

Fundamental Problems in Computational Video

By
Anthony David Whitehead

A doctoral thesis submitted to
the Faculty of Graduate Studies and Research

in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Ottawa-Carleton Institute for Computer Science
School of Computer Science

Carleton University
Ottawa, Ontario

April 2004

© Copyright
2004, Anthony David Whitehead

 ii

Preface and Acknowledgements

This thesis represents a subset of my efforts over the last several years. The thesis de-
scribes a subset of the work carried out at the School of Computer Science, Carleton Uni-
versity, specifically that work that includes computational video problems as a core fo-
cus. I am very grateful to Prosenjit Bose for his encouragement and infectious zeal and
constant guidance to improve the theoretical writing style. The work that follows has
been greatly enriched by Robert Laganiere, whose implicit understanding of computer
vision and comments have resulted in fruitful explorations. Thanks is also owed to
Gerhard Roth for providing initial exposure to the field of projective vision for which
much of this thesis revolves.

I would like to also extend thanks to all whom, via personal correspondence, have pro-
vided useful guidance and insights on a variety of different topics. Specifically, Franz
Oppacher, David Lowe, Mark Pollefeys, Patrick Morin, and Richard Hartley have all pro-
vided interesting commentary.

A great deal of thanks must go to both family and friends who make the journey towards
this end an enjoyable one. Thanks particularly go to Darcy, Jason, Mike, Pat, and Vero-
nique for their influence, and helping me be under it. Furthermore, my sister Justine,
thanks for all the interesting talk and always picking up the tab, and most fundamentally
thanks to Tanya for keeping me focused.

I am grateful to Carleton University and Nortel for providing my funding.

 iii

Abstract

Problems in computer vision and computational video often make certain assumptions
about the input data. For example, structure from motion algorithms assume a baseline of
minimal configuration and reconstruction problems often assume a known corresponding
feature set and calibration parameters. Often it is the case that these assumptions present
difficult problems in themselves.

This thesis examines problems that maintain a common thread of video data. Often
coined computational video, this emerging field presents a number of interesting prob-
lems that often fall into the assumptions of other research areas. Specifically, we address
suitable baseline selection for structure from motion as well as an automated system that
solves the correspondence problem in large number of cases. We also address a means
for automatically computing intrinsic camera parameters for long video sequences and
we examine a method for synchronizing multiple video streams. Furthermore, we ad-
dress the problem of accurate segmentation of commercial video streams for subsequent
use in video databases and search facilities.

Each of the problems addressed in this thesis are often assumed to be solved in the pres-
entation of other research problems such as 3D reconstruction, video abstracting and da-
tabase population. Each of the proposed solutions provides benefits to the research
community by providing tools and/or novel algorithms that address these often assumed
sub-problems. Furthermore, the findings presented in this thesis remove a number of
constraints that are generally placed on these types of problems.

 iv

Contents

Preface and Acknowledgements .. ii
Abstract... iii
Contents .. iv
List of Figures... viii
Guide to Notation .. x
1 Introduction... 2

1.1 From Computer Vision to Computational Video.. 2
1.2 Motivation... 3
1.3 Thesis Outline and Contributions ... 4

2 Background ... 8
2.1 Computational Video .. 8
2.2 Camera Models ... 9
2.4 Overview of Projective Geometry .. 11

2.4.1 Projective n-spaces.. 12
2.4.2 Collineations ... 12
2.4.3 The Projective Plane (P2) .. 13

2.4.3.1 Points and Lines.. 13
2.4.3.2 Lines at Infinity... 13
2.4.3.3 Pencils of Lines... 14
2.4.3.4 Conics ... 14

2.4.4 The Projective Space P3 .. 14
2.4.4.1 Quadrics .. 14

2.4.5 Strata of Geometries ... 15
2.4.5.1 Projective Strata .. 15
2.4.5.2 Affine Strata.. 16
2.4.5.3 Metric Strata.. 16
2.4.5.4 Euclidean Strata .. 17
2.4.5.5 Strata Review.. 17
2.4.5.6 Changing Strata... 18

2.5 Camera Calibration ... 20
2.5.1 Intrinsic ... 20
2.5.2 Extrinsic Calibration ... 21

2.6 Planer Transformations... 22
2.7 Stereo Vision... 25

2.7.1 Correspondence Problem.. 25
2.7.2 Epipolar Geometry.. 25
2.7.3 Essential Matrix .. 27
2.7.4 Fundamental Matrix.. 27

2.8 Robust Methods for Computing the Epipolar Geometry.................................. 29
2.8.1 RANSAC .. 30

 v

2.9 Three View Geometry... 30
2.9.1 The Trifocal Tensor .. 31
2.9.2 Constraints on the Tensor ... 32
2.9.3 Robust Computation of the Tensor ... 33

2.10 N-View Geometry... 33
2.11 Feature Tracking ... 34

2.11.1 The Feature Tracking Equations... 34
2.11.2 Good Features to Track... 36

3 Computing Camera Positions from Uncalibrated Video/Image Sequences 38
3.1 Introduction... 38
3.2 Processing Steps.. 43

3.2.1 Selecting Frames that are well suited.. 43
3.2.1.1 Motion Estimation and Feature Tracking ... 44
3.2.1.2 Salient Frame Extraction... 45
3.2.1.3 Salient Frame Extraction Results.. 46

3.2.2 Finding corners/interest points.. 48
3.2.3 Matching Corners.. 49
3.2.4 Local consistency filtering.. 50
3.2.5 Computing the fundamental matrix .. 51
3.2.6 Guided matching... 52
3.2.7 Computing putative triple correspondences.. 52
3.2.8 Computing the trifocal tensor ... 53
3.2.9 Computing the 3D information... 53

3.3 Experiments .. 54
3.4 Conclusions and Discussions.. 60

4 Segmenting Video Sequences ... 62
4.1 Introduction... 62
4.2 Additional Background... 63

4.2.1 Quantifying Inter-frame Differences .. 64
4.2.1.1 Individual Pixel Differences ... 64
4.2.1.2 Intensity/color histograms... 65
4.2.1.3 Edge based features... 65

4.2.2 Classifying Differences as cuts and non-cuts ... 66
4.2.2.1 Global threshold.. 66
4.2.2.2 Adaptive threshold .. 66

4.3 Feature Tracking for Quantifying Dissimilarity ... 67
4.3.1 Feature Tracking ... 68
4.3.2 Pruning False Tracking ... 70

