices; one based on Kruppa’s equation [75, 77, 79], and the second based 

on the idea of finding the calibration matrix which optimally converts a fundamental ma-

trix to an essential matrix [78]. In both cases the problem can be formulated as the mini-

mization of a cost function of the calibration parameters, which will be described in detail 

in Sections 3 and 4. The correct camera calibration is the global minimum of this cost 

function over the space of possible camera parameters. In the past, claims have been 

made that such minimization approaches to autocalibration are sensitive to the initial 

starting point of the gradient descent algorithm [76, 90].  However, when computing only 

one parameter, the starting point is irrelevant because we can accurately solve the associ-

ated 1D optimization problem using standard numerical approaches [91]. When there is 

more than one parameter, such as focal length and aspect ratio, we use a simple stochastic 

approach [92] from the field of evolutionary computing to overcome this problem. We 

show experimentally that for this type of cost function the stochastic method reliably 

finds the global minimum. As well, a number of experiments are performed on image se-

quences with known camera calibration.  We compare the results of our method against 

Class B results on some of the same image sequences, and provide evidence that shows 

that the stochastic approach achieves results that are comparable.   

 

Our first Class A algorithm relies on the fact that the fundamental matrix can also 

be decomposed into terms of the essential matrix and the camera calibration matrices as 

described by (5.1).  Our second algorithm relies on the existence of the projection of the 

absolute conic within an image pair. 
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5.2  Autocalibration via Equal Eigenvalues 

5.2.1 Single Image Pairs  
The essential matrix can be considered as the calibrated version of the fundamen-

tal matrix. Given the camera calibration matrix K and the fundamental matrix F, then the 

essential matrix E is related by the following equation: 

E =KT FK                 (5.1) 

Since F is a 3x3 matrix of rank two with the condition that there are exactly two non-zero 

eigenvalues, E is also of rank two. The essential matrix (E) however, has an added con-

straint that the two non-zero eigenvalues must be equal [93]. It is this constraint that is 

used to create the autocalibration algorithm [78]. The goal is to find the calibration matrix 

K that makes the two eigenvalues of E equal, or as close to equal as possible. Given two 

non-zero eigenvalues of E, σ1 and σ2 where σ1> σ2, in the ideal situation (σ1 - σ2) should 

be zero. Consider the difference (σ1 - σ2) / σ1, which can be rewritten as: 

1-(σ2/σ1)                 (5.2) 

If the eigenvalues of E are equal, (5.2) computes to zero; as they differ, equation (9) ap-

proaches one. Clearly, (5.2) becomes the cost function to be minimized.  

5.2.2 Multiple Image Pairs 
Since we are dealing with a sequence of M images, we can have at most M-1 ad-

jacent image pairs. Since a fundamental matrix is computed between each adjacent image 

pair we therefore have M-1 different fundamental matrices Fi (i=1..M-1).  Based on our 

assumption that the intrinsic parameters of the camera do not vary, our goal is to find K 

by minimizing the cumulative values of (5.2) for all the fundamental matrices (Fi) in the 

sequence. Assume Fi is the fundamental matrix relating image ik and ik+1. To autocali-

brate over the M image sequence, we must find the K that minimizes: 

1

2 1

1

(1 / )
M

i

i

iω σ σ
−

=
−∑         (5.3) 

Where ϖi is a weighting factor, between zero and one, which defines the confidence we 

have in the computed fundamental matrix Fi. The weights ωi are set in proportion to the 
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number of matching 2D feature points that support a given fundamental matrix. The lar-

ger the number of 2D points that support the epipolar geometry characterized by F, the 

more confidence we have in that fundamental matrix, and therefore the smaller the 

weight (remember we are minimizing). Each weight ωi is normalized to a range from 

zero to one.  

 

5.3 Autocalibration via Kruppa’s Equations 
 

In a similar manner, we can convert Kruppa’s equations into a cost function that 

can be used in either single or multiple image pairs.   

5.3.1 Single Image Pairs  
Another way to perform autocalibration from the fundamental matrix is to use 

Kruppa’s equations [86, 93]. To understand these equations we must first define the abso-

lute conic. In Euclidean space the absolute conic lies on the plane at infinity, and has the 

equation: 

x2 + y2 + z2 =0 .               (5.4) 

The absolute conic contains only complex points that satisfy  the equation MTM = 0. If 

we consider a standard camera projection matrix  

P = K[R|-Rt].                        (5.5) 

Where R is the rotational component of the motion of between camera positions and t is 

the translational component of the camera motion, then a 3D point x on the absolute 

conic projects to a 2D point: 

m =P(M)=KRM.                 (5.6) 

Where 

M = RTK-1 m,                        (5.7) 

and since MTM = 0, this implies: 

mTK-1RRT K-1m  =  mTK-TK-1 m  =  0 .      (5.8) 
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This clearly shows that any 2D point m is on the image of the absolute conic if and only 

if it lies on the conic represented by the matrix  

K-TK-1                                               (5.9).  

From projective geometry, 

KKT                                     (5.10) 

is the dual absolute conic, and is labeled as C. If we can find C, then we can directly 

compute the camera parameters K by Cholesky factorization [94]. 

 

Kruppa’s equations relate the fundamental matrix to the terms of the dual absolute 

conic. The first form of these equations required the computation of not just the funda-

mental matrix, but also of the two camera epipoles, which are known to be unstable [93]. 

Recently, a new way of relating the fundamental matrix and the dual absolute conic was 

described which does not require the computation of the camera epipoles [75]. Consider 

the singular value decomposition of a fundamental matrix F to be UDVT. We let the col-

umn vectors of U and V be u1, u2, u3  and v1, v2, v3 respectively.  This gives the new form 

of Kruppa’s equation as: 
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To autocalibrate we must find the C which makes these three ratios equal, or in the case 

of estimation, as close to equal as possible.  We let factor1 be equal to: 
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T −
−             (5.12) 

And we define factor2 and factor3 similarly as the other two possible permutations of the 

system of ratios. Autocalibration can then be achieved by finding the C (KKT) that mini-

mizes the sum of the factors squared.  

5.3.2 Multiple Image Pairs 
Given the same M-1 fundamental matrices defined in the previous section then autocali-

bration with the Kruppa method over M images requires the minimization of: 
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Again, ϖI is a weight factor, between zero and one, which is the confidence in the com-

puted fundamental matrix Fi as described in the previous section. 

 

5.4 The Evolutionary Approach 
 

Since the two autocalibration methods based on the fundamental matrix have an 

associated cost function we can use a gradient descent algorithm to find the solution.  The 

caveat here is that there are often many local minima in the cost function, so the solution 

that is found depends on the starting point. However, we note that the calibration parame-

ters can all be bounded; i.e. the center of projection rarely varies from the image center, 

the aspect ratio is generally one and the skew is almost always 90 degrees. Thus we are 

attempting to find the global minimum for a set of real-valued, bounded optimization pa-

rameters. This problem has been dealt with in the field of evolutionary computing.  

 

There are many possible evolutionary approaches, but they are not all equally ap-

plicable to every problem. We use the ideas around Genetic Algorithms (GAs) [95]. The 

idea behind GAs is to simulate evolution by defining each solution as a chromosome, and 

then defining the appropriate crossover and mutation operators. While GAs are a very 

powerful framework, they must be adapted and tuned specifically for each application. In 

our application of function minimization the process of simulated annealing has also been 

successful [91]. The idea behind simulated annealing is to perform function optimization 

by simulating the process of annealing crystals; essentially by slowly lowering the tem-

perature. The issue we face is: Which evolutionary approach is best?  We define this 

problem to mean the simplest and most effective algorithm that arrives at the correct an-

swer.   

 

As the camera calibration problem is being recast as a parameter optimization 

problem for a set of real-valued, bounded optimization parameters, we use the dynamic 

hill climbing technique that combines the strengths of genetic algorithms and hill climb-
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ing techniques that was specifically designed for this type of problem.  Dynamic hill 

climbing (DHC) can be considered a hybrid evolutionary algorithm because the algo-

rithm makes use of concepts such fitness, population expansion and mutation, but utilizes 

a hill climbing technique for determining local extrema.  Also, by using a mutating coor-

dinate frame combined with local extrema exploitation DHC has been empirically shown 

to outperform classical genetic algorithms, simulated annealing and typical hill climbers 

when optimizing parameters of the DeJong [96] test suite [92].  DHC optimization results 

on the DeJong test suite were independently confirmed in [97] and subsequently used in 

range image registration.  The compared methods included genetic algorithms, simulated 

annealing and the DHC algorithm. Experimental results showed that the DHC algorithm 

was the most successful evolutionary approach for this type of bounded, real-valued 

function optimization.  For the above reasons, we chose DHC and we describe the dy-

namic hill-climbing algorithm in detail next. 

5.4.1 Dynamic Hill Climbing 
The workhorse behind the DHC algorithm is simple, yet very efficient hill climb-

ing algorithm and the use of population expansion via mutation to cover the search space. 

The process begins by selecting an individual randomly from the population (search 

space) and applying mutations to the single individual, expanding the population.  The 

parent and all the offspring (mutations) are considered for the next generation, with the 

fittest individual from the family surviving.  At each generation the age of individual is 

increased, however when the offspring are determined to be the fittest and selected for 

survival, they inherit the age of the parent i.e. the generational age.  The mutations are 

performed by scalar adjustment to each of the coordinates in each direction.  This means 

we perform 2N mutations in an N dimensional search space, keeping within any bounds 

that may limit the search space.   

 

As the age of the population increases, the magnitude of the mutations propor-

tionately decreases allowing convergence toward the local extrema, and a more thorough 

exploration near the local extrema as the population ages.   While a variety of heuristics 

may be used to determine the magnitude of the scalar adjustment, we use a logarithmic 

halving of the bounded dimensions of the search space.  This results in an upper bound of 
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O(log D) generations where D is the largest range within the search parameters.  Fur-

thermore, in an N dimensional search space there are N generations considered as the 

mutations adjust only a single parameter at a time.  Finally, because each generation will 

perform the fitness evaluation 2N times, we have an upper bound of 2N2log(D) function 

evaluations and an upper bound of O(N2logD) fitness function evaluations.  Within the 

scope of camera calibration, we have an upper bound of the search space being 5 dimen-

sional and a reasonable practical range for the parameter space, limiting D allowing us to 

determine a concrete upper bound on the time complexity for camera calibration. 

 
5.4.2 Mutating coordinate frames  

A static coordinate frame results in premature cessation at a local extrema (the 

foothill problem) because the hill climber cannot move in the direction necessary to reach 

the true extrema.  For example, if a hill climber can move in only 4 directions, say the 

major compass directions, when a true extrema can be reached by moving in a northwest 

direction the classical hill climber will fail.  DHC addresses this issue by allowing a mu-

tating (dynamic) coordinate system.  DHC keeps a historical record of previous move-

ments and constructs a new basis via a Gram Schmidt orthogonalization of the last two 

positions.  By doing this, DHC is able to adjust for directional changes within the struc-

ture of the search space, which avoids the foothill problem in certain cases. 

 

5.4.3 Exploiting local optima  
Dynamic hill climbing also tries to avoid early convergence to a local extrema by 

ensuring that diversity of the population is considered directly, and independently of the 

fitness function.  Because the local hill climber has a mutation size that decreases with 

age, the local area is searched more thoroughly to help ensure that there is no other local 

extrema with better fitness.  Once a local extrema is found, the individual is moved to a 

separate pool of static individuals that have found local extrema.  When the search sys-

tem stalls, DHC will examine the pool of static individuals who have achieved a local 

extrema and select a new population that is as different as possible from the static pool.   
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To facilitate this, DHC examines the Hamming distance (The number of differing 

bits) between the two individuals and tries to maximize the distance.  We note here that it 

is possible that this strategy is not without its own problems, the following example illus-

trates this: Suppose a local extrema exists at 127, bit set 11111110, the maximum ham-

ming distance results in bit set 00000001, or 128, which is not sufficiently far from 127.  

However, it should be noted that that a sufficiently large population reduces the probabil-

ity of getting stuck when using this strategy of exploiting the local optima. 

 

5.4.4 Coverage of Search Space 
The basic idea in the DHC approach is to repeatedly perform gradient descent in 

the search space but to start the gradient descent in an area of the search space that is as 

far removed as possible from previous solutions.  We call this principle of operation Sta-

tistically Distributed Randomized Starting (SDRS).  

 

 

FIGURE 5.1: SCATTER PLOT OF 2D SEARCH SPACE GENERATED BY SDRS. 
250 points with a trend line indicating an even disbursement of start points. 

 

The effect is to cover the search space very thoroughly, and at the same time 

avoiding areas that have been previously explored and therefore avoiding the local mini-

mum.  This covers the search space very effectively, as is shown in Figure 2. In this Fig-

ure we show the start points of the gradient descent in a 2D SRDS process. It is clear 

from the distribution that the search space is uniformly explored. 
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SRDS covers the search space as completely as possible with a user specified number of 

starting points. Essentially SRDS is a simplified variation of dynamic hill climbing’s ex-

ploitation of local optima. The only operating parameter is the number of repeated gradi-

ent descents to try, and this is manually set to be approximately one hundred. It is impor-

tant to note that the range of the calibration parameters, focal length and aspect ration is 

bounded. In practice, the focal length is in the range of 1 to 10,000 pixels, and the aspect 

ratio is in the range of .5 to 2.0.  Under these conditions and operating parameters the 

DHC algorithm has had good practical success.  

 
The pseudo-code for SDRS is below: 
 

SDRS() 
 
For each parameter in the search space 

Find the largest region that has     not had a start point 
    Compute a random point X in this  

region 
    Set point X to the start point  

for this parameter 
Endfor 
 
Return N-dimensional startPoint for the next gradient descent (DHC) 

 

5.4.5 Autocalibration Algorithm 
The algorithm ESTIMATE_K returns the calibration parameters in the matrix K 

that produced the minimum value from the cost function. It is based on the SRDS and the 

DHC algorithms described previously.  As we have shown in the previous sections, the 

actual evaluation of the cost function for the two different autocalibration methods is very 

efficient and the upper bound on the number of calls to these functions is also known to 

be O(N2log(D)). The equal eigenvalues approach requires only the computation of the 

eigenvalues of a three by three matrix, and for the Kruppa approach the computation of 

three ratios based on the SVD of a 3x3 matrix.  Furthermore, precomputing the SVD and 

storing them in a lookup table for use by the algorithm can further optimize the process 

and reduce the time required to execute the cost function.  A single gradient descent of 
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the cost function uses the Powell optimization algorithm, which is in turn based on re-

peated applications of the one dimensional Brent method [91].   

 

As we know the upper bound on the number of times the cost functions are called, 

we have an upper bound on the entire process of O(N2logD), which is the upper bound 

for the DHC algorithm.  The remainder of the autocalibration algorithm is simply the ad-

dition of constants affecting the computation time which are equal to the time required to 

execute 1 instance of the cost function.  To be precise: Given an image sequence of  M 

images, and computing N intrinsic parameters, bounded by a maximum range of D, the 

running time on the autocalibration will be no more than O(MN2log(D)) computations of 

the cost function.  As we can see this is linear with respect to the number of images, as 

opposed to the exponential number of equations generated using the modulus constraint 

based methods. 

 
The basic pseudo-code for estimating K: 

 
ESTIMATE_K() 
For n times 
    StartPoint = SRDS() 
    Perform the DHC gradient descent  

from StartPoint. 
    IF Cost function (Equal Eig.  

OR Kruppa) is minimal 
        Save this K. 
    ELSE 
        Discard this K 
    Endfor 
 
Return K  

 

5.5 Degeneracy 
 

The method presented makes use of all the computed inter frame geometries; 

however no consideration is given for incorrectly computed fundamental matrixes.  An 

incorrect fundamental matrix can occur and is known as a degeneracy case.  It is com-

monly known that there are degenerate situations where many epipolar geometries will 

support the same feature match set [98].   
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FIGURE 5.2: DEGENERATE EPIPOLAR GEOMERTY 
Two epipolar geometries that support a feature match set, yet only one can be correct.  

(From [98]) 
As shown in Figure 5.2, we have 27 corresponding points and two computed epipolar ge-

ometries that support them.  Clearly there can be only one truly correct geometry; how-

ever, it simply takes a single outlier to potentially produce an incorrect geometry.  Clearly 

an incorrect fundamental matrix will result in an incorrect self-calibration when using 

only the one incorrect fundamental matrix. 

 

The potential for computation of a single degenerate fundamental matrix from a 

sequence of images when using a RANSAC method is unavoidable and thus all com-

puted geometries from an image sequence are to be considered.  By simply using the fun-

damental matrix with the highest support, we will achieve incorrect results when that 

computed geometry is degenerate.  By using all of the computed fundamental matrices, 

we have some knowledge on the effect each fundamental matrix has on the cost function.  

If we assume for demonstrations sake, that we have equal confidence in each and every 

fundamental matrix that has been computed for an M+1 image sequence.  A single de-

generate geometry will weigh in at 1/M and therefore only affect the computation propor-

tionally to the number of images in the sequence.   