4.4 Automatically Determining a Linear Discriminator ... 73
4.4.1 Density Estimation.. 74
4.4.2 Computational Considerations.. 77
4.4.3 Non-Overlapping Distributions .. 78
4.4.4 The Candidate Sets (Overlapping Distributions)...................................... 78

4.5 Experiments .. 80
4.5.1 Comparison Metrics.. 80
4.5.2 Experimental Results .. 82

 vi

4.5.3 Processing Speed .. 85
4.5.4 The Effect of Feature Selection .. 86
4.5.5 Known Problem Areas.. 87

4.6 Conclusions and Discussion ... 89
5 Autocalibration from the Fundamental Matrix ... 90

5.1 Introduction... 90
5.2 Autocalibration via Equal Eigenvalues.. 94

5.2.1 Single Image Pairs .. 94
5.2.2 Multiple Image Pairs... 94

5.3 Autocalibration via Kruppa’s Equations... 95
5.3.1 Single Image Pairs .. 95
5.3.2 Multiple Image Pairs... 96

5.4 The Evolutionary Approach.. 97
5.4.1 Dynamic Hill Climbing... 98
5.4.2 Mutating coordinate frames .. 99
5.4.3 Exploiting local optima... 99
5.4.4 Coverage of Search Space .. 100
5.4.5 Autocalibration Algorithm.. 101

5.5 Degeneracy ... 102
5.5.1 Handling Degeneracy.. 103

5.6 Experiments .. 104
5.7 Conclusions and Discussion ... 110

6 Synchronizing Multiple Video Sequences... 113
6.1 Introduction... 113

6.1.1 Additional Background... 114
6.2 Problem Formalization.. 116

6.2.1 The synchronization problem .. 116
6.3 Recovery of the synchronization .. 122

6.3.1 Computing Camera Geometry from the Static-CCS 123
6.3.2 Generating the Trajectory Images... 124
6.3.3 Gross approximation of synchronization via trajectory images 126
6.3.4 Refinement via maximal geometric consensus....................................... 128
6.3.5 Synchronization in the face of erroneous geometries 130
6.3.6 Algorithm Review: Synchronize... 130

6.4 Experimental Results .. 131
6.4.1 Synthetic Data... 131
6.4.2 Real Data... 132

6.5 Practical Considerations.. 137
6.6 Conclusions and Discussion ... 138

7 Conclusions and Open Problems ... 139
7.1 Summary... 139
7.2 Future Work .. 140

A Exact Match counts for PVT Example Sets ... 142
B The Portable Image Library (PIL).. 148
C The Projective Vision Toolkit (PVT)... 149
Bibliography .. 150

 vii

Index... 156

 viii

List of Figures

FIGURE 2.1: THE PINHOLE CAMERA MODEL.. 10
FIGURE 2.2: THE PINHOLE CAMERA WITH A VIRTUAL IMAGE PLANE................................... 10
FIGURE 2.3: CROSS RATIO OF 4 LINES IN P2 .. 16
FIGURE 2.4: SHAPE DISTORTIONS FOR EACH GROUP OF TRANSFORMATIONS IN 3D............. 18
FIGURE 2.5: INTRINSIC PARAMETERS ... 21
FIGURE 2.6: EXTRINSIC PARAMETERS FOR A GENERIC CAMERA IN THE WORLD.................. 22
FIGURE 2.7: TWO VIEWS OF THE SAME SCENE .. 23
FIGURE 2.8: TRANSFORMATION OF LEFT IMAGE TO THE VIEW POINT OF THE RIGHT IMAGE 24
FIGURE 2.9: RIGHT VIEW FROM FIG. 2.4 SUPERIMPOSED ONTO FIG 2.5 24
FIGURE 2.10: EPIPOLAR GEOMETRY OF TWO CAMERAS WITH FIXED X DISPARITY.............. 26
FIGURE 2.11: EPIPOLAR GEOMETRY OF TWO CAMERAS IN AN ARBITRARY POSITION.......... 26
FIGURE 2.12: THE TWO TYPES OF CONJUGATE PAIR ERRORS .. 29
FIGURE 2.13: TRIFOCAL GEOMETRY.. 31
FIGURE 3.1: SYSTEM FOR GOING FROM VIDEO TO 3D CAMERA POSITIONS.......................... 40
FIGURE 3.2: EVERY 2ND

 EXTRACTED FRAME FROM EXAMPLE SEQUENCE............................ 48
FIGURE 3.3: ALL FRAMES FROM EXAMPLE SEQUENCE.. 48
FIGURE 3.4 SELECTION 9 OF IMAGES FROM VIDEO SEQUENCE ... 55
FIGURE 3.5 RECONSTRUCTED CAMERA POSITIONS AND POINTS FROM A VIDEO CAMERA.... 55
FIGURE 3.6 3 SAMPLES FROM THE CMU-BIGHOUSE SEQUENCE, FRAMES 1,6 & 11. 56
FIGURE 3.7 RECONSTRUCTED CAMERA POSITIONS AND FEATURE POINTS 57
FIGURE 3.8 RECONSTRUCTED CAMERA POSITIONS WITH OVERLAPS HIGHLIGHTED 58
FIGURE 3.9 ORIGINAL IMAGE WITH FEATURES AND CAMERAS OVERLAID 58
FIGURE 3.10 EXAMPLE IMAGE WITH OVERLAID CAMERA POSITIONS AND POINTS............... 59
FIGURE 4.1: HARD CUT BETWEEN FRAMES 206 AND 207 OF A VIDEO SEQUENCE................ 63
FIGURE 4.2: SEQUENCE FROM THE MOVIE PSYCHO .. 67
FIGURE 4.3: DIAGRAM OF SYSTEM TO COMPUTE CUTS ... 67
FIGURE 4.4: END RESULT FOR FEATURE TRACKING OVER SEVERAL FRAMES...................... 69
FIGURE 4.5: THREE CONSECUTIVE FRAMES FROM A SEQUENCE.. 71
FIGURE 4.6: THE RESULTS OF SQUARING.. 72
FIGURE 4.7: (A) NON-OVERLAPPING DISTRIBUTIONS, (B) OVERLAPPING DISTRIBUTIONS... 74
FIGURE 4.8: DETAILED EXAMINATION OF KERNEL FUNCTIONS. ... 76
FIGURE 4.9: TRIANGULAR KERNEL AT VARIOUS BANDWIDTHS (WINDOW SIZES) 77
FIGURE 4.10: (A) ORIGINAL PDF (B) MODIFIED FIRST DERIVATIVE (G(X)) 79
FIGURE 4.12: DENSITY ESTIMATION GRAPH. .. 83
FIGURE 4.14: DIGITIZATION ARTIFACTS... 87
FIGURE 4.15: EXAMPLES OF PROBLEM SITUATIONS.. 88
FIGURE 5.1: SCATTER PLOT OF 2D SEARCH SPACE GENERATED BY SDRS. 100
FIGURE 5.2: DEGENERATE EPIPOLAR GEOMERTY ... 103
FIGURE 6.6: REQUIRED GEOMETRIES FOR A 3 CAMERA SYNCHRONIZATION 124
FIGURE 6.7: INITIAL IMAGE, TRAJECTORY IMAGE... 125
FIGURE 6.8: TRAJECTORY IMAGE (ENLARGED) FOR A 3 SECOND INTERVAL...................... 126

 ix

FIGURE 6.9: 3 TRAJECTORY IMAGES WITH OBVIOUS COINCIDENT POINTS OF INFLECTION. 127
FIGURE 6.10: EPIPOLAR LINE AND TRAJECTORIES. ... 128
FIGURE 6.11: COMPUTING FRAME VIA EPIPOLAR AND TENSOR TRANSFER........................ 129
FIGURE 6.12: 3 SYNCHRONIZED (ROWS), CONSECUTIVE FRAMES (COLUMNS)................... 133
FIGURE 6.13: SELECTED SYNCHRONIZED FRAMES... 134
FIGURE 6.14: SELECTED SYNCHRONIZED FRAMES... 135

 x

Guide to Notation

Throughout the paper, we will use a common convention for notation. In Table 1 below,
a list of common notation is provided

c : The optical center of the image plane in pinhole camera
C : The optical center of the focal plane in pinhole camera
D : The Euclidean transformation matrix, this is a 4x4 matrix
E : The essential matrix, this is a 3x3 matrix
F : The fundamental matrix, this is a 3x3 matrix
f : Intrinsic camera parameter, focal length
H : The homography matrix, this is a 3x3 matrix
K : The intrinsic camera parameters, this is a 3x3 matrix
l : A line in homogeneous form, this is an (N+1)D vector

M : A point in 3D space, this is a 3D vector
m : A point in an image, this is a 2D vector
P : The projection matrix (3D to 2D), this is a 3x4 matrix
R : The Rotation matrix, this is a 3x3 matrix
s : Scalar factor
t : The translation vector, this is a 3D vector
ℑℑℑℑ : Trifocal Tensor, this is a 3x3x3 cube operator
U0 : Intrinsic camera parameter, center of projection X
V0 : Intrinsic camera parameter, center of projection Y
α : Intrinsic camera parameter, aspect ratio
θ : Intrinsic camera parameter, sensor skew

 2

Chapter 1

1 Introduction

1.1 From Computer Vision to Computational Video

Research into computer vision has been ongoing for many decades, with origins

dating back to the late 50’s and early 60’s. Due to limited computing power, a lack of

understanding, and experience with the complexity of three dimensions, most early work

in computer vision concentrated on what today are largely considered 2D problems such

as fingerprint processing [1], optical character recognition (OCR) [2], and satellite im-

agery [3]. Other recent areas of research include the use of computer vision techniques in

practical problems like retrieval from image databases, content-based image and video

compression, and face recognition to name a few. However, a lot of this work is largely a

matter of applying already well-established computer vision methods to new problems

but require some level preprocessing of the input data to allow the use of known methods.

A consequential step of the early research was the application of computer vision

techniques for interpreting aerial photographs and satellite imagery. Here the images are

typically very large and much more complex in their contents and variety, but still are

mostly 2D in nature (aside from some small 3D effects like shadows cast by tall buildings

or bridges crossing rivers). Satellite imagery is still handled using mostly planar method-

ologies due to the distance between features being minute in comparison to the distance

of the camera to the earth’s surface [4]. Work on these types of images dominated com-

puter vision research throughout the seventies. However, some significant work was done

on images of simple 3D scenes of the so-called “Blocksworld", a domain of painted toy

blocks on a plain tabletop. Still today, many researchers use a blocksworld domain to

verify effectiveness and test algorithms.

In the eighties, and still today, the main challenge of computer vision research is

attempting to deal more fully with the 3D world, and with the movement of sensors. A lot

 3

of work was supported and influenced by the Autonomous Land Vehicle (ALV)1 Project

in the United States [5], but its origins appear earlier. The ALV was intended to be a ro-

bot vehicle that could drive itself around the countryside, guided by computer vision al-

gorithms and other sensors. Within the past decade, the ALV project has added video

cameras as a standard sensor to be used on the vehicle [6].

As the video camera plays such an important role in our day to day lives, it is not

likely that we will see the video camera diminish as a data acquisition source for some

time to come. The volume of video data that has resulted since the advent of the video

camera far exceeds that of still image photography and creates a new set of unique and

interesting problems that need resolution. If there is any one thing that characterizes the

recent trends and direction of computer vision research today, it is the terms dynamic (ac-

tive) vision and computational video. Researchers are moving away from the implicit

view that a vision system is merely a stationary recipient of passive images, realizing that

as part of a robot, a vision system will actively move about and explore while interacting

with its (dynamic) environment. This new point of view has inspired research in the area

of dynamic vision recently, leading to robotics and computational video research labs

with an emphasis on video processing research becoming prevalent.

1.2 Motivation

There are a number of reasons for dynamic vision based video processing prob-

lems. Primarily (for the author) is that they are interesting practical problems with theo-

retical backgrounds that combine elements of computer vision; artificial intelligence, ef-

ficiency and optimization.

It has often been said that computer vision research is sometimes an exercise in

finding the right data set, however, as techniques mature and become standardized for

solving certain problems, the challenge always remains in ensuring that unconstrained

inputs can be made suitable for the mature algorithms. Until recently it was thought that

little work could be done without having the metrics of a calibrated stereo vision system.

1 A complete list of publications related to the ALV project since 1985 can be found a the ALV website at
Carnegie Mellon University (http://www.ri.cmu.edu/labs/lab_28_pubs.html)

 4

Just over a twenty years ago, the Essential matrix was introduced [7], followed shortly by

the fundamental matrix [8][9] and not long after that, robust methods for determining the

fundamental matrix [10][11] were introduced offering the capability to take a simple, un-

calibrated vision system, and perform some machine vision tasks. This work progressed

to the introduction of 3 view geometry [12][18]. Since then, much research has been fo-

cused on autocalibration and metric reconstructions with uncalibrated stereo rigs. With

all these advances, there has been little concentration on video data and the unique prob-

lems associated that come with it.