5.5.1 Handling Degeneracy 
While methods exist that attempt to detect degenerate configurations [98], we 

have chosen to use the number of supporting matches for each fundamental matrix as a 

measure of confidence.  This metric, while not theoretically as reliable as a method that 

detects degeneracy, is suitable because the automated methods for computing the funda-

mental matrix [99] provide a relatively large number of matches with the associated fun-

damental matrix.  Our experiments are performed under the assumption that the number 
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of feature matches used to compute the fundamental matrix reduces the likelihood of 

computing a degenerate geometry.  We rely on the effectiveness of the software pre-

sented in [100] to produce many feature matches and compute fundamental matrices with 

sufficient support that the probability of outlier caused degeneracy is greatly reduced, yet 

any reliable computation of the fundamental matrix will have the same result.  Therefore, 

we use magnitude of the support feature set that was used to compute the geometry as a 

measure of our confidence. 

 

Degeneracy can also be effectively handled in other ways and we outline a couple 

of methods next.   The first obvious solution is to use the PLUNDER algorithm (Pick 

Least UNDEgenerate Randomly) outlined by Torr in [98], however it is more compli-

cated to implement than other solutions.  The benefit of handling degeneracy this way is 

that we can be sure that all fundamental matrices we are using are not degenerate.  An-

other alternative is to prune fundamental matrices that produce calibrations parameters 

that are not consistent with the entire set.  Effectively we perform a single image pair 

calibration for each fundamental matrices in the sequence and perform a statistical analy-

sis of the individual results.  We can now prune any fundamental matrix whose individual 

calibration results are outside an acceptable level of error.  Using covariance analysis or 

Frobenius norm will provide reasonable results.  

 
5.6 Experiments 
 

There is no practical reason to autocalibrate all five intrinsic parameters [88], 

however, by assuming the principle point and the skew are fixed, results are encouraging.  

This problem is not unique to our method, and occurs in Class B algorithms as well [81].  

In [81], the principle point could not be computed accurately using the Class B algorithm 

and for this reason it was also assumed to be fixed. 

 

For many autocalibration algorithms the evaluation of performance consists of a 

simple visual inspection of the resulting 3D reconstruction. This is not an adequate metric 

because it has been shown that the quality of the final reconstruction is visually accept-

able for a wide variety of calibration parameters [88]. In order to test the capabilities of 
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the presented evolutionary method, we used test data for which the ground truth was 

known; i.e. the intrinsic parameters are already known apriori.  Some of these data sets 

are the same ones used in the literature, in particular those for the class B algorithms. The 

conclusions are that the results of the Class A algorithms using the evolutionary approach 

is comparable to that of the Class B algorithms yet the simplicity and efficiency of the 

evolutionary method is significant. The experimental results also give an indication of 

what the autocalibration errors are for a typical image sequence. We performed these ex-

periments a number of times, to make sure that the results of the SRDS algorithm are re-

peatable and unbiased.   

 

The first set of experiments described in Table 1 show how the autocalibration 

process works when we are calibrating only the focal length. Table 1 shows the results 

for a number of different test sequences that have been processed in previous autocalibra-

tion papers [17, 77, 79, 101]. In particular, the Castle sequence [79] is used as a test case 

for comparison with the class B approach that requires a projective reconstruction.  We 

see that our autocalibration results are comparable to those of other class B self-

calibration algorithms. 

 

In Table 1 we list our autocalibration results compared to the previously published 

results in the literature, which we assume to be correct. In the last example from [101] 

shown in Table 1, the error with the Kruppa autocalibration is quite large. A possible ex-

planation is that the motion is close to being a pure translation, which is known to be a 

degenerate motion for the Kruppa algorithm [86, 87]. It is also a good indicator of how 

the Equal Eigenvalues method performs well in spite of these degenerate motions.   In 

these experiments we take the image sequences as input and compute the matching fea-

ture points automatically, using the software described in [100]. In other words we are 

not given matching 2D feature points, but simply a set of images. Therefore the closeness 

of our results to those published in the literature is significant because we are actually 

using different software to compute the fundamental matrices. We also are unable to ver-

ify independently that the published ground truth focal lengths are correct, it is possible 

that the stated focal lengths have some level of error in them as well.   
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In the next set of experiments outlined in Table 2, the 2D feature points were se-

lected by hand as part of a photogrammetric model building process. From these manu-

ally selected correspondences we compute the fundamental matrix between all image 

pairs in the sequence. In this experiment we know the intrinsic parameters of the camera 

a-priori from the project parameters of the photogrammetric package [41]. We therefore 

assume that all the intrinsic parameters are set apriori, except for the focal length which 

we autocalibrate. Table 2 shows the autocalibrated focal length in millimeters versus the 

true focal length, along with the percentage error for both autocalibration methods.   

Since we have the associated 3D reconstructions for the corresponding 2D features, we 

can use more sophisticated performance measures, namely reprojection error. 

 

For a given autocalibrated focal length we compute the reprojection error for all 

the corresponding feature points. The reprojection errors are the pixel differences be-

tween the projection of the 3D feature points into 2D and the original corresponding 2D 

features. We compute the median of the reprojection errors using the correct focal length, 

the focal length found by the eigenvalue method, and the focal length found by Kruppa’s 

method. The median of the reprojection errors is a good indicator of the quality of the 

�pipolar�cttion for a given focal length. We see that the median reprojection error in-

creases for the autocalibrated focal lengths, but only slightly. This implies that the error 

in the autocalibrated focal lengths would not have a significant impact in terms of recon-

struction quality; this independently verifies the work of Bougnoux [88]. 

 
In the next experiment we attempt to autocalibrate both aspect ratio and focal 

length using the two class A methods. We are again using as input a series of photo-

grammetric projects for which we know the 2D feature correspondences as well as the 

ground truth. 

 

While the results as shown in Tables 3 and 4 are reasonable, the errors when auto-

calibrating two camera parameters are sometimes higher than autocalibrating just one pa-

rameter. The error again compounds when we attempt to auto calibrate all parameters. In 
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particular, the percentage error in the focal length increases slightly.  One possible expla-

nation is that the gradient descent algorithm is stuck in a local minimum.  To verify this, 

the results shown in these two tables were computed by averaging over one hundred 

separate runs of the optimization algorithm. The variance as shown in Tables 3 and 4 for 

the autocalibrated aspect ratio and focal length is very small over these runs.  This indi-

cates that it is highly likely that the stochastic optimization algorithm is finding the cor-

rect global minimum. 

 
Table 1: Results of autocalibration for focal length vs other algorithms. Focal length 

is in pixels. Correspondences are computed automatically. 

N
am

e 

# of 
Im

ages 

Stated Focal 

C
om

puted fo-
cal  length 
(E

q.E
igen) 

%
 error vs. 
Stated 

C
om

puted fo-
cal length 
(K

ruppa) 

%
 error vs. 
Stated 

Castle 27 1100 1156.50 5 1197.7 8 
Valbone 9 682 605.5 11 685.71 0.5 

Nekt 6 700 798.58 14 872.44 24.6 
etluueshiba 5 837 857.25 2.4 1233.85 47.4 

 
 

Table 2: Results of autocalibration for focal length for photogrammetric sequences. 
Focal length is in mm., and reprojection error is in pixels. Correspondences selected by 

hand. 
N
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%
 error 
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cal length 

%
 error 

C
orrect re-

proj. 

E
igen re-
proj. 

K
ruppa 

R
eproj. 

Curve 4 6.97 4.71 32.4 7.49 1.13 7 2.23 1.44 
Cylinder 3 28 26.35 5.9 31.70 13.21 0.96 2.07 2.60 

Plant 6 24.20 22.55 6.8 24.39 0.78 0.80 1.49 1.04 
Statue 7 5.11 3.67 28.2 5.29 3.5 3.93 9.61 1.95 

 
 

Table 3: Results of autocalibration for focal length and aspect ratio for photogram- 
metric sequences. The equal eigenvalue method is used and focal length is in mm. 
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V
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%
 error 

Curve 1.0 1.08 0.003 8 6.97 3.46 0.062 50 
Cylinder 1.0 0.98 0.002 2 28 26.72 0.52 4.5 

Plant 1.0 0.98 0.012 2 24.2 22.96 0.39 5.1 
Dam 0.81 0.972 0.0001 20 30.75 38.52 0.089 9.8 
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Table 4: Results of autocalibration for focal length and aspect ratio for 

photogrammetric sequences. The Kruppa autocalibration method is used. 

N
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e 
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 error 
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m
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K
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m

) 

V
ariance 

%
 error 

Curve 1.0 0.997 0.011 1.3 6.97 7.56 0.21 8.4 
Cylinder 1.0 1.03 0.0001 3 28 32.91 0.0001 17.5 

Plant 1.0 0.92 0.003 8 24.2 26.33 0.12 8.8 
Dam 0.81 0.997 0.0001 19.75 30.75 38.43 0.0001 24.9 

 
Table 5: Results for autocalibration of focal length for three  

sequences taken from the same uncalibrated camera. 

Name 
# of Im-

ages 
Eigen 
focal 

Kruppa 
Focal 

Chapel 12 27.82 31.31 
Climber 13 27.91 33.88 

Workshop 8 26.19 38.09 
 

The next set of experiments, shown in Tables 5,6 and 7, have as input  image se-

quences that were taken with the same camera with invariant intrinsic parameters. There 

are image sequences that we have taken by hand, for which ground truth is known, or 

from various other modeling projects [102]. In these experiments we again compute the 

correspondences automatically using the software described in [100].  Test cases Chapel 

and Workshop are almost pure translation while the Climber sequence has a motion with 

significant translation and rotation. We autocalibrate only the focal lengths, which should 

be equal for all three sequences. The variance of the computed focal length for the eigen-

value method is 0.96 mm and for Kruppa approach is 3.42mm. It is not surprising that the 

autocalibration results differ, since certain motions are degenerate with regards to the 

Kruppa based autocalibration [86]. What these results clearly show is that for a given 

camera, and substantially different sequences, the evolutionary algorithms (especially the 

equal eigenvalues method) are convergent.  Furthermore, longer sequences converge with 

a more accurate estimation of the intrinsic camera parameters. 

 

The final set of experiments, shown in Tables 6 and 7, has as input image se-

quences that are used as test data for the ISPRS Working Group V/2 on Scene Modelling 

and Virtual Reality [102]. These images are used to test different model building software 
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packages, and the ground truth is known. In Tables 6 and 7, we again compute the corre-

spondences automatically using the software described in [100], and autocalibrate only 

the focal length. We see, in Table 6 that the results are reasonable given that the true fo-

cal length is 1737 pixels in all cases, but that sometimes Kruppa’s approach does not 

converge. The likely causes are sensitivity to motion degeneracy and the difficulty of 

convergence with a small number of images associated with the Kruppa method. 

 

Table 6: Results for autocalibration of focal length for three sequences used by the 
ISPRS Working Group on Scene Modelling and Virtual Reality. 
 

Name 
# of Im-

ages 
Eigen 
focal 

Kruppa 
Focal 

Indoor 5 1663 1815 
Waterways 3 1759 fail 
Building 2 1609 fail 

 
Table 7: Results for autocalibration of focal length and comparison to ground truth. 

Project 
Focal 

length  (in 
pixels) 

Computed 
Focal 
length 

(in pixels) 

# of Images 
%  

Error 

Amsterdam 1736.7 1866.7 4 7.48 
Benches 1736.7 612 7 64.76 
Chapel-l 2105 1640 2 22.0 
Chapel-S 2105 1473 7 30.0 

Corfu 2923.4 2995 7 0.02 
Fitting 1684 1681 2 0.001 

Florence 1897.3 1787 6 0.058 
Light 2348.3 3647 4 55 
Nikh 2348.3 2348 2 0.001 

Oldbuild 1649.5 1588 7 0.037 
Reg-1 2095 1609 7 23.1 
Reg-2 611 747 27 22.2 
Sphinx 1754 1764 16 0.0057 

 

Table 7 presents a variety of experiments also from the ISPRS workgroup.  In certain ex-

amples that error is very large, however the average error is only 17.25 percent with a 

standard deviation of 21.99.  By removing the two grossly incorrect samples from the ta-

ble the percent error and standard deviation drop in almost in half to 9.54 and 12.11 re-

spectively. 



 110 

 

In summary, Table 1 shows that the evolutionary approach is as good as the pub-

lished results for Class B algorithms, particularly the castle sequence.  However, the class 

B algorithms are not easily scalable from a computational point of view, and thus cannot 

handle long image sequences. The class A, fundamental matrix based, approaches are 

very efficient computationally because single evaluations of the cost functions do not 

take long and accuracy increases as the sequence length increases.  The time taken for 

autocalibration is in the order of seconds for all the image sequences on a 400 MHz Pen-

tium II processor. It seems that the equal eigenvalues method is superior to the Kruppa’s 

method for degenerate motions and smaller sets of images. There are cases, however, 

where the Kruppa’s method clearly outperforms the equal eigenvalues method. Further 

investigation is necessary to determine whether or not a heuristic can be developed to 

choose one algorithm over the other by pre-determining the camera motion using arbi-

trary intrinsic camera parameters in a first step and using this knowledge to select an ap-

propriate Class A, B, or C algorithm that using an evolutionary approach. 

 

5.7 Conclusions and Discussion 
 

This work presents an algorithm for self-calibration that has four major advantages:  

1) Simplicity (and ease of implementation) 
2) Accuracy and Reliability 
3) Scalability (handles very long sequences) 
4) Speed of Execution (known upper bound) 

 
In theory, the autocalibration methods that use fundamental matrices should not 

perform as well as those that use the camera projection matrices of a projective recon-

struction [86, 87, 93]. However, we show that for non-degenerate motions both methods 

perform equally well when we are calibrating only the focal length, or the focal length 

and aspect ratio. The equal eigenvalues approach, combined with evolutionary methods is 

very simple and performs as well as any Class B method we compared it against. While it 

is theoretically equivalent to the Kruppa approach, it performs better numerically in situa-

tions where we are closer to degenerate motions, such as pure translation and seems to 

converge better for smaller sets of images. Experimentally we have shown that evolu-
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tionary based autocalibration using class A algorithms produces similar results to their 

class B counterparts.   

 

We have shown that in practice the Statistically Distributed Random Starting 

(SDRS) helps to find the global minimum of the cost function reliably.  We have also 

shown that the error in the autocalibration of the focal length is usually in the range of to 

15%. This is adequate for applications in which the final results are used for visualization 

purposes, such as model building but clearly not for applications that currently require 

exact depth information.  

 

When dealing with long image sequences, class B algorithms will produce a set of 

polynomial equations for each image pair. This results in a large system of equations for 

the entire image sequence.   Continuation methods can solve small systems of equations 

but are ill posed when the number of equations becomes large.  The methods proposed in 

this work have advantages for long image sequences. The methods we have described are 

computationally efficient with a known upper bound that is better than any published 

class B method on long image sequences and produces comparable results. It is also the 

case that processing long image sequences is advantageous in that any error for an indi-

vidual fundamental matrix (because of a degenerate motion for example) will have less of 

an impact on the final result.  For example, an M image sequence has M-1 adjacent pairs 

and therefore M-1 representative fundamental matrices.  As M becomes larger (i.e. then 

number images in the sequence increases) the individual error associated with a single 

image pairs has less effect. The accuracy of the estimation only increases with the size of 

the image sequence.  As the sequence length tends to infinity, the error can be more 

closely associated to the error within the individual computation of the fundamental ma-

trix.  Another advantage of long image sequences is that the global optimum is better de-

fined than when using short image sequences. In other words with long sequences the 

global optimum tends to be sharper and better defined making the results more stable. 

 

Due to a lack of standardized data sets that can be used to effectively benchmark 

different autocalibration routines; the “look” of a resulting reconstruction is often used as 
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a benchmark, which is not appropriate for performance evaluation.  For proper perform-

ance analysis of autocalibration algorithms it would be very useful to have a standardized 

set of images for which the ground truth is known. A start has been made in [26], but 

more needs to be done. At the very least, results using such test data should include the 

accuracy of the parameter values, consistency of results (similar to experiment 5), and an 

accuracy to image sequence length ratio benchmark. 

  

Evolutionary based autocalibration with varying intrinsic parameters still remains 

an open problem; however it is conceivable to adapt the cost functions to allow for vary-

ing focal lengths between image pairs. 
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Chapter 6 
 

6 Synchronizing Multiple Video Sequences 
 

6.1 Introduction 
 

There are many common applications of multiple video cameras today that range 

from video surveillance of large areas such as shopping centers, parking lots and cam-

puses, to videography and filmmaking that utilize multiple video cameras when shooting 

individual scenes of a screenplay.  However, in some situations such a photogrammetry 

and camera metrology, the use of multiple cameras is required when there are moving 

objects in the scene [1].  As different human operators may control these cameras, and 

only in certain situations is it feasible to use a professional camera synch slate, there is 

the fundamental problem of sequence synchronization that needs initial resolution.   