Specifically, this thesis examines techniques that are used as a precursor to the

application of well-known photogrammetry and content based video retrieval algorithms.

Due to the volume of data contained in a video sequence it is impractical, if not impossi-

ble, to effectively apply a standard technique to each and every frame. Furthermore,

many algorithms are not well suited for the close proximity of adjacent images produced

by the high frame rates in video cameras. Currently, there is still some reliance on tech-

niques such as manual resolution of the correspondence problem or non-linear computa-

tional techniques that do not scale up to volume of images found in a typical video se-

quence. Therefore, this thesis provides some solutions to these types of problems faced

by all computer vision researchers who will use video data as an input. The main contri-

butions of this thesis are outlined next.

1.3 Thesis Outline and Contributions

Hopefully the reader is now convinced that the problem of computational video

processing for computer vision tasks is both interesting and important. The remainder of

this section outlines the chapters and the research contributions of this thesis.

Chapter 2 – Background

This chapter is used as a vehicle for covering certain background information that

is necessary for the remainder of the work presented. Theory of multiple view geometry

applied to computer vision is outlined in this chapter. Concepts such as homographies,

the Essential and Fundamental matrices, camera calibration and the trilinear tensor are

 5

given. Finally we provide some coverage of feature tracking in video sequences as it

forms a fundamental primary part in the solution of many computational video problems.

Chapter 3 – From Video Sequences to 3D Camera Positions

The correspondence of feature points between image pairs is an important first

step in many computer vision algorithms that is often assumed, or hand selected. This

chapter presents a modular system of robustly computing image pair correspondences

from a video sequence by utilizing geometric constraints to guide an iterative process

when computing the putative corresponding match set. The method allows for the solu-

tion of the correspondence problem in two or more views without human intervention.

This chapter makes contributions to the field of computer vision by providing a publicly

available robust and accurate method for solving the correspondence problem over 2 and

3 views. Furthermore, it presents a novel methodology to select frames based on the dis-

parity of corresponding features via feature tracking as a precursor to the correspondence

problem. Consequently, algorithms that rely on the correspondence problem to be solved

apriori can now be solved in an automated fashion. This allows long image sequences to

be handled where manual selection would no longer be possible and conditions the input

for photogrammetry algorithms which makes the solutions to these photogrammetry

problems more tractable. For example, by appropriately spacing the input images, the

bundle adjustment is more likely to converge.

Chapter 4 – Video Segmentation

This chapter is a slight departure from the others in that we steer away from mul-

tiple view geometry based computer vision and use feature-tracking techniques to seg-

ment commercial video clips for use in applications such as content-based video, image

indexing and retrieval, video index creation and video database population. There has

been much work concentrated on creating shot boundary detection algorithms in recent

years. However a truly accurate method of cut detection still eludes researchers in gen-

eral. Cut detection methods can all be classified based on the various inter-frame differ-

encing schemes that they employ. In this work we present a scheme based on stable fea-

ture tracking for inter frame differencing. Furthermore, we present a method to stabilize

the differences and automatically detect a global threshold to achieve a high detection

 6

rate. We compare our scheme against other cut detection techniques on a variety of data

sources that have been specifically selected because of the difficulties they present for

other differencing techniques due to quick motion, many small shots and computer-

generated effects. In this study our goal is to improve the accuracy of cut detection, par-

ticularly for difficult image sequences. The method improves on both speed and accu-

racy over existing feature-based video segmentation methods. Our new method also im-

proves accuracy over previously established histogram-based methods. Finally, our new

method also allows for annotation of the video clips into categories based on feature mo-

tion vectors.

Chapter 5 – Autocalibrating Long Image Sequences

In order to get metric information from an image sequence it is required that we

compute the internal camera (intrinsic) parameters. Whilst this has been studied in the

past and complex methods exist that require a projective reconstruction to be computed,

we examine a simpler method that uses the fundamental matrix and genetic algorithms to

estimate the camera parameters with similar accuracy to the complex methods. Finally,

in situations such as video processing, the complex methods are not well suited because

they do not scale up as the image sequences become large, whereas the method presented

is ideally suited for long images sequences. This chapter makes contributions to the field

of computer vision and computational video processing by allowing very long image se-

quences used in an autocalibration step necessary for computer vision tasks such as 3D

reconstruction. The method presented improves speed while maintaining accuracy when

compared to other complex methods and therefore allows for the autocalibration of video

capable cameras.

Chapter 6 – Synchronizing Multiple Video Sequences

At this stage the thesis has examined techniques for performing computation on a

single video sequence. In this chapter, we increase the complexity by trying to utilize

multiple unsynchronized video streams. In order to make use of any known stereo vision

algorithm, we must first synchronize the video streams by identifying the frames that cor-

respond to the exact same moment in time. We contribute to the field by allowing a fast

and automated method for temporal synchronization, which is often assumed, of multiple

 7

video cameras in 2D without the requirement of forcing extrinsic calibration, requiring

certain motion or scene constraints.

Chapter 7 – Conclusions and Open Problems

Finally, in this chapter we will summarize the work and future research opportu-

nities in this area. The main contribution of this chapter is a list of open and interesting

problems.

 8

Chapter 2

2 Background

The goal of a machine vision system is to create a model of the real world from

static images [13]. Using these models, applications can perform some function such as

robot navigation or object tracking. Although early work in computer vision systems

mainly concerned itself with static scenes, the importance of dynamic scenes, object mo-

tion and video input can not be ignored. Research naturally broadened, and the projective

vision and computational video branches of the computer vision tree evolved.

2.1 Computational Video

A computational video system uses as input a series of consecutive images, where

each image is of a scene at a given point in time. Video data, which is typically any-

where from 10 fps (frames per second) to 30 fps, makes an ideal input source for dy-

namic vision applications. With the increasing availability of multimedia applications

and hardware for capturing video, it is easy to see how projective vision and computa-

tional video are complimentary technologies.

A sequence of frames offers a lot more information regarding a scene, but obvi-

ously it requires a level of computation that is much higher as well. For example, one

such system's aim is to detect changes and subsequently determine the motion of the ob-

jects in the scene as well as the camera positions. The relationship between object mo-

tion and video camera motion falls into one of the following four models:

1. Stationary Cameras / Stationary Objects
2. Stationary Cameras / Moving Objects
3. Moving Camera / Stationary Objects
4. Moving Cameras / Moving Objects

Each of these categories requires slightly different techniques, but some fundamental

concepts, mathematical background and practices are common to all four. A subset of

the frames from video sequences form an identical computer vision problem that would

 9

be formed from single frame cameras located at the exact same position of the video

camera at the time the frames were taken.

Classical computer vision requires calibrated camera systems, but recent devel-

opments in the field have pushed the requirement of calibration out of the way for some

problems. Calibrated computations require a transformation matrix known as the essen-

tial matrix [7] that characterizes the transformation between two calibrated camera view

points. In uncalibrated projective vision, a transformation matrix can be estimated using

the two images [10][11]. This estimated matrix is known as the fundamental ma-

trix[8][9], and has the same basic conceptual uses that the essential matrix has. The rela-

tionship between the fundamental matrix and the essential matrix becomes clear when the

fundamental matrix is calculated for a calibrated system. As expected, the fundamental

matrix derived from a calibrated system correctly yeilds the essential matrix of the given

system. These ideas are covered in more detail later on in the chapter. In a computa-

tional video system, one core challenge is to determine the appropriate model and then

apply that correct techniques for that model.

2.2 Camera Models

If we consider the simplest model for a camera, we would be considering the pin-

hole camera, which is also known as the perspective camera. A pinhole camera consists

of two planes, with a minute hole punched in the focal plane to allow rays of light

through to fall upon the image plane. The rays of light pass through the pinhole on the

focal plane in such a way as to produce an inverted image on the image plane. This sim-

ple camera has an optical centre located at C on the focal plane and the image plane is

located at distance f from the focal plane. Figure 1 shows the pinhole camera model.

 10

FIGURE 2.1: THE PINHOLE CAMERA MODEL.

Each point M in the object forms a straight line through the optical centre C with

its corresponding image point m. This type of projection of the 3D world to a 2D plane

is known as the perspective projection. From a geometric standpoint, it makes no differ-

ence if we replace the image plane with a virtual image plane in front the focal plane.

Figure 2 below shows a pinhole camera with a virtual image plane.

FIGURE 2.2: THE PINHOLE CAMERA WITH A VIRTUAL IMAGE PLANE.

The relationship between 3D and 2D coordinates can be written linearly as[14]:


































=

















1
0

0

0

1

0

0

0

0

0

0
Z

Y

X

f

f

s

y

x

 (2.1)

M

m

 c

C
y

x

Z

Y

X

f

X

Y

Z C

M

c

x

y

m

 11

where f is the focal length of the camera. The point lies on the image plane at [x/s, y/s]

if s > 0. If s < 0, then the point lies behind the image plane and cannot be projected. For

the case where s is exactly 0, we have what is termed 'a point at infinity', and the pro-

jected points are not defined. The 3x4 matrix above is known as the perspective projec-

tion matrix and is usually denoted by P.

P =

f

f0

0

0

0

0

0

1

0

0

0

















 (2.2)

Digital cameras, scanners and other capture devices mimic this perspective cam-

era model due to much effort put forward to minimize and eliminate lens distortions.

This allows us to use projective geometry to characterize the geometric relationships be-

tween the images and the real world. We continue with a brief overview of projective

geometry.

2.4 Overview of Projective Geometry

When we think of the world and space around us, we think of Euclidean space; so

it would seem logical that machine vision would work with Euclidean geometry. This is

not the case, and a more generalized form of geometry is used. Euclidean geometry is a

special case of projective geometry, and questions are often more easily answered in the

more general context of projective geometry [15]. Not only does this make our computa-

tions simpler, but it is also ideal as we are working with images that are merely projec-

tions of Euclidean coordinates to a plane. Any projection of a point (in the Euclidean co-

ordinate system) Mw = [Xw, Yw, Zw]T to the image plane m = [x,y,s]T can be described

using simple linear algebra.

m = PM (2.3)

where m is the projected homogeneous coordinates of the point M in the image.

Any projection of a point (in the world coordinate system) Mw = [Xw, Yw, Zw]T to the im-

age plane m = [x,y]T can be described using simple linear algebra.

sm = PM (2.4)

 12

2.4.1 Projective n-spaces
Any point p, of an n dimensional projective space Pn, is represented by a vector of

n+1 elements not all zero. The elements of this vector are commonly referred to as pro-

jective coordinates or homogeneous coordinates. Any two vectors x = [x1,…xn+1]
T and y

= [y1,…yn+1]
T are considered equal (representing the same point) if and only if there ex-

ists a scalar λ ≠ 0 such that xi = λyi for all elements in the vector.

When we do use homogeneous coordinates, the algebra for projective geometry

becomes very simple. For example [16], the Cartesian coordinates of the point where

two lines ax + by +c = 0 and rx + sy + t = 0 intersect is:

(bt - cs , cr - at) / as - br (2.5)

Whereas in homogeneous coordinates, the intersection of [a,b,c]T with [r,s,t]T is

[bt - cs, cr - at, as - br]T (2.6)

which we easily recognize as the vector (cross) product. While this example is in projec-

tive 2 space, its truth exists throughout the dimensions. Notice that we not only made the

algebra simpler, but we removed the division operation, which is costly on a computer.

2.4.2 Collineations
Projective transformations (collineations) are linear transformations. In other

words, it maps features in one projective space to the same features in the same projective

space. These transformations are characterized by a (n+1)×(n+1) non-singular matrix A

so that λp2 = Ap1. The matrix A has the following mapping properties:

• Collinear features remain collinear
• Concurrent features remain concurrent
• Incidence is preserved

It is rather easy to see that the set of collineations transforming Pn onto itself form an al-

gebraic group. This group is known as the projective group.

Theorem: For any two linearly independent sets of points in projective n space that

forms a basis; say B = {b1,…,bn+2} and C = {c1,…,cn+2}, there exists a collineation A

such that δBi = Aci.