 
Figure 6.1: Camera Sync Slate, a.k.a. clapper board8 

 

Intuitively, the synchronization problem refers to the following:  Given k different 

video sequences that overlap in time, identify one frame from each of the different se-

quences that refer to the same point in time. Such a set of frames is called a synchronized 

cross camera subset. More formally, for each video sequence i, let the frame-time func-

tion Ti(f) map an integral frame number f of sequence i to a universal time, i.e.  

RNfTi →:)(  (6.1) 

The synchronization problem can now be expressed as finding a set of frames numbers, 

f1, f2, … , fk, one from each video sequence, such that the synchronization equality T1(f1) 

                                                 
8 Picture from Filmtools, Burbank CA.  http://www.filmtools.com/ Used with permission. 
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= T2(f2)= … = Tk(fk) holds.  Such a set of frames that exactly solves the synchronization 

equality is said to be in perfect integral synchronization.  

 
However, due to possible minute variations in camera start times and variations in 

frame rates, perfect integral synchronization does not always exist.  In such a case we 

search for a set of frames whose pair-wise difference with respect to the synchronization 

equality is minimized.  We provide exact bounds on the value of this pair-wise difference 

in the next section.  If we remove the restriction of integral frame numbers, the frame-

time function maps frame values (integral and non-integral) to a point in time, i.e:   

RRfTi →:)(  (6.2) 

In this case, the frame-function maps a real frame number (sub-frame accurate) to an ex-

act moment in time.  In such a case, there will always exist a set of real frame numbers, 

f1, f2, …, fk, one from each video sequence such that synchronization equality T1(f1) = 

F2(f2)= … = Tk(fk) holds.   

 
In summary the synchronization problem is:  

1. …referred to as the full frame synchronization problem when restricted to integral 
frame numbers, and seeks to minimize the pair-wise differences of the synchroni-
zation equality.  i.e. |Ti(fi) – Tj(fj)| is minimal for all sequence pairs i,j.  

2. …referred to as the exact synchronization problem when unrestricted, and seeks 
to exactly solve the synchronization equality.   

 
We fully explore the details of the functions, the equality and their use in both fla-

vours of the synchronization problem in section 6.2. 

6.1.1 Additional Background 
Synchronization is often assumed [104], however, since the processing of large 

volumes of video data is becoming tractable, recent work has investigated the problem of 

synchronizing video sequences.  In [105] the synchronization problem is constrained to 

having a large planar surface present.  The method computes the homography that de-

scribes the transformation of the ground plane and looks for the frame pair with the most 

consensus of the moving objects.  The method suffers under certain 3D motions such as 

similar objects moving in a line with constant velocity.  In [106], the method is also con-

strained by a large ground plane being present, but further requires intrinsic camera pa-
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rameters so that the 3D information about trajectories can be computed and subsequently 

corrected in conjunction with the epipolar geometry.  Furthermore, the method assumes a 

homogenous camera system.  In [107] a fixed set of extrinsic camera parameters, identi-

cal frame rates, and a static scene are required so that motion of the rig is identical on a 

frame to frame basis.  This allows the algorithm to simply find the matching geometric 

changes between frames N and N+1 for camera 1, M and M+1 for camera 2, leaving the 

offset in frames being |M-N|.  In [108], the authors also take advantage of the fact that 

objects moving on a planar surface produce a 3D trajectory contour that is identical from 

camera to camera.  Upon finding the contour similarities, the frame synchronization is 

identified.  Under repeating motion the contours will be identical, and synchronization 

will not be possible.  In [109], the synchronization is based on viewing similar non planar 

3D motion trajectories in time with applications to telelearning so that exact precision in 

synchronization is not fundamentally necessary.  In [109, 110], the imposition of rank 

constraints on corresponding frame features is examined, rather than the epipolar geome-

try.  In order to determine the synchronization a search is performed for frame pairs that 

minimize the rank constraint.  However, in robust computations of the epipolar geometry, 

the rank constraint should be enforced. 

 
Generally speaking these methods are restrictive because of the requirements of 

large planar surfaces being present or the requirement that the camera system be partially, 

if not fully, calibrated.  Furthermore, as synchronization is simply a means to an end, they 

examine the full frame synchronization problem rather than the exact synchronization 

problem.  In this work we examine the theoretical nature of the synchronization multiple 

video sequences and prove the maximum upper bound on the difference between full 

frame and exact synchronizations.  We propose a novel method that handles a much lar-

ger set of input sequences and does not rely on any particular camera configuration or 

constraints on the objects.  The method is performed solely in projective space and does 

not require trajectory correspondence to be solved apriori.  The main constraint of our 

method is that there are at least three cameras that remain stationary throughout the video 

capture process; a very common situation in many multi-video applications.  The motion 

of the moving objects is slightly constrained in that it cannot have a periodic characteris-
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tic such as a pendulum, nor can the motion be directly along the optical axis of one of the 

cameras.  Any camera count over three can be handled by our method on an overlapping 

basis.   

 
In this chapter we examine the following: Section 6.2 formalizes the problem of 

synchronizing video sequences and introduces terminology.  Section 6.3 outlines our 

proposed method that includes 1) Computing camera geometries, 2) Generating trajecto-

ries, 3) Using inflection points to grossly approximate the synchronization, and 4) using 

the computed geometries to compute the exact synchronization.  Section 6.3 ends with an 

adaptation to handle errors in the computed geometries.  In Section 6.4, we perform ex-

periments with our proposed method and present results.  In section 6.5, we examine 

some practical issues and finally we draw some conclusions. 

 

6.2 Problem Formalization 
 

We begin by formalizing the synchronization problem, and follow up by introduc-

ing terminology used in the description of the proposed solution. 

 

6.2.1 The synchronization problem 
We first examine some properties of the relationship between multiple video se-

quences and specify terminology.  We let Fi:R {0,1} be the frame-capture function. 

Fi(x) = 1 if at time x, a frame in video sequence i is being captured and Fi(x) = 0 other-

wise.   Close examination reveals that the frame-capture function is periodic in nature and 

therefore the model for video capture and synchronization we use is wave based, not lin-

ear as one might expect.  The time between peaks in the function Fi is known as the pe-

riod (in wave mechanics terminology) and what is commonly referred to as the frame 

rate (ρ), is actually the frequency.  Recall that frequency and the period are inversely re-

lated. Figures 6.2 and 6.3 plot the function Fi. The peaks (value 1) occur when a frame is 

captured and the valleys occur (value 0) when frames are not being captured.  Notice that 

in the case of multiple video sequences there exist what we call primary synchronization 

points that minimize the distance between the exact synchronization times and the full 

frame synchronization times.  
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Defintion: A primary synchronization point is a point in time that minimizes the differ-

ence between the exact synchronization function (6.2) and the full frame synchronization 

function (6.1) for all sequences.  i.e. The frame numbers that satisfy the synchronization 

equality and minimize the difference given by (6.3).  

 
Formally, the difference between full frame and exact synchronization is given by: 

 )5.0()( +− fiTifiTi  (6.3) 

Any synchronization time that does not minimize the difference (6.3) is termed a secon-

dary synchronization point i.e. any non primary synchronization point. As we see in Fig-

ure 6.2, given 3 video sequences of differing frame rates that are perfectly synchronized 

in time, clearly visible cycles of primary synchronization occur.  For perfectly synchro-

nized video sequences, these primary synchronization points correspond to the full 

frames that were taken at the exact same moment in time.   

 
Figure 2: Perfect integral synchronized video sequences with varying frame rates show-

ing primary synchronization points.  . 
 

Primary synchronization points occur at regular intervals that are a function of the 

frame rates of the individual sequences.  The number of frames between these primary 

sync points for two sequences is a function of the frame rates given by: 

},min{

},max{
),(

2

2

1

1
21

ρρ
ρρρρ =frames  (6.4) 

The time between two primary synchronization points (λ) is determined by the maximum 

frame rate and the least common multiplier of (6.4) for all pairs of sequences. 

{ }  1  s.t. |),(  max NjiijframesLCM ji <<<∀•= ρρρλ  (6.5) 

Primary synchronization points 
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We coin the term primary synchronization period, denoted by the symbol λ, to be the 

time between these events.   

 

In practice however, we do not always have perfectly synchronized video se-

quences as shown in Figure 6.2.  Instead, we have a slight synchronization offset.  We 

can see in Figure 6.3, for sequences that are slightly out of sync, that the offset is minimal 

at the primary synchronization points. Furthermore, this offset has a maximum bound for 

any secondary synchronization point.  We explore this bound next. 

 
Figure 6.3: Imperfectly synchronized video sequences with varying frame rates showing 

primary and secondary synchronization points.   
 

Given two imperfectly synchronized video sequences, the maximum full frame 

sync offset is half the maximum difference between two frame captures of the higher 

frame rate sample.  As we can see in Figure 3 for any pair of sequences, a frame in the 

slower frame rate sample straddles two frames of the higher frame rate sample, and thus 

full frame synchronization will be with the closest frame, in time, of the higher rate sam-

ple.  For two video sequences, the quality of full frame synchronization is bounded by: 
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(6.6) 

For N video sequences, the error is bounded to a maximum error defined by (6) for all 

camera pairs and is characterized by: 

{ } NjiijVjVoffset i <<<∀=∆ 1  s.t.   ),(max  (6.7) 

Primary synchronization points 

Secondary synchronization point 

Full frame 
sync 
offset 
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It turns out that the maximum error will always be between the slowest and the 2nd slow-

est video frame rates, and thus for N cameras, ∆ can be easily determined using (6.6) and 

the two slowest frame rates. 

 
Lemma 2.1 For N video sequences, the maximum full frame offset is bound by half the 2nd 
slowest camera period. 
 

Proof: Let ρ1, ρ2 and ρ3 be the three slowest frame rates from N sequences such that: ρN < 
…< ρ3 < ρ2 < ρ1.  For all sequence pairs, the offsets defined by (6.5) are ρ2/2, ρ3/2, and 
ρ3/2 respectively.  Since ρ2 is greater than ρ3, ρ2/2 is greater than ρ3/2.  As ρ3, ρ2 and ρ1 are 
the three slowest rates, any other frame rate ρi (i>3) from the N sequence is less than ρ3 
resulting in an application of (6.5) resulting in ρi/2 which is less than our largest value 
ρ2/2.  Therefore, the error is bounded by ρ2/2, half of the 2nd slowest frame rate.  □ 
 

 
Figure 4: Video sequences with respect to a universal time line. 

 
Given two frames from a single video sequence i, the amount of time that elapses 

between frame f1 and f2 is (f2-f1)*ρi. We let Ei represent the amount of time that has 

elapsed between the first frame and the nth frame (denoted ni) in sequence i. Specifically, 

the nth frame (ni) in sequence i will be taken at elapsed time Ei and is given by the follow-

ing equation: 

iii nE ρ⋅=  (6.8) 

Because the sequence start time is the beginning of the sequence, we have a simple linear 

relationship between the frame rate and the frame number.  However, since we want to 

synchronize video cameras that were not necessarily started at the same point in time, it is 

time 

Sk 

Sj 

Si 

Primary synchronization point 
Ei 

Ej 

Ek 
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necessary to determine the elapsed time within the context of a universal timeline, and 

not simply within the time line of the single sequence itself.  We can now specify the ex-

act nature of the function described in (6.1) and (6.2) by by: 

iii SEnTi +=)(  (6.9) 

where the start time of the sequence i, is at some offset Si from the universal start time.  

This offset in the universal time line represents a phase shift in wave mechanics termi-

nology.  As we see in Figure 4, three cameras started at different points in time have dif-

ferent phase shifts with respect to the universal time line.  We see that there are phase 

shifts Si, Sj, and Sk that correspond to the differences in time for which the cameras 

started capturing video sequences. 

 

Given multiple video sequences, the synchronization consists of the frame num-

bers that were taken at the same instant in universal time, within the known bounded er-

ror ∆ given in (6.7).  For 3 video sequences (i, j, k), the universal time line obeys the syn-

chronization equality: 

kkjjiii SESESEnTi +=+=+=)(  (6.10) 

The problem of synchronization is now, in fact, two fold.  1) finding the inter-sequence 

times (Ei) where a synchronization point occurs and 2) solving for the universal time 

phase shifts (Si).  In practice, we can impose the constraint that S1 be set to universal time 

0 and base our phase shift values on a time frame dictated by camera start events.  We 

can determine the camera start order by examining the elapsed sequence times in the or-

der of highest to lowest. 

 

The goal of synchronization is now to solve for the synchronization equality 

(6.10).  This can be done on an integral frame basis, knowing that we can only be accu-

rate to within the time frame given by (6.7), or it can be solved exactly by allowing sub 

frame accuracy determination in equation (6.10).  If we choose to only support integral 

frame numbers, equation (6.10) has constraints on the determination of the inter-sequence 

times that account for the maximum error ∆. 
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Additional cameras are a simple extension of the equality from (6.10) and the constraints 

from (6.11).  Primary synchronization points minimize the constraints given by (6.11), 

and in practice should be sought. 

 

The E’s are solved by finding a primary synchronization point where each frame 

was taken at the same moment in time of the same 3D scene, and the S’s by setting S1 to 

be zero, therefore becoming the universal start time, and using algebraic manipulation to 

solve for the remaining. 

 
2.1 Terminology 
We continue by specifying terminology that defines the core concepts behind the pro-

posed solution.  A camera sequence (CS) is the linear sequence of frames from a single 

video camera; like a single reel of film.  A cross camera subset (CCS) is a set of N im-

ages, where each image in the subset comes uniquely from one of the N cameras.  A syn-

chronized CCS is a cross camera subset where each frame of the set is full frame syn-

chronized as outlined in equation (6.1). 

 

A cross camera subset is not necessarily aligned in time, we denote a CCS to be simply a 

selection of N frames, one from each of N camera sequences.  The problem of camera 

synchronization is that of determining the exact the same moment in time  for each of the 

video sequences, i.e. finding a synchronized CCS. 

 

We further sub-classify cross camera sets into dynamic-CCS and static-CCS.  As their 

names elude, a static-CCS is comprised of those images that have the same static content 

(or in practice, a majority of static content).  There are multiple static-CCS candidates 

among a set of video camera sequences.  The term static-CCS is not to say that there is no 

dynamic motion within the frames, but rather we are interested only in the static content 

of each frame so that we can compute the camera geometries.  A dynamic-CCS is the set 

of images in which we are utilizing the dynamic aspects of the cross camera set.  Again 
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this is not to say that all pixels within a set of candidate frames are moving, but rather 

they contain the same moving objects. 

 

 
Figure 6.5: 3 camera sequences in a three video camera setup with varying frame rates, 

with a synchronized cross camera set in gray. 
 

6.3 Recovery of the synchronization  
Because we are utilizing multiple non-moving video cameras, we can use the fun-

damental matrices [9] and the trifocal tensor [10] of the three views to determine the syn-

chronization offsets.  There is only one instant in time where all moving and non-moving 

features will have perfect consensus on the camera geometries, and this is when the mov-

ing objects are captured at the same instant in time.  When dynamic-CCS objects concur 

with the geometry computed with static-CCS, the frames that comprise the dynamic-CSS 

are full frame synchronized.  Moreover, the best geometric support will come from a 

primary synchronization point.  It is also important to note that more than one dynamic-

CSS will support the geometry computed from the static-CSS; those being any dynamic-

CSS that contain synchronized frames.   

 
Clearly a pure brute force method (using all frame permutations) of finding the 

dynamic-CCS that supports our computed camera geometry is not an option since the 

combinations are exponential to the number of cameras.  This would require MN combi-

nations to be examined, where N is the number of cameras and M is the frame count.  

One way to reduce the cost of the brute force method is to align groups of 3 adjacent 

cameras.  With a maximum synchronization offset of just 30 frames (±15), a three camera 

t t 
t 

Cross 
Camera 
Subset 
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system will yield 27,000 combinations to be tested.  This still remains computationally 

intense.  In general, the number of combinations required to perform such a computation 

for an N camera sequence with a maximum offset of max_offset frames, would be: 

3 )2( max_offsetN ⋅−  (6.12) 

We alleviate the need to perform these brute force computations (even smarter 

brute force) by creating a virtual image that embeds the dynamic object trajectories in 

2D.  We utilize these virtual trajectory images to quickly determine the synchronization.  

The core idea we utilize is that the camera geometry and the object trajectories will con-

cur, allowing us to quickly compute the frames with maximal geometric consensus and 

therefore implicitly generate the synchronization offsets.  We use a basic 4 step system: 

1) compute the camera geometry from a static-CCS, 2) generate trajectory images for 

each sequence, 3) Narrow down trajectory images via inflection points, 4) Refine the se-

lection via consensus to single frame accuracy and via pure geometric support to sub 

frame accuracy.  

 

6.3.1 Computing Camera Geometry from the Static-CCS 
Because the cameras are static, and the features considered in a static-CCS are 

also stationary and we can select any frames as candidate frames so long as they mini-

mize the effect of the moving objects.  There are a variety of ways to achieve this, from a 

brute force examination of the frame data using some difference metric, to a user selected 

set of frames.  Selecting static features that do not change from frame to frame, i.e. back-

ground subtraction, or utilizing optical flow methods to remove pixels that are not static, 

simply adds computational overhead that is practically not necessary.   

 

Selecting frames that are relatively close to the synchronized frames should be 

avoided in this step to prevent outliers from being included, resulting in a degenerate 

computation of the camera geometry.  However, due to the large ratio of frames to cam-

eras, and this will be true in most practical cases, we can simply sample frames from each 

camera sequence so that they are well distanced in time.   
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FIGURE 6.6: REQUIRED GEOMETRIES FOR A 3 CAMERA SYNCHRONIZATION 

 
Once the static-CCS has been selected, it is used to first compute information about 

the camera geometry.  In Figure 6, we see the required geometries to compute the syn-

chronization of three video sequences.  The fundamental matrices F12, and F23, and the 

trilinear tensor, T123, are required from a 3 camera system and can be computed robustly 

using techniques outlined in [9][10], furthermore, one can simply use the tensor alone 

since F12 and F23 can be derived from T123.  We use the software presented in [11] for our 

experiments. 

 

6.3.2 Generating the Trajectory Images 
We utilize a feature tracking mechanism to generate the trajectory images.  As we 

track features over time, we associate the current frame number to the position within the 

trajectory image.  Feature tracking is performed on the luminance channel (grey map) for 

the video frames.  The luminance channel is computed as follows: 

Luminance = Red*0.299 + Green*0.587 + Blue*0.114 (6.13) 

The feature tracker we use is based on the work of Lucas and Kanade in [49].  This work 

was further developed by Tomasi and Kanade in [50] of which Shi and Tomasi provide a 

complete description in [51].  

 
Briefly, features are located by examining the minimum eigenvalue of a 2x2 im-

age gradient matrix.  The features are tracked using a Newton-Raphson method of mini-

mizing the difference between the two windows around the feature points. We continue 

by presenting a very brief outline of the work by Tomasi et al [49,50,51]. 

 

F12 F23 

T123 
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Given a point p in an image I, and its corresponding point q in an image J, the displace-

ment vector δ between p and q is best described using an affine motion field: 

δ = Dp + t (6.14) 

where 

xx xy

yx yy

d d
D

d d

 
=  
 

 (6.15) 

is a deformation matrix and t is the translation vector of the centre point of the tracked 

feature window. The translation vector t is measured with respect to the feature in ques-

tion. Tracking feature p to feature q is simply the problem of determining the six parame-

ters that comprise the deformation matrix D and the translation vector t.  In the case of 

pure translation, D will be the identity matrix and thus 

δ = p + t (6.16) 

Because of this, the case of pure translation is computationally simpler and thus prefer-

able due the higher frame rates typically found in video data. Since the motion between 

adjacent frames of standard video is generally quite small, it turns out that setting the de-

formation matrix to identity is a safe computation [50], leaving us with the translation 

vector being exactly the displacement vector.   A complete description of the tracking 

equations and feature tracking criteria can be found in Chapter 2, section 11. 

   

FIGURE 6.7: INITIAL IMAGE, TRAJECTORY IMAGE  
(target and head features) tracked over 45 frames, final image 

 
The displacement vector is computed using a pyramid of resolutions because 

processing a high resolution image is computationally intense.  The multi-resolution 

pyramid within the feature tracker reduces the resolution of the entire image, say by a 

factor of 2.  Tracking occurs by tracking a features general area in the lowest resolution 
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and upgrading the search for the exact location as it progresses back up the pyramid to 

the highest resolution.   

 

While tracking features it is possible that an extremely large object motion be-

tween frames does occur and features cannot be tracked any further resulting in smaller 

object trajectories.  This is especially true in the case of slower frame rates.  So long as 

the object trajectories overlap in time, the length of the trajectory bears little relevance, 

although longer sequences help in finding inflection points and help to ensure that trajec-

tory correspondences exist.  In Figure 6.7, we have a trajectory image for 3 seconds of a 

video sequence along with the first and last frames from the from the trajectory sequence. 

 

 
FIGURE 6.8: TRAJECTORY IMAGE (ENLARGED) FOR A 3 SECOND INTERVAL. 

 
In Figure 6.8 we present an enlarged version of the trajectory image.  The image main-

tains a separate colour for each point feature tracked and specifies the exact point feature 

position in black for each frame.   

 

6.3.3 Gross approximation of synchronization via trajectory images 
We begin by performing a gross approximation of the full frame synchronization.  

Because we are not assuming trajectory correspondence, we must have enough interest 

points tracked to ensure correspondence between the 3 views.  This will result in clut-

tered trajectory images, however we can reduce the trajectory images in the presence of 

inflection points. 

 
An inflection point is found examining the trajectories for similarities in overall 

shape.  In the presence of object motion where direction is changed suddenly; the trajec-

tories show this change at a very obvious point shown in Figure 6.9.  In practice this al-
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lows us to get within a few frames of correct synchronization, but is never guaranteed to 

be exact.  The reason for this is due to differing frames rates combined with perspective 

distortions of the fluidly moving objects causing a many-to-one, frame-to-pixel location 

of inflection points in the trajectory images. 

   
a b c 

FIGURE 6.9: 3 TRAJECTORY IMAGES WITH OBVIOUS COINCIDENT POINTS OF INFLECTION 
 

In practice, the presence of obvious inflection points may be quite difficult to find, 

especially when the motions of the dynamic objects are not under control of the applica-

tion.  Furthermore, the trajectories of non rigid objects have different times in which the 

change of motion represents itself.  For example, the loose fitting clothing of a basketball 

player making a jump shot continues moving upwards after the player has reached the 

apex of the jump causing the abrupt change in motion of the player’s head and clothing to 

occur in different features at different points in time.  In order to resolve these discrepan-

cies, it would be necessary to first solve the trajectory correspondence problem.   

 
A closer examination of motion trajectories and the corresponding frames in the 

video sequences helps to show how the gross approximation errors occur.  When object 

motion changes, especially if it is in the direction of the optical axis, there are several 

frames associated to a single pixel location.  Furthermore, should the object motion be 

extremely slow, there are multiple frames associated with the feature location and there-

fore a higher error in the gross approximation will result.  To confirm, we tracked a target 

over 15 frames as it moved towards a camera along the optical axis.  The result was a 

many to one, frame to pixel location association that made exact localization of the 

frames impossible. 

 
Once we have identified the inflection points, and implicitly the gross approxima-

tion of the synchronization, it is further refined by creating a reduced trajectory image 
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around the point of inflection and a geometric consensus stage is applied.  In cases where 

inflection points cannot be reliably found, the gross approximation stage can be omitted 

and we use the larger trajectory images in the consensus stage.  This will result in many 

more consensus trials being performed, as we see in Figure 6.10a, because the epipolar 

line will potentially intersect with many more trajectories causing the candidate set to be 

larger.  In Figure 6.10b we show a reduced trajectory image (enlarged for viewing) for an 

8 frame track after the point of inflection.   

 
 

a b 
FIGURE 6.10: EPIPOLAR LINE AND TRAJECTORIES.   

The intersection of trajectories and the epipolar line make up the candidate set of points. 
(a) large trajectory (b) reduced trajectory 

 

6.3.4 Refinement via maximal geometric consensus 
During the creation of the trajectory images, we associate a list of frame numbers 

to each tracked pixel position of the dynamic objects in the trajectory image.  We can 

now effectively compute the synchronization to sub-frame accuracy using the camera ge-

ometry and the trajectory images.  We do this by selecting a point x in any trajectory in 

the first image.  We then compute the epipolar line that will intersect the corresponding 

trajectory in the second trajectory image.  The epipolar line will also cross other trajecto-

ries in the second image, and we use the intersections of the epipolar line and the trajecto-

ries to create a candidate set of matching points.  As shown in Figure 6.11, these candi-

date frames can be computed to sub-frame accuracy as the intersection of the trajectory 

line joining two point positions in adjacent frames.  For each point in the candidate set, 

tensor transfer is applied along with the first point to compute a third point in the third 

trajectory image.  The computed 3rd point (via tensor transfer) is used to find the closest 

trajectory point.  This closest point is also computed to sub frame accuracy as shown in 

Figure 6.11.   
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Once the 3 points have been associated to their respective trajectories, the nearest 

full frames are selected for a consensus trial.  We compare a window around the exact 

tracked point position for each of points using normalized cross correlation to determine 

whether or not the three points are similar enough to perform the consensus trial.  When 

the points agree, we then verify that a variety of features in the selected frames support 

the given geometry by generating corner features and performing matching that is guided 

by the pre-computed geometries.  The putative synchronized frame set with the highest 

consensus overall is selected as the synchronized CCS.  

 

 
FIGURE 6.11: COMPUTING FRAME VIA EPIPOLAR AND TENSOR TRANSFER. 

 
In practice, one should always start with the slowest camera when selecting the first point 

x because it will help to reduce the number of potential consensus trials as the two slow-

est cameras define the largest possible error in synchronization time as discussed in sec-

tion 2.  Moreover, attempts should be made to use a reduced trajectory image so that the 

number of many-to-one frame-to-pixel associations is minimized and therefore the size of 

the candidate set of matching points will be smaller.  If any of the computed points lie on 

overlapping tracks, we test all the possible combinations of frames.  For a point x whose 

epipolar line intersects X trajectories and the subsequent tensor transfer is equidistant to 

Y trajectories results in a consensus trial for X·Y frame triplets, a drastic reduction in 

consensus trials compared to (N-2)max_offset3 which is the number of trials for a smart 

brute force method as discussed in section 3. 

 

 

T 

x epipolar line   

Tracked point in 
frame n 

Tracked point 
in frame n+1 

F12x 

Candidate set 
point n + 0.45 

Tracked point in 
frame m 

Tracked point 
in frame m+1 

Point on 
trajectory 
(m+0.6) Computed point 

via tensor  
transfer 



 130 

6.3.5 Synchronization in the face of erroneous geometries. 
In the presence of error in the computed geometries, an exact answer cannot be 

trusted.  Even a single pixel displacement of the epipolar line will result in an incorrect 

location of the intersection of trajectories and the epipolar line, which will result in an 

inexact time localization.  In the presence of larger inaccuracies, it is beneficial to exam-

ine a broader range of frames when operating our consensus trials.  We do this by modi-

fying the generation of the candidate set to include multiple frames from each track that 

intersect with the epipolar line.  We examine a number (ε) of complete frames on either 

side of the epipolar line.  The value for ε is dictated by our confidence in the computed 

geometry, its error and the distance between tracked points.  This will increase the num-

ber of consensus trials by a factor of (2ε+1)2 times, the number of trials where we have 

absolute confidence in the computed geometries.  The optimal epsilon is function of the 

frame rates and guarantees us to search at least one primary synchronization point.  For 

each sequence, i, epsilon is: 









=

iρ
λε

2
 (6.17) 

This will result in (N-2)(2ε+1)2 consensus trials.  For our experimental trials, we set ε to 

be 2 as computed from (6.17). 

6.3.6 Algorithm Review: Synchronize 
 We quickly review the synchronization algorithm 
 
Input: 3 video camera view sequences 
Output: frame numbers for 3 synchronized frames 
 
External Functions:  
Projective_Transfer(p1,p2) performs tensor transfer between p1,p2 returns point p3 
Xcorr(f1,p1,f2,p2,f3,p3) performs pair wise normalized cross correlation for 3 points (px) 
in 3 frames (fx)and returns the minimum correlation of all 3 pairings. 
 
 

1  Select frames that a form static-CCS 
2  Compute fundamental matrices(F12 and F23) & triliner tensor(T123) 
3  Generate trajectory images at 3 second intervals 
4  Find and match inflection points in trajectory images 
5  Generate reduced trajectory images around inflection points 
6  Select a point x from 1f  on a trajectory image 1 

7  l = F12x (compute Epipolar line) 
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8  Compute the candidate set of points (xci) i.e. the intersections 
of the trajectories and the epipolar line l  

9  For each point pair (x, xci) do 
10   xt = Projective_Transfer(x, xci) 
11   Compute frame number f2 from xci to sub-frame accuracy (Fig 13) 
12   Compute frame number f3 from xt and the nearest trajectory to 

sub-frame accuracy (Fig 13) 
13   If (Xcorr( 1f ,x,  5.02 +f ,xci,  5.03 +f , xt) < threshold)  

14    Perform guided matching using frames      5.03,5.02,5.01 +++ fff  and  

the geometry computed in (2) 
15      If consensus feature count is maximal then 
 Save f1, f2, and f3 
16 Endfor(9) 
17 Return f1, f2, and f3 
 
 

6.4 Experimental Results 
 

We have applied the algorithm to various sequences, both synthetic and those 

captured by a variety of different cameras of varying quality and frame rates.  We com-

pare to known ground truth where possible, while in the other cases, we compare to our 

hand selected ground truth. 

 

6.4.1 Synthetic Data 
In our synthetic data set, we have a series of static 3D points in a variety of posi-

tions.  Our dynamic 3D points are the vertices of a cube which we move before construct-

ing each frame in our sequence.  The frame rates are the same and constant for each gen-

erated sequence, and the sequences are perfectly synchronized.  This scenario represents 

a system of cameras with identical frame rates that are full frame synchronized.  The off-

sets were set to be 0, 5 and 10 frames respectively.  In this case, the motion of the cube 

was arranged so that the vertices of the cube projected to a unique pixel after each mo-

tion.  This resulted in a trajectory image with a one-to-one pixel/frame number associa-

tion.  The trifocal tensor was derived from the projection matrices and the fundamental 

matrices were subsequently derived from the tensor.  The trajectory images were gener-

ated using the projected positions of the 3D vertices of the cube.  Due to the simplistic 

motion, there were no inflection points in the trajectory image, thus application of the 

consensus algorithm was all that was necessary.  Under these ideal conditions, the syn-

chronization was computed exactly to be frame deltas 0, 5 and 10 respectively.  
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In our next synthetic example, we configured the system to have the same con-

stant frame rates for each generated sequence.  In this example, the sequences are not per-

fectly synchronized and frame deltas of 0, 5.25 and 10.75 were used to represent a system 

similar to Figure 3.  In this case, the motion of the cube was arranged so that the vertices 

of the cube projected to a unique pixel after each motion and that for each full frame tick, 

the points moved exactly 4 pixels.  This resulted in a trajectory image with a one-to-one 

pixel/frame number association and allowed us to easily determine the sub-frame offsets.  

Under these conditions, the synchronization was computed exactly to be frame deltas 0, 

5.25 and 10.75 respectively.  

 

6.4.2 Real Data 
In the following experiments, we used various digital cameras with video capture 

capabilities.  The cameras had different capture capabilities such as frame rates and reso-

lutions.  In our first experiment, we used a system of 3 cameras that grabbed frames on a 

synchronized basis, we then offset the video sequences by 5 and 10 frames for the second 

and third cameras respectively to be used as our ground truth.  This scenario represents a 

system of cameras with identical frame rates that are full frame synchronized and the cap-

ture process was started simultaneously (as in Figure 1).  As we can see in Table 1 the 

computed full frame synchronization is correct, however due to minor errors in computed 

geometry, the exact synchronization exhibits the minor errors.  The error falls well within 

the expected maximum error of ½ a frame. 

 

Camera 
Gross 

Approxi-
mation 

Exact 
Sync 

First 
Primary 

Sync 
Point 

Exact 
Time 
Ei (s) 

Uni-
versal 
Time 
Shift 
Si (s) 

Exact 
First 
Full 

Frame 

Ground 
Truth 

1 141 141 0 0 1.994 0 0 
2 146 146.05 5.05 1.010 0.984 5 5 
3 151 150.97 9.97 1.994 0 10 10 

Table 1: Synchronization Results 
 

In Figure 12, we show the synchronized frames in rows and sequences in columns 

for this example.  As you can see the events (specifically the hand) are well matched in 

time. 
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In our next set of experiments, we utilize 3 off the shelf digital cameras with video cap-

ture capabilities.  The cameras were of varying quality and frame rates.  The camera limi-

tations for this set of experiments are presented in Table 2.  This reflects the situation de-

picted in Figure 3.  Given the frame rates, we can expect full frame synchronization to 

fall within 0.033 seconds of the perfectly accurate synchronization. 

 

  

  

  
FIGURE 6.12: 3 SYNCHRONIZED (ROWS), CONSECUTIVE FRAMES (COLUMNS) 

 

Camera 
Frame 
Rate 

Noise 
level 

Resolution 
(Sharpness) 

1 15 typical low 
2 15 typical standard 
3 10 high standard 

Table 2: Camera Characteristics 
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e Shift 
(s) 

E
xact S

ync 
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(s) 

U
niversal 
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e Shift 
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N
earest  

Full Fram
e 

T
im
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1 1/15 127 8.467 7.533 126.75 8.45 7.45 127 8.467 
2 1/15 228 15.2 0.80 229.33 15.289 0.611 229 15.267 
3 1/10 160 16 0 159 15.9 0 159 15.9 

Table 3: Synchronization Results 
 

In the first two examples, we used a target as the moving object in order to assure 

corresponding points would produce corresponding trajectories.  In both of these exam-

ples, the target was moved such that an obvious change of direction (inflection points) 
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occurred.  These very sharp inflection points allow the gross approximation method to 

achieve very close results to the synchronized frames with maximal consensus.  We can 

see in Table 3 that the gross approximation in the presence of inflection points are accu-

rate to within a few frames of the exact full frame synchronization.  In Table 4, we con-

firm that the time difference falls within the expected values given the ground truth. 