 13

We borrow this proof from [15]:

We can choose a matrix P and a set of nonzero scalars α1,…,αn+2 such that:

Pei = λibi

Where ei is the projective basis. Similarly, we chose Q and µ1,…,µn+2

Qei = µici

Then

PQ-1bi = (µi/λi)ci

Thus we let δi = µi/λi and A = PQ-1

QED

2.4.3 The Projective Plane (P2)
The projective plane is important to us, as it forms the basis of our work. Sensors

that produce 2 dimensional projections of the 3D world are common. In fact, the image

plane of a typical CCD camera is simply modeled as a 2D projective plane. There are 4

basic structures in the projective plane that we need to be concerned with; these are

points, lines, pencils, and conics.

2.4.3.1 Points and Lines
From the previous discussion, we know that points in P2 are represented by a vec-

tor with three elements (m1,m2,m3). Other than points, we have lines which are also de-

fined by three numbers, not all zero. The principle of duality states that lines and points

are represented the same way in two-dimensional projective geometry. That is, a projec-

tive point m is given as [m1,m2,m3]
T and a projective line l is given as [l1,l2,l3]

T. The

point p comes from the perspective projection of three-space down to two (see below),

and the line equation is simply:

L1m1 + l2m2 + l3m3 = 0. (2.7)

Due to this principle, we can use the terms point and line interchangeably. This is

when we discuss lines, we are implicitly discussing points in the exact same manner.

2.4.3.2 Lines at Infinity
Of all the possible lines in P2 a special subset exists when the third element of the

line in homogeneous coordinates is equal to zero. These lines are known as lines at infin-

ity usually denoted by l∞. The important implication of all this is that in projective ge-

 14

ometry, any two distinct lines (even if they are parallel) will always intersect. Parallel

lines happen to intersect at the point at infinity!

2.4.3.3 Pencils of Lines
Pencils of lines have numerous applications in vision, especially in stereo and mo-

tion. Pencils are the set of all lines in P2 that pass through a fixed point. The set of epi-

polar lines for a given fundamental/essential matrix are a pencil because they all pass

through the epipole.

2.4.3.4 Conics
Conics are a set of points on the projective plane that satisfy the equation:

S(x) = xTAx = 0 (2.8)

Where A is a 3x3 symmetric matrix. The equation defines the conic up to a scale factor,

and is dependent on 5 parameters.

2.4.4 The Projective Space P3
In projective 3 space, points are represented by a vector with four elements. Re-

calling the principle of duality, we see that the dual entity to a point P3 is a plane. Simi-

larly to P2 a point M = [M1, M2, M3,M4] is contained in a plane ΠΠΠΠ if and only if:

ΠΠΠΠTM = 0 (2.9)

Lines in P3 are simply the intersection of two planes, and thus can also be expressed as a

linear combination of two points. i.e. L = λaMa + λbMb

2.4.4.1 Quadrics
Quadrics are the 3-space equivilant of conics in 2-space are a set of points on the

projective plane that satisfy the equation:

ΠTQΠ = 0 (2.10)

Where Q is a 4x4 symmetric matrix. The equation defines the conic up to a scale factor,

and is dependent on 9 parameters.

 15

2.4.5 Strata of Geometries
Our world is a 3D Euclidean space. When we are dealing with images, we are in

the simpler structure of projective geometry, between these two spaces lie two intermedi-

ate geometries, affine and metric. Thus the order of strata from simplest to most complex

is: projective, affine, metric, and Euclidean. The strata are defined by their group of col-

lineations and the features that are left unchanged (invariant). Each strata contains group

of transformations that maintain a set of invariant properties. Also, it should be noted

that each group is a subgroup of the simpler structure. This means that the metric group

is a subgroup of the affine group, and both are a subgroup of the projective group. The

invariant properties of a geometric strata are not changed during a transformation that

belongs to the same geometry. Knowing the invariant properties and being able to re-

cover them allow us to change strati. Often we wish to upgrade to a higher level in the

strata, in fact this is what we are doing when we go from a sequence of images to a 3D

Euclidean model. In the following sections, we detail each of the geometric strata in 3D

space, their group of transformations and invariants. 3D space is chosen as it is relevant

in going from an image sequence to a 3D model. We simply reconstruct the projection

matrix and change strata to metric or optimally Euclidean.

2.4.5.1 Projective Strata
The least structured of all strata is the projective stratum. By this, we mean that

the projective stratum has the least number of invariants and the largest group of trans-

formations. In 3D space, the projective transformation matrix is a 4x4 invertible matrix.

The invariant property of the projective strata is cross ratio. The cross ratio is de-

fined as follows: Given any four collinear points M1, M2, M3, and M4; and their respec-

tive projective parameters α1, α2, α3, and α4. The cross ratio is defined as:

{M1,M2; M3, M4} =
α α
α α

1 3

1 4

−
−

:
α α
α α

2 3

2 4

−
−

 (2.11)

The cross ratio extends simply to higher dimensions. In the case of P2 in the figure

below, we see how the cross ratio of four lines is defined as the cross ratio of points that

intersect with another line. Obviously we can do a similar operation with planes.

 16

FIGURE 2.3: CROSS RATIO OF 4 LINES IN P2

2.4.5.2 Affine Strata
The next least structured of all strata is the affine stratum. In 3D space, the affine

transformation matrix is also a 4x4 matrix. The affine strata adds parallelism , relative

distances, and the plane/line at infinity as invariants. See table 2 below for complete de-

tails on the form of the affine transformation matrix.

2.4.5.3 Metric Strata
The metric stratum is also commonly referred to as the group of similarity trans-

formations. This group corresponds to the Euclidean group, but only to a scale factor.

This is the highest level of geometry we can reach without knowing some measurement

of distance between points. As with all 3D transformations, we represent a metric trans-

formation with a 4x4 matrix when we use homogenous coordinates.

Due to its close relation to the Euclidean group of transformations, we know that

we have 3 degrees of freedom from the orthonormal rotation matrix and 3 degrees of

freedom for the translational aspects in X, Y and Z. When we add one more degree of

freedom due to the scale, we end up with a total of seven degress of freedom. The two

new invariants are relative length and angles. Most importantly, at this strata, transfor-

mations leave the plane at infinity unchanged and transforms a conic to a conic of the ex-

act form. This fact is useful in autocalibration techniques, as it helps in estimating the

intrinsic camera parameters.

m1

m2

m3

m4

 17

2.4.5.4 Euclidean Strata
The Euclidean stratum is the one most familiar to us. Having six degrees of free-

dom, 3 rotational and 3 translational; the invariants are identical to the metric strata with-

out having a scale invariant.

2.4.5.5 Strata Review
In table 2 below, the properties of the various strata are reviewed. In figure 6 be-

low, the visualization of a cube throughout the different strata is shown[17].