 
The targets, while helpful in ensuring the accuracy by allowing multiple corre-

sponding trajectories causes the algorithm to force many more consensus trials because of 

the feature proximity.  With fewer corresponding features being tracked, there are fewer 

points in the candidate sets and thus fewer geometric consensus trials.  However, in order 

to ensure accurate synchronization, we need to ensure that at least one corresponding fea-

ture is sufficiently tracked in all 3 cameras sequences. 

Ground Truth 
(user selected) 

Time 
Difference 
from com-
puted time 

127 8.467 0.017 
229 15.267 0.022 
159 15.9 0 

Table 4: Synchronization Results 
 

  
FIGURE 6.13: SELECTED SYNCHRONIZED FRAMES 

 
A second example using the same cameras outlined in Table 2 also bring us to the 

same conclusion.  The results, outlined in Table 5, support the previous experiments find-

ings that the gross approximation, in the presence of inflection points is accurate to 

within a few frames.    

In order for the exact computation of synchronization via geometric consensus to be 

effective, there is the requirement of corresponding features being successfully tracked.  

The targets, seen in Figure 13 help to ensure that corresponding features are indeed 

tracked.  As a result, the trajectory images are quite feature-rich.  In contrast, without the 



 135 

use of targets, the trajectory images may be quite sparse due to the static background fea-

tures being selected automatically over the moving object features.  In our final example, 

we abandon the use of targets and look to automatically track features on dynamic ob-

jects.   

 
Gross 

Approxima-
tion 

Exact 
Syn-

chroniza-
tion 

Full 
Frame 
Sync. 

Full Frame-
Ground 
Truth 

Camera 1 frame 165 167 167 167 
Camera 2 frame 212 213.66 214 214 
Camera 3 frame 170 170.80 171 170 

Total Frame 
Error 

4 1.13 1 N/A 

Table 5: Synchronization Results 
 

Unlike our target based approach, the gross approximation became more difficult 

and required minor manual interventions.  Because the features on the moving objects 

lack the contrast of the target, it was often the case that features on the moving objects 

would not be automatically selected into the tracked features list.  A minor manual step to 

force feature selection in selected areas helped to generate better trajectory images.  

Background subtraction techniques would help to remove the need for this manual re-

quirement. 
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1 1/15 244 16.267 11.133 242.80 16.187 11.213 243 16.20 
2 1/15 302 20.133 7.267 301.50 20.100 7.300 302 20.13 
3 1/10 274 27.400 0 274 27.400 0 274 27.40 

Table 6: Synchronization Results 
 

   
FIGURE 6.14: SELECTED SYNCHRONIZED FRAMES 
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Again, the results shown in Figure 14, listed in Table 6 and Table 7 fall within the 

expected maximum error.  However, in this specific case, the epipolar line fell exactly 

halfway between the two points in sequence 2.  Our decision to move up, rather than 

down affected the accuracy and caused a single frame error in the computed full frame 

synchronization, but does not change the accuracy of the exact computation.  A minor 

anomaly worth noting, is that in this example, the hand selected ground truth value for 

sequence 2 (301) may be incorrect.  All three methods, gross approximation, exact and 

robust all agree with a value of 302.  When selecting the ground truth, we had several 

people examine the frames and come to a consensus of the frame numbers that they be-

lieved were synchronized. 

 

Ground Truth 
(user selected) 

Time 

Difference 
from exact 
computed 

time 
243 16.200 0 
301 20.067 0.033 
274 27.400 0 

Table 7: Synchronization Results 
 

E
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ple 
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E
xact w
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inaccurate 
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etry 

R
obust 

G
round 

T
ruth 

N
earest full 

fram
e, w

ith 
accurate    
geom

etry 

1 125.33 127 127 127 
2 227 229 229 229 1 
3 159 159 159 159 
1 166.25 167 167 167 
2 211.5 213 214 214 2 
3 170 170 170 171 
1 240.66 243 243 243 
2 304.25 302 301 302 3 
3 274 274 274 274 

Table 8: Comparison of methods in the face of geometric inaccuracy 
 

In our final set of experiments, we artificially added error to the computed geome-

tries to simulate degenerate geometries.  We then ran the examples again using the robust 

strategy outlined in section 3.5 for dealing with erroneous geometries.  As we can see in 
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Table 8, the strategy of sliding up and down the trajectories and performing more consen-

sus trails on all the local combinations is helpful in the face of inexact geometries.  How-

ever, it requires substantially many more consensus trials, and therefore requiring more 

computing time. 

 

By using the robust method, we are able to achieve results that are very close to 

ground truth.   

 

6.5 Practical Considerations 
 

During the investigation, several practical issues were raised.  Instrumental to the 

success of the accurate computation of the synchronization is an accurate computation of 

the camera geometries.  The problem of computing an accurate set of camera geometries 

is considered difficult; and inaccurate geometries, even within a few pixels, can result in 

an incorrect selection of synchronized frames that are no better than the gross approxima-

tion stage.  In practice, SIFT features [111] helped to generate accurate geometries in dif-

ficult circumstances.   

 
The primary area of concern for the tracking aspect is the avoidance of multiple 

frame associations to a single feature location and that corresponding features are tracked 

for some period of time.  In order to avoid multiple frame associations, the maximum 

length of the trajectories should be less than the tracked features intra frame pixel dispar-

ity when generating the reduced trajectory images.  It is difficult to ensure that corre-

sponding moving object features are tracked in all views, but in practice, targets ensured 

that many corresponding trajectories existed.  However, in situations where targets were 

not used, simply selecting areas to automatically select features to track helped to im-

prove the situation at the cost of taking away from the hands off approach that the targets 

allowed.   Restricting the area for detection of features to track in an automated method 

would help to make the algorithm more practical. 

 
Open problems include automatic detection of corresponding inflection points and 

the automatic detection of corresponding trajectories apriori.  While these values are im-

plicitly computed by the method, thus known apostori, knowing them apriori would result 



 138 

in a reduction of the number of times the consensus step (the largest consumption of 

time) is required.    

 

6.6 Conclusions and Discussion 
 

In this work we present a novel method for multiple video temporal synchroniza-

tion using feature tracking and geometric consensus.  The proposed method allows for the 

least constraints being placed on the camera setup and the scene being viewed.  The 

method provides two levels of accuracy by using a two step process of grossly approxi-

mating the frame synchronization followed by a refinement step that examines the se-

lected frames for their consensus with the camera geometry.  The method has been suc-

cessfully used on both synthetic data and real data with substantial noise, differing frame 

rates and varying levels of initial synchronization.  Even in the presence of erroneous ge-

ometries, it is possible to get very close synchronization results at the cost of performing 

more consensus trials to account for the geometric inaccuracies. 
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Chapter 7 

7 Conclusions and Open Problems 
 
7.1 Summary 
 

Video data presents a variety of problems for computing due to introduction of is-

sues not often found in classical computer vision.  Primarily, the sheer volume of the data 

itself is a primary concern that will often prevent the straight forward application of stan-

dard computer vision algorithms to each individual frame.  As well, video data introduces 

another dimension into the computation models: time.  Temporal constraints also prevent 

the application of standard algorithms as they are often presented as single image algo-

rithms.  For example: content based image retrieval techniques cannot be simply applied 

to video data.  Furthermore, video data is often accompanied by audio data.  While not 

examined directly in this thesis, audio data is yet another dimension for consideration 

when processing video data.  For all of the above reason, the field of computation video 

has started to emerge as an interesting and necessary field of computer science.  As com-

putational video is an emerging research area, this thesis has presented practical algo-

rithms for a variety of problems commonly encountered by applications that utilize video 

data. 

Chapter 3 presented a method to select appropriate frames from a video sequence 

for subsequent processing using computer vision algorithms.  Furthermore,  the chapter 

presents a publicly available platform called the Projective Vision Toolkit that allows fu-

ture researchers to reduce the learning curve and accelerate research into the field. 

Chapter 4 presented a computer vision based approach to the problem of segment-

ing commercial video.  Shots detection forms the cornerstone of many content based 

video/image retrieval systems.  The quest for a perfect segmentation algorithm still re-

mains.  However, this chapter presented an improved methodology that significantly out-

performs existing techniques. 

Chapter 5 presented a Genetic Algorithm based system to perform autocalibration 

of cameras.  Current techniques are not scalable to the volume of data present in video 
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sequences and thus are not a tractable solution.  We presented an extremely fast and accu-

rate method for self calibration of video cameras. 

Chapter 6 presented a theoretical look at the mathematical properties of the video 

synchronization problem and shows the existence of two distinctly different flavors of the 

synchronization problem.  The chapter proceeds to present a solution to the synchroniza-

tion problem that, unlike existing solutions, considers both flavors of the problem and is 

not constrained by the presence of large planar surfaces. 

The solutions presented in this thesis represent the only the tip of the iceberg 

when dealing with video data and ring true to the words of Anton Checkov: “Yet it was 

clear … that the end was still far, far off, and that the hardest and most complicated part 

was only just beginning”.  We next examine a list of open problems and future work. 

 
7.2 Future Work 
 

Finally, areas where future work would be beneficial are plenty in emerging 

fields.  We present some areas related to the each of the chapters, but left unexplored by 

this thesis. 

 
First, corner features used in the Projective Vision Toolkit suffer under certain 

camera motions when trying to compute corresponding features between views.  The 

same problems that exist for feature matching also exist for feature tracking.  An exami-

nation into scale invariant features (SIFT) [111] has shown some initial promise within 

the PVT and in a feature tracking context.  More work is necessary to fully develop the 

idea of Scale Invariant Feature Transform Tracking (SIFT2).  This will allow more accu-

rate computation of geometries and more robust feature tracking.    

A second area to examine is in video tracking as well.  Independently moving ob-

jects will temporarily occlude different static areas of the scene as they move causing fea-

ture loss in tracking applications.  Identifying such occlusions would help to enumerate 

the independently moving objects and allow re-tracking once the occlusions a gone.  Re-

search into detecting and combining occlusions as part of the annotation  and tracking of 

objects in video sequences would prove beneficial because independently moving objects 
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often possess cohesive features such as color and texture, object segmentation and track-

ing may prove fruitful. 

 
A third area where further effort is required is the adaptation of the methods in 

Chapter 5 to allow the autocalibration of video cameras with varying intrinsic parameters.  

Auto-focus features are becoming standard features on commercial video cameras and in 

order to provide practical application to the more modern version of video cameras, it 

will be necessary to adapt the cost functions presented in Chapter 5 to minimally allow 

for differing focal lengths between views. 

 

Finally, there are a variety of future problems that arise due simply to the solu-

tions of the problems presented in this thesis.  Real-time constraints are always a consid-

eration for applications such as real-time television viewing by computer programs, 

autonomous vehicle projects where real-time reaction is necessary and real-time envi-

ronment recreation for virtual reality applications.  Adaptations to color information also 

present an interesting set of problems.  As this thesis performed the majority of its work 

in the luminance domain, a detailed investigation into the use of color to perform tasks 

may also prove fruitful. 
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 Appendix A 

A Exact Match counts for PVT Example Sets 

Image pair and Location 

C
orrelation 
M

atches 

F
iltered 

M
atches 

%
 difference 

F
undam

ental 
Support 
M

atches 

%
 difference 

from
 filtered 

%
 difference 

from
 C

orre-
lation 

ex1/bighouse/c-000101.pgm-c-000102.pgm.matches 417 389 6.71 363 6.68 12.95 

ex1/bighouse/c-000102.pgm-c-000103.pgm.matches 349 321 8.02 313 2.49 10.32 
ex1/bighouse/c-000103.pgm-c-000104.pgm.matches 470 447 4.89 420 6.04 10.64 
ex1/bighouse/c-000104.pgm-c-000105.pgm.matches 487 479 1.64 455 5.01 6.57 

ex1/bighouse/c-000105.pgm-c-000106.pgm.matches 393 373 5.09 366 1.88 6.87 
ex1/bighouse/c-000106.pgm-c-000107.pgm.matches 531 530 0.19 518 2.26 2.45 

ex1/bighouse/c-000107.pgm-c-000108.pgm.matches 422 405 4.03 393 2.96 6.87 
ex1/bighouse/c-000108.pgm-c-000109.pgm.matches 509 506 0.59 494 2.37 2.95 

ex1/bighouse/c-000109.pgm-c-000110.pgm.matches 505 504 0.20 487 3.37 3.56 
ex1/bighouse/c-000110.pgm-c-000111.pgm.matches 433 411 5.08 398 3.16 8.08 
ex1/chapel/p0000888.jpg-p0000889.jpg.matches 299 210 29.77 199 5.24 33.44 

ex1/chapel/p0000889.jpg-p0000890.jpg.matches 299 196 34.45 165 15.82 44.82 
ex1/chapel/p0000890.jpg-p0000891.jpg.matches 289 255 11.76 234 8.24 19.03 

ex1/chapel/p0000891.jpg-p0000892.jpg.matches 299 219 26.76 200 8.68 33.11 
ex1/chapel/p0000892.jpg-p0000893.jpg.matches 303 254 16.17 238 6.30 21.45 
ex1/chapel/p0000893.jpg-p0000894.jpg.matches 265 179 32.45 164 8.38 38.11 

ex1/chapel/p0000894.jpg-p0000895.jpg.matches 291 174 40.21 168 3.45 42.27 
ex1/chapel/p0000895.jpg-p0000896.jpg.matches 321 251 21.81 228 9.16 28.97 

ex1/chapel/p0000896.jpg-p0000897.jpg.matches 283 176 37.81 159 9.66 43.82 
ex1/chapel/p0000897.jpg-p0000898.jpg.matches 296 254 14.19 189 25.59 36.15 

ex1/chapel/p0000898.jpg-p0000899.jpg.matches 282 236 16.31 208 11.86 26.24 
ex1/chapel/p0000899.jpg-p0000900.jpg.matches 293 162 44.71 149 8.02 49.15 
ex1/climber/p0000361.jpg-p0000362.jpg.matches 243 132 45.68 73 4.70 9.96 

ex1/climber/p0000362.jpg-p0000363.jpg.matches 229 131 42.79 74 4.51 6.69 
ex1/climber/p0000363.jpg-p0000364.jpg.matches 242 139 42.56 94 3237 6116 

ex1/climber/p0000364.jpg-p0000365.jpg.matches 247 128 48.18 88 31.5 64.7 
ex1/climber/p0000365.jpg-p0000366.jpg.matches 225 113 49.78 79 30.0 64.8 
ex1/climber/p0000366.jpg-p0000367.jpg.matches 239 101 57.74 63 37.62 73.64 

ex1/climber/p0000367.jpg-p0000368.jpg.matches 230 115 50.00 79 31.30 65.65 
ex1/climber/p0000368.jpg-p0000369.jpg.matches 245 119 51.43 89 25.21 63.67 

ex1/climber/p0000369.jpg-p0000370.jpg.matches 238 143 39.92 85 40.56 64.29 
ex1/climber/p0000370.jpg-p0000371.jpg.matches 251 107 57.37 76 28.97 69.72 

ex1/climber/p0000371.jpg-p0000372.jpg.matches 240 126 47.50 87 30.95 63.75 
ex1/climber/p0000372.jpg-p0000373.jpg.matches 243 126 48.15 88 30.16 63.79 
ex1/equiproom/p0001989.jpg-p0001990.jpg.matches 106 103 2.83 20 80.58 81.13 

ex1/equiproom/p0001990.jpg-p0001991.jpg.matches 209 182 12.92 107 41.21 48.80 
ex1/equiproom/p0001991.jpg-p0001992.jpg.matches 207 168 18.84 119 29.17 42.51 

ex1/equiproom/p0001992.jpg-p0001993.jpg.matches 284 254 10.56 205 19.29 27.82 
ex1/equiproom/p0001993.jpg-p0001994.jpg.matches 259 231 10.81 157 32.03 39.38 
ex1/equiproom/p0001994.jpg-p0001995.jpg.matches 279 207 25.81 183 11.59 34.41 
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ex1/equiproom/p0001995.jpg-p0001996.jpg.matches 259 219 15.44 168 23.29 35.14 
ex1/equiproom/p0001996.jpg-p0001997.jpg.matches 286 266 6.99 221 16.92 22.73 

ex2/castle/kasteel101.ppm-kasteel102.ppm.matches 122 121 0.82 42 65.29 65.57 
ex2/castle/kasteel102.ppm-kasteel103.ppm.matches 433 425 1.85 400 5.88 7.62 

ex2/castle/kasteel103.ppm-kasteel104.ppm.matches 128 91 28.91 91 0.00 28.91 
ex2/castle/kasteel104.ppm-kasteel105.ppm.matches 74 52 29.73 40 23.08 45.95 

ex2/castle/kasteel105.ppm-kasteel106.ppm.matches 166 139 16.27 132 5.04 20.48 
ex2/etlueshiba/etl101.pgm-etl102.pgm.matches 184 183 0.54 115 37.16 37.50 
ex2/etlueshiba/etl102.pgm-etl103.pgm.matches 151 149 1.32 95 36.24 37.09 

ex2/etlueshiba/etl103.pgm-etl104.pgm.matches 148 147 0.68 87 40.82 41.22 
ex2/etlueshiba/etl104.pgm-etl105.pgm.matches 75 74 1.33 47 36.49 37.33 

ex2/lab4thfloor/p0000748.jpg-p0000749.jpg.matches 302 241 20.20 143 40.66 52.65 
ex2/lab4thfloor/p0000749.jpg-p0000750.jpg.matches 260 201 22.69 106 47.26 59.23 
ex2/lab4thfloor/p0000750.jpg-p0000751.jpg.matches 305 269 11.80 171 36.43 43.93 

ex2/lab4thfloor/p0000751.jpg-p0000752.jpg.matches 320 292 8.75 182 37.67 43.13 
ex2/lab4thfloor/p0000752.jpg-p0000753.jpg.matches 262 184 29.77 101 45.11 61.45 

ex2/lab4thfloor/p0000753.jpg-p0000754.jpg.matches 250 187 25.20 79 57.75 68.40 
ex2/lab4thfloor/p0000754.jpg-p0000755.jpg.matches 314 282 10.19 139 50.71 55.73 

ex2/lab4thfloor/p0000755.jpg-p0000756.jpg.matches 259 197 23.94 71 63.96 72.59 
ex2/lab4thfloor/p0000756.jpg-p0000757.jpg.matches 254 223 12.20 94 57.85 62.99 
ex2/lab4thfloor/p0000757.jpg-p0000758.jpg.matches 238 223 6.30 65 70.85 72.69 

ex3/csroom/p0000827.jpg-p0000828.jpg.matches 210 172 18.10 85 50.58 59.52 
ex3/csroom/p0000828.jpg-p0000829.jpg.matches 217 166 23.50 84 49.40 61.29 

ex3/csroom/p0000829.jpg-p0000830.jpg.matches 145 131 9.66 34 74.05 76.55 
ex3/csroom/p0000830.jpg-p0000831.jpg.matches 234 142 39.32 96 32.39 58.97 
ex3/csroom/p0000831.jpg-p0000832.jpg.matches 264 225 14.77 120 46.67 54.55 

ex3/csroom/p0000832.jpg-p0000833.jpg.matches 241 149 38.17 97 34.90 59.75 
ex3/csroom/p0000833.jpg-p0000834.jpg.matches 286 201 29.72 145 27.86 49.30 

ex3/csroom/p0000834.jpg-p0000835.jpg.matches 267 182 31.84 90 50.55 66.29 
ex3/readingroom/p0000842.jpg-p0000843.jpg.matches 176 137 22.16 81 40.88 53.98 

ex3/readingroom/p0000843.jpg-p0000844.jpg.matches 219 171 21.92 129 24.56 41.10 
ex3/readingroom/p0000844.jpg-p0000845.jpg.matches 249 211 15.26 163 22.75 34.54 
ex3/reidsculpt/p0001070.jpg-p0001071.jpg.matches 345 287 16.81 157 45.30 54.49 

ex3/reidsculpt/p0001071.jpg-p0001072.jpg.matches 465 423 9.03 216 48.94 53.55 
ex3/reidsculpt/p0001072.jpg-p0001073.jpg.matches 329 259 21.28 121 53.28 63.22 

ex3/reidsculpt/p0001073.jpg-p0001074.jpg.matches 378 331 12.43 145 56.19 61.64 
ex3/reidsculpt/p0001074.jpg-p0001075.jpg.matches 320 251 21.56 119 52.59 62.81 
ex3/reidsculpt/p0001075.jpg-p0001076.jpg.matches 405 375 7.41 184 50.93 54.57 

ex3/reidsculpt/p0001076.jpg-p0001077.jpg.matches 384 346 9.90 156 54.91 59.38 
ex3/totem1/p0001062.jpg-p0001063.jpg.matches 358 269 24.86 233 13.38 34.92 

ex3/totem1/p0001063.jpg-p0001064.jpg.matches 327 241 26.30 186 22.82 43.12 
ex3/totem1/p0001064.jpg-p0001065.jpg.matches 334 256 23.35 218 14.84 34.73 

ex3/totem1/p0001065.jpg-p0001066.jpg.matches 363 281 22.59 246 12.46 32.23 
ex3/totem1/p0001066.jpg-p0001067.jpg.matches 372 297 20.16 252 15.15 32.26 
ex3/totem1/p0001067.jpg-p0001068.jpg.matches 307 235 23.45 202 14.04 34.20 

ex3/totem1/p0001068.jpg-p0001069.jpg.matches 341 266 21.99 215 19.17 36.95 
ex4/workshop1/p0001669.jpg-p0001670.jpg.matches 202 122 39.60 87 28.69 56.93 

ex4/workshop1/p0001670.jpg-p0001671.jpg.matches 217 140 35.48 97 30.71 55.30 
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ex4/workshop1/p0001671.jpg-p0001672.jpg.matches 232 179 22.84 97 45.81 58.19 
ex4/workshop1/p0001672.jpg-p0001673.jpg.matches 282 242 14.18 157 35.12 44.33 

ex4/workshop1/p0001673.jpg-p0001674.jpg.matches 353 336 4.82 239 28.87 32.29 
ex4/workshop1/p0001674.jpg-p0001675.jpg.matches 312 272 12.82 190 30.15 39.10 

ex4/workshop1/p0001675.jpg-p0001676.jpg.matches 290 237 18.28 166 29.96 42.76 
ex4/workshop2/p0001677.jpg-p0001678.jpg.matches 175 169 3.43 42 75.15 76.00 

ex4/workshop2/p0001678.jpg-p0001679.jpg.matches 229 182 20.52 108 40.66 52.84 
ex4/workshop2/p0001679.jpg-p0001680.jpg.matches 201 158 21.39 63 60.13 68.66 
ex4/workshop2/p0001680.jpg-p0001681.jpg.matches 210 163 22.38 95 41.72 54.76 

ex4/workshop2/p0001681.jpg-p0001682.jpg.matches 245 216 11.84 102 52.78 58.37 
ex4/workshop2/p0001682.jpg-p0001683.jpg.matches 214 135 36.92 70 48.15 67.29 

ex4/workshop2/p0001683.jpg-p0001684.jpg.matches 211 156 26.07 81 48.08 61.61 
ex4/workshop2/p0001684.jpg-p0001685.jpg.matches 292 271 7.19 157 42.07 46.23 
ex4/workshop3/p0001686.jpg-p0001687.jpg.matches 198 192 3.03 66 65.63 66.67 

ex4/workshop3/p0001687.jpg-p0001688.jpg.matches 179 167 6.70 43 74.25 75.98 
ex4/workshop3/p0001688.jpg-p0001689.jpg.matches 157 148 5.73 39 73.65 75.16 

ex4/workshop3/p0001689.jpg-p0001690.jpg.matches 154 152 1.30 39 74.34 74.68 
ex4/workshop3/p0001690.jpg-p0001691.jpg.matches 159 158 0.63 28 82.28 82.39 

ex4/workshop3/p0001691.jpg-p0001692.jpg.matches 173 166 4.05 37 77.7 78.61 
ex4/workshop3/p0001692.jpg-p0001693.jpg.matches 202 182 9.90 61 66.48 69.80 
ex5/bsmnt/bsmnt100.pgm-bsmnt101.pgm.matches 281 280 0.36 241 13.93 14.23 

ex5/bsmnt/bsmnt101.pgm-bsmnt102.pgm.matches 288 286 0.69 263 8.04 8.68 
ex5/bsmnt/bsmnt102.pgm-bsmnt103.pgm.matches 291 289 0.69 236 18.34 18.90 

ex5/bsmnt/bsmnt103.pgm-bsmnt104.pgm.matches 273 272 0.37 233 14.34 14.65 
ex5/bsmnt/bsmnt104.pgm-bsmnt105.pgm.matches 277 276 0.36 240 13.04 13.36 
ex5/bsmnt/bsmnt105.pgm-bsmnt106.pgm.matches 254 252 0.79 219 13.10 13.78 

ex5/bsmnt/bsmnt106.pgm-bsmnt107.pgm.matches 279 275 1.43 242 12.00 13.26 
ex5/bsmnt/bsmnt107.pgm-bsmnt108.pgm.matches 238 232 2.52 145 37.50 39.08 

ex5/bsmnt/bsmnt108.pgm-bsmnt109.pgm.matches 229 226 1.31 148 34.51 35.37 
ex5/bsmnt/bsmnt109.pgm-bsmnt110.pgm.matches 256 252 1.56 212 15.87 17.19 

ex5/montrealstatue/p001756.jpg-p001757.jpg.matches 299 182 39.13 163 10.44 45.48 
ex5/montrealstatue/p001757.jpg-p001758.jpg.matches 323 211 34.67 184 12.80 43.03 
ex5/montrealstatue/p001758.jpg-p001759.jpg.matches 337 293 13.06 242 17.41 28.19 

ex5/montrealstatue/p001759.jpg-p001760.jpg.matches 330 267 19.09 207 22.47 37.27 
ex5/vehicle/image109.jpg-image110.jpg.matches 257 141 45.14 136 3.55 47.08 

ex5/vehicle/image110.jpg-image111.jpg.matches 209 184 11.96 177 3.80 15.31 
ex5/vehicle/image111.jpg-image112.jpg.matches 232 193 16.81 181 6.22 21.98 
ex5/vehicle/image112.jpg-image113.jpg.matches 219 189 13.70 173 8.47 21.00 

ex5/vehicle/image113.jpg-image114.jpg.matches 143 110 23.08 95 13.64 33.57 
ex5/vehicle/image114.jpg-image115.jpg.matches 163 133 18.40 103 22.56 36.81 

ex5/vehicle/image115.jpg-image116.jpg.matches 186 162 12.90 127 21.60 31.72 
ex5/vehicle/image116.jpg-image117.jpg.matches 136 108 20.59 88 18.52 35.29 
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ex1/bighouse/c-000101.pgm-c-000102.pgm-c-000103.pgm.matches 185 156 15.68 
ex1/bighouse/c-000102.pgm-c-000103.pgm-c-000104.pgm.matches 209 196 6.22 
ex1/bighouse/c-000103.pgm-c-000104.pgm-c-000105.pgm.matches 279 236 15.41 
ex1/bighouse/c-000104.pgm-c-000105.pgm-c-000106.pgm.matches 269 236 12.27 
ex1/bighouse/c-000105.pgm-c-000106.pgm-c-000107.pgm.matches 278 168 39.57 
ex1/bighouse/c-000106.pgm-c-000107.pgm-c-000108.pgm.matches 311 243 21.86 
ex1/bighouse/c-000107.pgm-c-000108.pgm-c-000109.pgm.matches 310 238 23.23 
ex1/bighouse/c-000108.pgm-c-000109.pgm-c-000110.pgm.matches 378 353 6.61 
ex1/bighouse/c-000109.pgm-c-000110.pgm-c-000111.pgm.matches 287 225 21.60 
ex1/chapel/p0000888.jpg-p0000889.jpg-p0000890.jpg.matches 52 43 17.31 
ex1/chapel/p0000889.jpg-p0000890.jpg-p0000891.jpg.matches 61 61 0.00 
ex1/chapel/p0000890.jpg-p0000891.jpg-p0000892.jpg.matches 79 52 34.18 
ex1/chapel/p0000891.jpg-p0000892.jpg-p0000893.jpg.matches 83 60 27.71 
ex1/chapel/p0000892.jpg-p0000893.jpg-p0000894.jpg.matches 61 47 22.95 
ex1/chapel/p0000893.jpg-p0000894.jpg-p0000895.jpg.matches 47 33 29.79 
ex1/chapel/p0000894.jpg-p0000895.jpg-p0000896.jpg.matches 66 52 21.21 
ex1/chapel/p0000895.jpg-p0000896.jpg-p0000897.jpg.matches 58 46 20.69 
ex1/chapel/p0000896.jpg-p0000897.jpg-p0000898.jpg.matches 49 34 30.61 
ex1/chapel/p0000897.jpg-p0000898.jpg-p0000899.jpg.matches 67 53 20.90 
ex1/chapel/p0000898.jpg-p0000899.jpg-p0000900.jpg.matches 44 35 20.45 
ex1/climber/p0000361.jpg-p0000362.jpg-p0000363.jpg.matches 21 15 28.57 
ex1/climber/p0000362.jpg-p0000363.jpg-p0000364.jpg.matches 26 25 3.85 
ex1/climber/p0000363.jpg-p0000364.jpg-p0000365.jpg.matches 25 20 20.00 
ex1/climber/p0000364.jpg-p0000365.jpg-p0000366.jpg.matches 20 20 0.00 
ex1/climber/p0000365.jpg-p0000366.jpg-p0000367.jpg.matches 18 12 33.33 
ex1/climber/p0000366.jpg-p0000367.jpg-p0000368.jpg.matches 20 15 25.00 
ex1/climber/p0000367.jpg-p0000368.jpg-p0000369.jpg.matches 23 15 34.78 
ex1/climber/p0000368.jpg-p0000369.jpg-p0000370.jpg.matches 20 17 15.00 
ex1/climber/p0000369.jpg-p0000370.jpg-p0000371.jpg.matches 21 22 -4.7% 
ex1/climber/p0000370.jpg-p0000371.jpg-p0000372.jpg.matches 22 21 4.55 
ex1/climber/p0000371.jpg-p0000372.jpg-p0000373.jpg.matches 31 19 38.71 
ex1/equiproom/p0001989.jpg-p0001990.jpg-p0001991.jpg.matches 3 2 33.33 
ex1/equiproom/p0001990.jpg-p0001991.jpg-p0001992.jpg.matches 18 12 33.33 
ex1/equiproom/p0001991.jpg-p0001992.jpg-p0001993.jpg.matches 48 24 50.00 
ex1/equiproom/p0001992.jpg-p0001993.jpg-p0001994.jpg.matches 55 33 40.00 
ex1/equiproom/p0001993.jpg-p0001994.jpg-p0001995.jpg.matches 58 34 41.38 
ex1/equiproom/p0001994.jpg-p0001995.jpg-p0001996.jpg.matches 57 36 36.84 
ex1/equiproom/p0001995.jpg-p0001996.jpg-p0001997.jpg.matches 68 38 44.12 
ex2/castle/kasteel101.ppm-kasteel102.ppm-kasteel103.ppm.matches 27 19 29.63 
ex2/castle/kasteel102.ppm-kasteel103.ppm-kasteel104.ppm.matches 59 47 20.34 
ex2/castle/kasteel103.ppm-kasteel104.ppm-kasteel105.ppm.matches 13 12 7.69 
ex2/castle/kasteel104.ppm-kasteel105.ppm-kasteel106.ppm.matches 23 22 4.35 
ex2/etlueshiba/etl101.pgm-etl102.pgm-etl103.pgm.matches 10 10 0.00 
ex2/etlueshiba/etl102.pgm-etl103.pgm-etl104.pgm.matches 17 17 0.00 
ex2/etlueshiba/etl103.pgm-etl104.pgm-etl105.pgm.matches 9 9 0.00 
ex2/lab4thfloor/p0000748.jpg-p0000749.jpg-p0000750.jpg.matches 38 24 36.84 
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ex2/lab4thfloor/p0000749.jpg-p0000750.jpg-p0000751.jpg.matches 36 36 0.00 
ex2/lab4thfloor/p0000750.jpg-p0000751.jpg-p0000752.jpg.matches 72 35 51.39 
ex2/lab4thfloor/p0000751.jpg-p0000752.jpg-p0000753.jpg.matches 47 25 46.81 
ex2/lab4thfloor/p0000752.jpg-p0000753.jpg-p0000754.jpg.matches 30 25 16.67 
ex2/lab4thfloor/p0000753.jpg-p0000754.jpg-p0000755.jpg.matches 23 23 0.00 
ex2/lab4thfloor/p0000754.jpg-p0000755.jpg-p0000756.jpg.matches 20 10 50.00 
ex2/lab4thfloor/p0000755.jpg-p0000756.jpg-p0000757.jpg.matches 12 12 0.00 
ex2/lab4thfloor/p0000756.jpg-p0000757.jpg-p0000758.jpg.matches 13 13 0.00 
ex3/csroom/p0000827.jpg-p0000828.jpg-p0000829.jpg.matches 17 17 0.00 
ex3/csroom/p0000828.jpg-p0000829.jpg-p0000830.jpg.matches 7 7 0.00 
ex3/csroom/p0000829.jpg-p0000830.jpg-p0000831.jpg.matches 10 10 0.00 
ex3/csroom/p0000830.jpg-p0000831.jpg-p0000832.jpg.matches 32 32 0.00 
ex3/csroom/p0000831.jpg-p0000832.jpg-p0000833.jpg.matches 27 15 44.44 
ex3/csroom/p0000832.jpg-p0000833.jpg-p0000834.jpg.matches 40 24 40.00 
ex3/csroom/p0000833.jpg-p0000834.jpg-p0000835.jpg.matches 34 34 0.00 
ex3/readingroom/p0000842.jpg-p0000843.jpg-p0000844.jpg.matches 23 22 4.35 
ex3/readingroom/p0000843.jpg-p0000844.jpg-p0000845.jpg.matches 65 48 26.15 
ex3/reidsculpt/p0001070.jpg-p0001071.jpg-p0001072.jpg.matches 79 38 51.90 
ex3/reidsculpt/p0001071.jpg-p0001072.jpg-p0001073.jpg.matches 48 28 41.67 
ex3/reidsculpt/p0001072.jpg-p0001073.jpg-p0001074.jpg.matches 47 27 42.55 
ex3/reidsculpt/p0001073.jpg-p0001074.jpg-p0001075.jpg.matches 50 31 38.00 
ex3/reidsculpt/p0001074.jpg-p0001075.jpg-p0001076.jpg.matches 49 24 51.02 
ex3/reidsculpt/p0001075.jpg-p0001076.jpg-p0001077.jpg.matches 52 24 53.85 
ex3/totem1/p0001062.jpg-p0001063.jpg-p0001064.jpg.matches 96 64 33.33 
ex3/totem1/p0001063.jpg-p0001064.jpg-p0001065.jpg.matches 89 57 35.96 
ex3/totem1/p0001064.jpg-p0001065.jpg-p0001066.jpg.matches 120 79 34.17 
ex3/totem1/p0001065.jpg-p0001066.jpg-p0001067.jpg.matches 132 78 40.91 
ex3/totem1/p0001066.jpg-p0001067.jpg-p0001068.jpg.matches 98 59 39.80 
ex3/totem1/p0001067.jpg-p0001068.jpg-p0001069.jpg.matches 86 86 0.00 
ex4/workshop1/p0001669.jpg-p0001670.jpg-p0001671.jpg.matches 21 16 23.81 
ex4/workshop1/p0001670.jpg-p0001671.jpg-p0001672.jpg.matches 21 14 33.33 
ex4/workshop1/p0001671.jpg-p0001672.jpg-p0001673.jpg.matches 29 29 0.00 
ex4/workshop1/p0001672.jpg-p0001673.jpg-p0001674.jpg.matches 65 30 53.85 
ex4/workshop1/p0001673.jpg-p0001674.jpg-p0001675.jpg.matches 86 86 0.00 
ex4/workshop1/p0001674.jpg-p0001675.jpg-p0001676.jpg.matches 67 38 43.28 
ex4/workshop2/p0001677.jpg-p0001678.jpg-p0001679.jpg.matches 18 12 33.33 
ex4/workshop2/p0001678.jpg-p0001679.jpg-p0001680.jpg.matches 20 15 25.00 
ex4/workshop2/p0001679.jpg-p0001680.jpg-p0001681.jpg.matches 14 11 21.43 
ex4/workshop2/p0001680.jpg-p0001681.jpg-p0001682.jpg.matches 11 8 27.27 
ex4/workshop2/p0001681.jpg-p0001682.jpg-p0001683.jpg.matches 20 16 20.00 
ex4/workshop2/p0001682.jpg-p0001683.jpg-p0001684.jpg.matches 11 9 18.18 
ex4/workshop2/p0001683.jpg-p0001684.jpg-p0001685.jpg.matches 34 25 26.47 
ex4/workshop3/p0001686.jpg-p0001687.jpg-p0001688.jpg.matches 14 14 0.00 
ex4/workshop3/p0001687.jpg-p0001688.jpg-p0001689.jpg.matches 5 5 0.00 
ex4/workshop3/p0001688.jpg-p0001689.jpg-p0001690.jpg.matches 6 6 0.00 
ex4/workshop3/p0001689.jpg-p0001690.jpg-p0001691.jpg.matches 4 2 50.00 
ex4/workshop3/p0001690.jpg-p0001691.jpg-p0001692.jpg.matches 1 1 0.00 
ex4/workshop3/p0001691.jpg-p0001692.jpg-p0001693.jpg.matches 11 8 27.27 
ex5/bsmnt/bsmnt100.pgm-bsmnt101.pgm-bsmnt102.pgm.matches 198 167 15.66 
ex5/bsmnt/bsmnt101.pgm-bsmnt102.pgm-bsmnt103.pgm.matches 184 134 27.17 
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ex5/bsmnt/bsmnt102.pgm-bsmnt103.pgm-bsmnt104.pgm.matches 171 140 18.13 
ex5/bsmnt/bsmnt103.pgm-bsmnt104.pgm-bsmnt105.pgm.matches 180 135 25.00 
ex5/bsmnt/bsmnt104.pgm-bsmnt105.pgm-bsmnt106.pgm.matches 170 144 15.29 
ex5/bsmnt/bsmnt105.pgm-bsmnt106.pgm-bsmnt107.pgm.matches 168 132 21.43 
ex5/bsmnt/bsmnt106.pgm-bsmnt107.pgm-bsmnt108.pgm.matches 114 66 42.11 
ex5/bsmnt/bsmnt107.pgm-bsmnt108.pgm-bsmnt109.pgm.matches 79 46 41.77 
ex5/bsmnt/bsmnt108.pgm-bsmnt109.pgm-bsmnt110.pgm.matches 103 54 47.57 
ex5/montrealstatue/p001756.jpg-p001757.jpg-p001758.jpg.matches 90 63 30.00 
ex5/montrealstatue/p001757.jpg-p001758.jpg-p001759.jpg.matches 116 84 27.59 
ex5/montrealstatue/p001758.jpg-p001759.jpg-p001760.jpg.matches 117 72 38.46 
ex5/vehicle/image109.jpg-image110.jpg-image111.jpg.matches 63 45 28.57 
ex5/vehicle/image110.jpg-image111.jpg-image112.jpg.matches 96 72 25.00 
ex5/vehicle/image111.jpg-image112.jpg-image113.jpg.matches 82 63 23.17 
ex5/vehicle/image112.jpg-image113.jpg-image114.jpg.matches 51 41 19.61 
ex5/vehicle/image113.jpg-image114.jpg-image115.jpg.matches 37 26 29.73 
ex5/vehicle/image114.jpg-image115.jpg-image116.jpg.matches 57 39 31.58 
ex5/vehicle/image115.jpg-image116.jpg-image117.jpg.matches 41 27 34.15 
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Appendix B 