GEOMETRIC

STRATUM

DEGREES OF

FREEDOM

TRANSFORMAT
ION MATRIX (3-

SPACE)

INVARIANTS

Projective 15

p p p p

p p p p

p p p p

p p p p

11 11 11 11

11 11 11 11

11 11 11 11

11 11 11 11



















Cross ratio

Affine
12

p p p p

p p p p

p p p p

11 11 11 11

11 11 11 11

11 11 11 11

0 0 0 1



















Relative
distance,

Parallelism,
Plane at infinity

Metric
7

λ λ λ
λ λ λ
λ λ λ

r r r t

r r r t

r r r t

x

y

z

11 12 13

21 22 23

31 32 33

0 0 0 1



















Relative
distances,
Angles,

Absolute conics

Euclidean
6

r r r t

r r r t

r r r t

x

y

z

11 12 13

21 22 23

31 32 33

0 0 0 1



















 Absolute
distances

Table 2: Information regarding the different strata.

 18

FIGURE 2.4: SHAPE DISTORTIONS FOR EACH GROUP OF TRANSFORMATIONS IN 3D.

2.4.5.6 Changing Strata
When we are going to change strata, it is important to realize that we are in fact

upgrading our geometric representation to one that has a stronger structure. It is obvious

that starting with images, we are in the projective strata, and that if our goal is model

building, we would ideally like to progress through to the Euclidean strata. Thus our

ideal set of changes will take us from projective to affine, affine to metric, and metric to

Euclidean.

2.4.5.6.1 Projective to Affine

In order to upgrade to affine from the projective strata, one must first locate the

plane at infinity. This task can be done if some affine properties of the scene are known.

Parallel lines or planes intersect at infinity. For example, it the scene contains a building,

one can effectively consider the corners of the building simply as the corners of a cube.

The pairs of edges of this cube that are effectively parallel, will intersect at the plane at

infinity. As long as no three points are collinear, we have found the plane at infinity.

Projective Transformation

Affine Transformation

Metric Transformation

Euclidean Transformation

 19

With these three points, we can use the invariant property of cross ratio to com-

pute the point at infinity M∞. I.e. M0,M1,M2 are our points that define the plane, the cross

ratio is {M0: M1; M2:M∞}

Once the plane at infinity has been successfully identified, the upgrade to affine consists

only of bringing the plane at infinity to it canonical position [0,0,0,1]T. The straight-

forward approach would be:

TPA =
I x3 3 30

1Π∞









 (2.12)

Where the bottom row is actually the normalized plane at infinity.

2.4.5.6.2 Affine to Metric

Going from affine (or projective for that matter) to metric requires us to find the

absolute conic. Because we are already in the affine space, we know the location of the

plane at infinity. This is important because we know that the conic is located in this

plane.

Once the conic has been identified, we only need to bring it to its canonical form

in the metric strata. On possible choice for the upgrade is[Pol99]:

TAM =
A −









1 0

0 0

3

3
 (2.13)

Thus going form projective to metric is simply

TPM = TAM TPA (2.14)

2.4.5.6.3 Metric to Euclidean

In order to go from metric to Euclidean, we need to have some actual measure-

ments so that we can determine the scale factor that the metric strata is at. Once this sca-

lar is computed, it is simply a matter of applying that scale factor to the strata.

 20

2.5 Camera Calibration

In many applications a change in coordinate systems is inevitable, and most likely

occurs quite often. The purpose of calibration is to determine the relationship between

coordinate systems. Camera calibration falls into two logical subsets, intrinsic and ex-

trinsic. Intrinsic calibration concerns itself with the internal geometry of a physical cam-

era, while extrinsic calibration deals with the external properties of the camera such as

position.

If we have knowledge of the intrinsic parameters, we are able to perform metric

measurements with the camera. If we do not have the intrinsic parameters we have what

is termed an uncalibrated camera, and cannot get exact metric measurements. We can

however do many things with uncalibrated cameras including reconstruction, motion de-

tection, and possibly autocalibrate the camera itself.

2.5.1 Intrinsic
Intrinsic parameters relate the change in coordinate systems from image coordi-

nates to pixel coordinates. The main goal of intrinsic calibration is to rectify errors in the

manufacturing of the capture device. In practical applications that use physical cameras,

the intrinsic parameters are very important for several reasons:

• Typical cameras (such as CCD's) have varying pixel coordinate systems that
are not necessarily the same as the projection coordinate system.

• Manufacturing defects cause the axes of capture devices to be at angles other
than 90 degrees.

• The projection planes' origin may not coincide with the optical axis of the cap-
ture device due to lens distortion or other effects. i.e. The pixel grid is not or-
thogonal with the optical axis.

If we examine Figure 2.5 below, we see how non-orthogonal axes cause the need for a

translation to a different but more accurate coordinate system.

 21

FIGURE 2.5: INTRINSIC PARAMETERS

The intrinsic parameters are the skewness (θ) or how rectilinear the pixels really are.

The optical centre (Uo,Vo). The aspect ratio (α), which describes the ratio of the width to

the height of a pixel. The calibration matrix K is:
















=

100

0 Voy

Uox

K α
θα

 (2.15)

This transformation from image to pixel coordinates is also linear and can be written as:

[]















=

















11

v

u

Ky

x

 (2.16)

With an image being formed by a perspective projection, followed by intrinsic calibra-

tions gives us, our projective transformation matrix becomes:

Pnew = KPold (2.17)

2.5.2 Extrinsic Calibration
The main goal of extrinsic calibration is to take coordinates in the world coordi-

nate system and transform them to the camera coordinate system. Extrinsic parameters

are commonly used to change views and move through virtual camera views. To go from

one system of coordinates to another, we require a rotation R and a translation t as seen

in Figure 2.6. The relationship between the world and the camera coordinates are

 22

Mc = RMw + t (2.18)

Where R is a 3x3 rotation matrix and t is the translation vector. Figure 2.6 below shows

the transformation between coordinate systems.

Figure 2.6: EXTRINSIC PARAMETERS FOR A GENERIC CAMERA IN THE WORLD

For any given point M in the original coordinate system, the new point M1 can be linearly

calculated using

M1 = DM (2.19)

where

D =
R t

0 1









 (2.20)

From equation 2.4, we simply add the transformation D

 sm = PDM (2.21)

There are six extrinsic parameters which are the rotational angles between axes and the

translation along the 3 axes.