B The Portable Image Library (PIL) 

One of the fallouts from this thesis was the creation of a library to handle a variety 

of different image and video formats.  The Portable Image Library (PIL) provides a con-

sistent interface and allows the accessing and manipulation of still image and video for-

mats for the three most popular computing platforms today: SUN-Solaris, Linux and Mi-

crosoft Windows.  PIL is a C API (Application Programming Interface) that makes use of 

its own canonical image format, and allows a programmer to load various image formats 

such as GIF, JPG, PNG, TIFF, BMP, PGM, PPM, DICOM and PCT.  Furthermore, the 

library supports the frame-by-frame loading of video formats such as MPEG across all 

platforms and AVI, WMV formats on Windows platforms.   

Because PIL allows students to be able to open image and video data of a variety 

of different formats with only a few lines of C code, students can immediately begin im-

plementing image and video processing algorithms without consideration of the com-

plexities that surround image file formats and byte ordering on different computer proc-

essors. As such PIL is an ideal platform to base computer vision and image processing 

courses on.   PIL is freely available to all. 
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Appendix C 

C The Projective Vision Toolkit (PVT) 
 

Based on the PIL Libraries, the Projective Vision Toolkit (PVT) is a series of utilities 

available in binary form that allow you to take an image sequence and compute the fun-

damental matrix and trifocal tensor. The current version only goes as far as computing 

these two quantities, along with the correspondences that support them. It does so com-

pletely automatically, using only natural features. The most important assumption is that 

the maximum motion of a single feature is limited (usually to 1/3 of the image size). We 

are able to process images that are more widely separated than those from a video cam-

era, but can not handle ultra wide separations. If one wishes to perform a reconstruction 

of the camera positions it is necessary to autocalibrate (or to a-priori have the calibration) 

which is also provided as part of the PVT. In each of our current examples (outlined in 

Appendix A) we have a VRML file (.wrl extension) which shows the reconstruction of 

the camera positions along with the features that were detected. In this case the recon-

struction was obtained by sending the correspondences and calibration information to the 

Photomodeler package.  

The PVT comes with a number of utilities that are also useful in the context of research 

and/or teaching.  Geometry and sequence viewers help to solidify the ideas behind epipo-

lar geometry by allowing visual examination of tensor and epipolar transfer. 



 150 

 Bibliography 

“If I have seen farther than others, it is because I was standing on the shoulders 
of giants.”  - Isaac Newton 

[1] Anthony Whitehead.  Biometrics and Automated Authentication: A presentation  
of a Minimal Space Template Authentication Algorithm and in Improved  
Classification Methodology.  Honours Project, 1995 

[2] Kuhl, F., “Classification and Recognition of Hand-Printed Characters”, IEE Na-
tional Convention, pp. 75-93, March 1963. 

[3] R. Bajcsy, “Computer recognition of roads from satellite pictures”.IEEE Trans-
actions on System, Man and Cybernetics, 6(9), 1976 

[4] S. Peleg, B. Rousso, A. Rav-Acha, and A. Zomet, “Mosaicing on Adaptive 
Manifolds”, IEEE Transactions. On PAMI, pp. 1144-1154, October 2000. 

[5] C. Thorpe and T. Kanade, “Vision and Navigation for the Carnegie Mellon Nav-
lab”, Proceedings of the 1985 DARPA Image Understanding Workshop, pp. 143-
52, 1985. 

[6] R. Sukthankar, “RACCOON: A Real-time Autonomous Car Chaser Operating 
Optimally at Night,” Proceedings of the IEEE IV’93, 1993. 

[7] H.C. Longuet-Higgens.  “A computer algorithm for reconstructing a scene from 
two projections”. Nature, vol.293:133-135, 1981. 

[8] O.D. Faugeras.  What can be seen in three dimensions with an uncalibrated ste-
reo rig?. Proc. 2nd European Conference on Computer Vision,1992, pp. 563-578 

[9] R. I. Hartley.  Estimation of relative camera positions for uncalibrated cameras. 
Proc. 2nd  European Conference on Computer Vision,1992, pp. 579-587 

[10] Z. Zhang. “Determining the Epipolar Geometry and Its Uncertainty: A Review”  
Technical Report RR-2927, INRIA, 1996. 

[11] P.H.S. Torr and D.W. Murray, “The Development and Comparison of Robust 
Methods for Estimating the Fundamental Matrix”, International Journal of 
Computer Vision, vol 24 pp 271-300, 1997 

[12] A. Shashua and M. Werman.  On the trilinear tensor of three perspective views 
and its underlying geometry.  International Conference on Computer Vision, 
1995 

[13] R. Jain, R. Kasturi, and B. Schunck.  Machine Vision.  McGraw-Hill and MIT 
Press, second  edition.  1995. 

[14] G. Xu, and Z. Zhang. Epipolar Geometry in Stereo, Motion and Object Recogni-
tion.  Kluwer  Academic Publishers.  1996. 

[15] O.D. Faugeras.  Three Dimensional Computer Vision – A Geometric Viewpoint.  
MIT Press. 1993 

[16] J. Stolfi.  Oriented Projective Geometry.  Academic Press, San Diego, CA / Lon-
don, UK, 1991. 

[17] Marc Polleyfeys, Self Calibration and Metric 3D Reconstruction from Uncali-
brated Image Sequences.  Ph.D Thesis, Katholieke Universiteit Leuven.  1999. 

[18] R. I. Hartley.  Lines and points in three views – an integrated approach.  In Pro-
ceedings of the  ARPA IU Workshop. DARPA, 1994.  



 151 

[19] Andrew Zisserman.  Geometric Framework for Vision I: Single View and Two- 
View Geometry. 1998 

[20] P.H.S. Torr.  Motion Segmentation and Outlier Detection.  Ph. D. Thesis, Uni-
versity of Oxford, 1995. 

[21] P. Rousseeuw and A. Leroy.  Robust Regression and Outlier Detection.  John  
Wiley & Sons, New York. 1987 

[22] A. Shashua and M. Werman.  On the trilinear tensor of three perspective views 
and its underlying geometry.  International Conference on Computer Vision, 
1995. 

[23] P.H.S. Torr and A. Zisserman.  Robust Parameterization and Computation of the 
Trifocal Tensor.   Proc. British Machine Vision Conference. Pp 655-664. 1996. 

[24] O. Faugeras and T. Papadopoulo.   A nonlinear method for estimating the Pro-
jecttive geometry of 3 views. Sixth International Conference on Computer Vi-
sion, 1998 pp 477-484. 

[25] M. E. Spetsakis and J. Aloimonos. Structure from Motion Using Line Corre-
spondences.  The International Journal of Computer Vision, 4:171–183, 1990. 

[26] M. E. Spetsakis and .J. Aloimonos. A unified theory of structure from motion. 
Proc. DARPA IU Workshop, pages 271–283, 1990. 

[27] B. Triggs.  The geometry of projective reconstruction: Matching constraints and 
the joint image.  In Proc ICCV, 1995 

[28] R. I. Hartley.  Computation of the Quadrifocal Tensor.  Computer Vision, 
ECCV'98,  Springer Verlag 1998  pp. 20-35. 

[29] O.D. Faugeras and B. Mourrain.  On the geometry and algebra of the point and 
line correspondences between N images. Proc. 5th International Conference on 
Computer Vision  (ICCV 95), Cambridge, MA, IEEE Computer Society Press, 
Los Alamitos, CA, 1995, pp.951-956 

[30] Theo Moons, A Guided Tour Through Multiview Relations.  In SMILE. 1998, 
pp 304-346 

[31] A. Shashua, “Algebraic functions for recognition," IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 17, no. 8, pp. 779-789, 1995. 

[32] R. Hartley, “A linear method for reconstruction from lines and points," in Pro-
ceedings of the International Conference on Computer Vision, pp. 882{887, 
Cambridge, Mass., June 1995.  

[33] R. Koch, M. Pollefeys, and L. VanGool, “Multi view-point stereo from uncali-
brated video sequences," in ECCV'98, pp. 55-71, 1998. 

[34] M. Pollefeys, R. Koch, M. Vergauwen, and L. VanGool, \Automatic generation 
of 3d models from photographs," in Proceedings Virtual Systems and MultiMe-
dia, 1998. 

[35] A. Fitzgibbon and A. Zisserman, “Automatic camera recovery for closed or open 
image sequences,” 5th European Conference on Computer Vision, (Freiburg, 
Germany), pp. 311-326, Springer Verlag, June 1998. 

[36] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong, A robust technique for 
matching two uncalibrated images through the recovery of the unkown epipolar 
geometry," Artificial Intelligence Journal, vol. 78, pp. 87{119, October 1995. 

[37] P. J. Rousseeuw, “Least median of squares regression,” Journal of American 



 152 

Statistical Association, vol. 79, pp. 871-880, Dec. 1984. 
 

[38] R. C. Bolles and M. A. Fischler, “A ransac-based approach to model fitting and 
its application to finding cylinders in range data,” in Seventh International Joint 
Conference on Artificial Intelligence, (Vancouver, British Colombia, Canada), 
pp. 637-643, 1981. 

[39] H. Sawhney, Y. Guo, J. Asmuth, and R. Kumar, “Multi-view 3d estimation and 
applications to match move,” in 1999 IEEE Workshop on MuliView Modelling 
and Analysis of Visual Scenes, pp. 21-28, 1999. 

[40] P. McLaughlin, “Gauge invariance in projective 3d reconstruction,” in IEEE 
Workshop on Multi-View Modelling and Analysis of Visual Scenes, pp. 37-44, 
IEEE Computer Society, 1999. 

[41] Photomodeler by EOS Systems Inc. http:/www.photomodeler.com/. 
[42] P. Besl, “Active, optical range imaging sensors," Machine Vision and Applica-

tions, vol. 1, no. 1, pp. 127-152, 1988. 
[43] S. Smith and J. Brady, “Susan - a new approach to low level image processing," 

International Journal of Computer Vision, pp. 45-78, May 1997. 
[44] C. Harris and M. Stephens, “A combined corner and edge detector," in Proceed-

ings of the 4th lvey Vision Conference, pp. 147{151, 1988. 
[45] R. Hartley, “In defense of the 8 point algorithm,” in IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 19, 1997. 
[46] P. Torr and A. Zisserman, “Robust parameterization and computation of the tri-

focal tensor,” Image and Vision Computing, vol. 15, no. 591-605, 1997. 
[47] P. Jasiobedski, “Fusing and guiding range measurements with colour video im-

ages,” in Proceedinsg International Conference on Recent Advances in 3-D 
Digital Imaging and Modelling, (Ottawa, Ontario), pp. 339-347, IEEE Computer 
Society Press, 1997. 

[48] Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique 
with an Application to Stereo Vision. International Joint Conference on Artifi-
cial Intelligence, pages 674-679, 1981. 

[49] Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features. 
Carnegie Mellon University Technical Report CMU-CS-91-132, 1991. 

[50] Jianbo Shi and Carlo Tomasi. Good Features to Track. IEEE Conference on 
Computer Vision and Pattern Recognition, pages 593-600, 1994. 

[51] Stan Birchfield. Derivation of Kanade-Lucas-Tomasi Tracking Equation. Un-
published, May 1996. 

[52] Étienne Vincent and Robert Laganière, Matching Feature Points in Stereo Pairs: 
A Comparative Study of Some Matching Strategies, in Machine Graphics & Vi-
sion , vol. 10, no. 3, pp. 237-259, 2001 

[53] R. Klette, K. Schluns, and A. Koschan, Computer Vision: three-dimensional 
data from images. Springer, 1996. 

[54] A. Hampapur, R. Jain, and T. E. Weymouth. Production Model Based Digital 
Video Segmentation. Multimedia Tools and Applications, Vol.1, pp. 9-45, 1995. 

[55] R. Lienhart. Reliable Transition Detection In Videos: A Survey and Practitio-
ner's Guide. International Journal of Image and Graphics (IJIG), Vol. 1, No. 3, 



 153 

pp. 469-486, 2001. 
[56] U. Gargi, R. Kasturi, S. H. Strayer. Performance Characterization of Video-

Shot-Change Detection Methods. IEEE Transaction on Circuits and Systems for 
Video Technology,Vol.10,No.1,Feb. 2000. 

[57] G. Lupatini, C. Saraceno, and R. Leonardi. Scene Break Detection: A Compari-
son. Research Issues in Data Engineering, Workshop on Continuous Media Da-
tabases and Applications, pp. 34-41.1998. 

[58] B. Shahraray. Scene Change Detection and Content-Based Sampling of Video 
Sequences. SPIE Digital Video Compression, Algorithm and Technologies, Vol. 
2419, pp. 2-13, 1995 

[59] B.-L.Yeo and B. Liu. Rapid Scene Analysis on Compressed Video. IEEE Trans-
actions on Circuit and Systems for Video Technology,Vol.5,No.6,Dec.1993. 

[60] M. M. Yeung and B.-L. Yeo. Video Visualization for Compact Presentation and 
Fast Browsing of Pictorial Content.  IEEE Transactions on Circuits and Systems 
for Video Technology,Vol.7, No. 5, pp. 771-785, Oct. 1997. 

[61] J. Mateer, J. Robinson, Semi-Automated Logging for Professional Media Appli-
cations. Video, Vision and Graphics  (VVG) 2003, Bath, UK, July, 2003. 

[62] A Whitehead. Fast Feature Based Video Segmentation and Annotation. Proc. 7th 
International Symposium on Signal Processing and its Applications (ISSPA), 
Paris, 2003. 

[63] S. Pfeiffer, R.Lienhart, G. Kühne, W. Effelsberg.  The MoCA Project - Movie 
Content Analysis Research at the University of Mannheim. Informatik '98, pp. 
329-338, 1998. 

[64] J. Lee and B. Dickinson, “Multiresolution video indexing for subband coded 
video databases”, in Proceedings of IS&T/SPIE, Conference on Storage and Re-
trieval for  Image and Video Databases,San Jose, CA, 1994. 

[65] R. Lienhart. Dynamic Video Summarization of Home Video. SPIE Storage and 
Retrieval forMedia Dat bases 2000, Vol. 3972, pp. 378-389, Jan. 2000. 

[66] R. Lienhart, S. Pfeiffer, and W. Effelsberg. Video Abstracting. Communications 
of the ACM, Vol. 40, No. 12, pp. 55-62, Dec. 1997. 

[67] A. Seyler, “Probability distribution of television frame difference”, Proc. Insti-
tute of Radio Electronic Engineers of Australia 26(11), pp 355-366, 1965 

[68] A. Nagasaka and Y. Tanaka, “Automatic video indexing and full-video search 
for object appearances”, in Visual Database Systems II, pp 113-127, 1992 

[69] H. Zhang, A. Kankanhalli, S. Smoliar, “Automatic partitioning of full-motion 
video”, ACM/Springer Multimedia  Systems. 1(1), pp 10-28,1993 

[70] R Zabih, J. Miller, and K. Mai, "A Feature-Based Algorithm for Detecting and 
Classifying Scene Breaks", Proc. ACM Multimedia, pp. 189-200, 1995 

[71] R Zabih, J. Miller, and K. Mai,. “A Feature Based Algorithm for detecting and 
Classifying Production Effects”, Multimedia Systems, Vol 7, p 119-128, 1999. 

[72] J. Canny A Computational Approach to Edge Detection, IEEE Transactions on 
Pattern Analysis and Machine Intelligence, Vol 8, No. 6, Nov 1986. 

[73] A Smeaton et al.,  “An Evaluation of Alternative Techniques for Automatic De-
tection of Shot Boundaries in Digital Video” in Irish Machine Vision and  Image 
Processing Conference, 1999 



 154 

[74] W.  Hardle and D. Scott. “Smoothing in by weighted averaging using rounded 
points”, Computational Statistics Vol. 7: 97-128, 1992. 

[75] R. Hartley, “Kruppa's equations derived from the fundamental matrix," IEEE 
Trans. On Pattern Analysis and Machine Intelligence, vol. 19, pp. 133-135, Feb-
ruary 1997. 

[76] Q.-T. Luong and O.D.Faugeras, “Self-calibration of a moving camera from point 
correspondences and fundamental matrices," International Journal of Computer 
Vision, vol. 22, no. 3, pp. 261-289, 1997. 

[77] L. Lourakis and R. Deriche, “Camera self-calibration using the svd of the fun-
damental matrix," Tech. Rep. 3748, INRIA, Aug. 1999. 

[78] P. Mendonca and R. Cipolla, “A simple technique for self-calibration," in Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition, 
(Fort Collins, Colorado), pp. 112-116, June 1999. 

[79] C. Zeller and O. Faugeras, “Camera self-calibration from video sequences: the 
kruppa equations revisited,” Tech. Rep. 2793, INRIA, Feb. 1996. 

[80] M. Pollefeys and L. Van Gool, “Stratified Self-Calibration with the Modulus 
Constraint”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 
Vol 21, No.8, pp.707-724, 1999.  

[81] M. Pollefeys, R. Koch, and L. V. Gool, “Self-calibration and metric reconstruc-
tion in spite of varying and unknown intrinsic camera parameters," International 
Journal of Computer Vision, vol. 32, no. 1, pp. 7-25, 1999. 

[82] W. Triggs. Autocalibration from planar scenes. In Proc.  ECCV, 1998. 
[83] P. Sturm and S. Maybank. On plane-based camera calibration: A general algo-

rithm, singularities, applications. In IEEE Conf. CVPR 1999. 
[84] B. Triggs. Autocalibration from Planar Scenes. ECCV, pp. 89-105, 1998. 
[85] Z. Zhang, “A flexible new technique for camera calibration”. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000. 
[86] O. Faugeras and Q.T. Luong, The Geometry of Multiple Images. The MIT Press, 

2001. 
[87] P. Sturm, A case against kruppa’s equations for camera self-calibration,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 1199-
1204, Oct. 2000 

[88] S. Bougnoux, “From projective to Euclidean space under any practical situation, 
a criticism of self-calibration,” in Proc. 6th Int. Conf. on Computer Vision, 
(Bombay, India), pp. 790-796, 1998. 

[89] A. Morgan, Solving polynomial systems using continuation for science and en-
gineering. Prentice Hall, Englewoord Clifis, 1987  

[90] A. Fusiello, Uncalibrated Euclidean reconstruction: a review,” Image and Vision 
Computing, vol. 18, pp. 555-563, 2000. 

[91] W. H. Press and B. P. Flannery, Numerical recipes in C. Cambridge University 
press, 1988. 

[92] M. Maza and D. Yuret, “Dynamic hill climbing,” AI Expert, pp. 26{31, 1994. 
[93] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cam-

bridge University Press, 2000. 
[94] Nicholson, Linear Algebra with Applications (3rd. ed).  PWS Publishing Com-



 155 

pany, 1995. 
[95] J. Holland, “Adaptation in Natural and  Artificial Systems”, University of 

Michigan Press, 1995  
[96] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive sys-

tems,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, 1975. 
[97] D. Laurendeau, G. Roth, and L. Borgeat,  “Optimization algorithms for range 

image registration”   Vision Interface 96, pages 141-151, Toronto, Canada. 
[98] P. Torr, A.Zisserman, S Maybank, “Robust detection of Degenerate Configura-

tions for the fundamental matrix” In Proc. 5th Int’l Conf. on Computer Vision, 
Boston, pages 1037—1042, 1995 

[99] G. Roth and A. Whitehead, “Using projective vision to find camera positions in 
an image sequence,” in VI 2000, Montreal Canada, pp. 87-94f, May 2000. 

[100] A. Whitehead and G. Roth, “The Projective Vision Toolkit”, in Proceedings 
Modeling and Simulation, (Pittsburgh, Pennsylvania), May 2000.  

[101] T. Ueshiba and F. Tomita, “A factorization method for projective and Euclidean 
reconstruction," in ECCV'98, 5th European Conference on Computer Vision, 
(Freiburg, Germany), pp. 290-310, Springer Verlag, June 1998. 

[102] ISPRS Working Group 2, Scene Modeling and VR.  
http://www.vit.iit.nrc.ca/elhakim/WGV2-data.html. 

[103] P.Gurdjos and P.Sturm.  “Methods and Geometry for Plane-Based Self-
Calibration.” In Proc. of the International Conference on Computer Vision and 
Pattern Recognition, 2003  

[104] H. Huang, C. Kao, Y. Lin, Y. Hung, Yi-Ping,  “Disparity-based view interpola-
tion for multiple-perspective stereoscopic displays”, Proceedings of SPIE Vol. 
3957, Stereoscopic Displays and Virtual Reality Systems VII,  p. 102-113, 2000 

[105] Lily Lee, Raquel Romano, Gideon Stein, “Monitoring Activities from Multiple 
Video Streams: Establishing a Common Coordinate Frame”, IEEE Transactions 
on Pattern Recognition and Machine Intelligence, Special Section on Video 
Surveillance and Monitoring, 22(8), 2000 

[106] J. Kang, I. Cohen, G. Medioni.   “Continuous multi-views tracking using tensor 
voting”, Proceedings of Workshop on Motion and Video Computing, 2002. pp 
181- 186 

[107] Y. Caspi and M. Irani. “Alignment of non-overlapping sequences”. Proceedings 
of International Conference on Computer Vision, Vancouver, BC, pp 76-83, 
2001. 

[108] S. Kuthirumal, C.V. Jawahar, and P.J. Narayanan. “Video frame alignment in 
multiple views”. Proceedings of International Conference on Image Processing, 
Rochester, NY, 2002. 

[109] C. Rao, A.Gritai, M. Shah. “View-invariant Alignment and Matching of Video 
Sequences”, In Proceedings of International Conference on Computer Vision, pp 
939-945, 2003.  

[110] P. Tresadern and I. Reid.  “Synchronizing Image Sequences of Non-Rigid Ob-
jects”, In Proceedings of British Machine Vision Conference, 2003 

[111] David G. Lowe, “Distinctive image features from scale-invariant keypoints”, 
International Journal of Computer Vision, 2004. to appear 



 156 

  

Index 
 
 

A 
aspect ratio, x, 21, 90, 93, 97, 101, 106, 107, 108, 110 
autocalibrate, 20, 42, 90, 94, 96, 104, 106, 108, 109, 

149 
autocalibrated, 106, 107 
autocalibrating, 106 
Autocalibration, 90 

B 
blocksworld, 2 
boundary detection, 5, 62 

C 
calibrated, 3, 9, 25, 27, 39, 42, 50, 94, 115 
calibration, iii, 4, 7, 9, 20, 21, 27, 28, 38, 39, 40, 42, 

43, 54, 57, 60, 61, 90, 91, 92, 93, 94, 97, 99, 101, 
103, 104, 105, 110, 140, 149, 154 

camera sequence, 121, 122, 123 
candidate set, 73, 78, 84, 85, 89, 128, 129, 130, 131, 

134 
Class A, 91, 93, 105, 110 
Class B, 90, 91, 92, 93, 104, 105, 110 
Class C, 90, 91, 92 
collineation, 12 
computational video, ii, iii, 3, 4, 5, 6, 8, 9, 139 
conic, 14, 16, 19, 93, 95, 96 
correspondence, ii, iii, 4, 5, 25, 29, 32, 33, 39, 41, 43, 

45, 50, 51, 54, 57, 60, 61, 65, 90, 115, 126, 127 
cross camera subset, 113, 121 
cut, viii, 5, 46, 47, 62, 63, 64, 65, 66, 70, 71, 72, 73, 

74, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89 
cut detection, 5, 47, 62, 63, 65, 80, 82, 83, 87, 89 

D 
density, 67, 73, 74, 77, 78, 79, 83 
disparity, viii, 5, 25, 26, 39, 49, 50, 51, 52, 58, 60, 61, 

70, 137 
dissolve, 62, 88 
distribution, 29, 64, 82, 87, 100, 153 
dynamic-CSS, 122 

E 
epipolar geometry, 25, 26, 27, 29, 30, 31, 51, 90, 95, 

115, 149, 151 
essential matrix, x, 9, 14, 27, 28, 51, 93, 94 
exact synchronization, 114, 115, 116, 117, 132 
extrinsic, 7, 20, 21, 22, 115 

F 
F1, 78, 80, 81, 82, 83, 84, 85, 86, 89 
fade, 88 
feature tracking, viii, 5, 34, 45, 62, 67, 68, 69, 72, 83, 

85, 87, 89, 124, 125, 138, 140 
focal length, x, 11, 58, 90, 93, 101, 105, 106, 107, 108, 

109, 110, 111, 112, 141 
frame rate, 4, 35, 43, 44, 55, 114, 115, 116, 117, 118, 

119, 122, 125, 126, 130, 131, 132, 133, 138 
frequency, 74, 116 
full frame synchronization, 114, 115, 116, 117, 118, 

126, 132, 133, 134, 136 
fundamental matrix, v, x, 4, 6, 9, 28, 29, 30, 31, 33, 

38, 41, 42, 51, 52, 53, 60, 61, 90, 91, 92, 93, 94, 
95, 96, 97, 102, 103, 104, 106, 110, 111, 149, 154, 
155 

G 
gradient, 34, 39, 44, 48, 50, 51, 52, 58, 60, 61, 68, 87, 

93, 97, 100, 101, 102, 107, 124 

H 
homographies, 23 
homography, x, 23, 90, 114 

I 
inflection point, 116, 123, 126, 127, 130, 131, 133, 

134, 137 
intrinsic, iii, x, 6, 16, 20, 21, 28, 90, 94, 102, 104, 105, 

106, 108, 110, 112, 114, 141, 154 
invariant, 15, 17, 19, 91, 108, 140, 155 

M 
minimum spanning tree, 70, 71, 72 

O 
optical center, x 

P 
PDF, viii, 78, 79 
period, 116, 119, 137 
phase shift, 120 
photogrammetry, 4, 5, 57, 61, 113 
planar, 2, 25, 52, 90, 114, 115, 140, 154 
precision, 30, 78, 80, 81, 82, 84, 89, 115 
primary synchronization period, 118 



 2 

primary synchronization point, 116, 117, 118, 121, 
122, 130 

principle point, 104 
probability density function, 73, 74, 75, 78 

R 
recall, 78, 80, 81, 82, 84, 89 
reconstruction, iii, 6, 20, 39, 40, 42, 43, 45, 54, 57, 60, 

61, 90, 92, 104, 105, 106, 110, 111, 149, 151, 152, 
154, 155 

S 
salient frame, 43, 44, 45, 46 
secondary synchronization point, 117, 118 
segmentation, iii, 6, 62, 63, 89, 139, 141 
skew, x, 90, 97, 104 
static-CCS, 121, 122, 123, 124, 130 
stereo vision, 3, 6, 25, 27, 42 
support set, 51, 52, 60, 61 

T 
trajectory image, vi, viii, ix, 123, 124, 125, 126, 127, 

128, 129, 130, 131, 132, 134, 135, 137 
trifocal tensor, v, 30, 31, 53, 60, 61, 122, 131, 149, 

152 
trilinear tensor, 4, 31, 38, 39, 40, 41, 42, 52, 53, 124, 

150, 151 

U 
uncalibrated, 4, 9, 20, 27, 28, 38, 51, 60, 90, 108, 150, 

151 

V 
video sequence, iii, viii, 4, 5, 6, 8, 43, 45, 54, 55, 61, 

62, 63, 66, 68, 74, 76, 113, 114, 115, 116, 117, 
118, 119, 120, 121, 124, 126, 127, 132, 139, 140, 
151, 154 

W 
wipe, 62 

 