2.6 Planer Transformations

When we are dealing with co-planer points (i.e. All points M = [X,Y,Z,1]T where

Z is equal) in the world coordinate system, we simply have to compute planer transfor-

 23

mations. The planer transformations are a special case of the 3D transformations known

as homographies. If we choose a world coordinate system such that the plane of the

points has a zero Z value, the projection matrix P which is normally 3x4, reduces to a 3x3

matrix that defines a general plane to plane transformation [19].

H = P

X

Y

0

1



















 (2.22)

Where H is simply P with the 3rd column zeroed out and can be effectively ignored yield-

ing

H =

p

p

p

p

p

p

p

p

p

X

Y

11

21

31

12

22

32

14

24

34 1

































 (2.23)

Where pij is the value from P in row i and column j.

To illustrate how the homographies work in relation to regular 3D transforma-

tions, the example below [19] shows how homographies work only on co-planer points.

In Figure 2.7 below, we see the same scene taken from two different camera viewpoints.

Figure 2.7: TWO VIEWS OF THE SAME SCENE

If we use a homography to translate from one view point to the other viewpoint, and we

use the paper with the Chinese text as our planer points, we get the image in Figure 2.8.

 24

Figure 2.8: TRANSFORMATION OF LEFT IMAGE TO THE VIEW POINT OF THE RIGHT IMAGE

The warped image in Figure 2.8 appears to be a complete image, but if we examine the

mug closely, we notice that is it not quite right. To show how planer objects were cor-

rectly transformed while other points not in the plane are warped, we superimpose the

real camera view with the translated camera view to get Figure 2.9 below.

Figure 2.9: RIGHT VIEW FROM FIG. 2.4 SUPERIMPOSED ONTO FIG 2.5

What use does such a transformation have when it is so evidently erroneous? Sim-

ply put, synthetic view points of co-planer points can be generated. The error from the

above example resulted from the points that were not co-planer, i.e. the mug. The co-

planer points on the sheet of paper were perfectly transformed. This allows us to easily

create mosaic images that can be viewed from different angles. Large scenes that contain

co-planer surfaces can be rendered as one single image that can be viewed from many

different angles. While multiple single images may be required to capture a scene, it may

 25

be viewed as a single image. Consequently, to render a large image we need only mini-

mally overlapping planar input images.

2.7 Stereo Vision

The goal of stereo vision is to generate some depth information about a scene.

Using the disparity information from two or more images, it is possible to calculate depth

values for a calibrated system. Disparity is the distance between two points in an object

found in both images. It is easy to see how disparity is involved in depth calculations

with the following simple demonstration. Find an object in your field of view that is be-

tween 2 and 3 meters away, and look at it. Hold your index finger out at arms length and

look at the scene with your left eye, then with your right. Notice how the closer object

(your index finger) ‘moves’ more than the farther object. This separation of the object in

your left and right views is known as the disparity. Objects that are closer to the cameras,

in this case your eyes, have a larger disparity than do objects that are farther away. The

selected points used for calculation of the disparity are known as conjugate or corre-

sponding pairs. Automated selection and verification of conjugate pairs is known as the

correspondence problem. The geometry that relates conjugate pairs is known as the epi-

polar geometry and exists between any two camera systems [10].

2.7.1 Correspondence Problem
It has been implied that stereo vision requires the selection and searching for

points to be used as conjugate pairs. What we have failed to mention is that the detection

of conjugate pairs in two images is extremely challenging. This area of research is

known as the correspondence problem and is covered extensively in Chapter 3.

2.7.2 Epipolar Geometry
The simplest form of stereo vision involves a pair of cameras with a fixed x dis-

placement [13]. In Figure 2.10 below, we see that the point M in the scene is in both the

left and the right image planes as point m. The plane that passes through the point M and

both camera centres is the epipolar plane. The epipolar lines are defined as the intersec-

tion of the epipolar plane and image plane. The epipoles are defined as the point where

all epipolar lines intersect. As well, the epipole is defined as the intersection of the image

 26

plane with a line between the optical centres of two cameras. Figure 2.7 below illustrates

such an epipolar geometry.

FIGURE 2.10: EPIPOLAR GEOMETRY OF TWO CAMERAS WITH FIXED X DISPARITY

Figure 2.11: EPIPOLAR GEOMETRY OF TWO CAMERAS IN AN ARBITRARY POSITION

The fundamental and essential matrices offer a great computational advantage in

matching a point in one image with the same point in another image. Since the corre-

sponding points must lie on the epipolar line, our search for corresponding points has

Epipolar Lines

C1 C2

Epipoles

t

R

m1
m2

 27

been reduced from 2 dimensions down to 1. We now only have to search along the epi-

polar line to find the corresponding point. This is known as the epipolar constraint [10].

The epipolar geometry of two stereo images is related by a simple transformation

characterized by the epipolar equation. First introduced by Longuet-Higgens [7] in 1981,

the epipolar equation produces the Essential Matrix. The Fundamental Matrix character-

izes the epipolar geometry between two uncalibrated cameras.

2.7.3 Essential Matrix
Calibrated stereo vision gives us the ability to calculate depth metrics of the

scene. These Z values allow applications such as robotic vision and navigation to be pos-

sible. In calibrated stereo vision we are working with the essential matrix E, which is

completely encompassed by the rotation and translation between the two cameras. Be-

cause the cameras have a known calibration, we can work in the normalized image coor-

dinate system.

The relationship between two points in two separate images can be described mathemati-

cally as

m1
T

 E m2 = 0 (2.24)

where

E = t × R. (2.25)

And this is referred to as the epipolar equation.

2.7.4 Fundamental Matrix
When we are given two uncalibrated cameras K, the calibration matrix, is un-

known to us and we therefore cannot use K to easily transform the pixel coordinates into

normalized image coordinates. This forces us to work in the pixel coordinate system, and

the epipolar geometry is still characterized by the epipolar equation.

m1
 T

 F m2 = 0 (2.26)

where points m1 and m2 are corresponding points in image 1 and image 2 respectively

 28

F can be characterized in terms of the essential matrix and the camera calibration matri-

ces

F = K1
-TEK2

-1 (2.27)

Theorem 1([8] [9]) – For any two views I1 and I2 of an uncalibrated scene, there exists a

fundamental matrix of rank 2 that adheres to the following property: For all correspond-

ing homogeneous points (m1, m2) in I1 and I2

m1
 T

 F m2 = 0 (2.28)

Proof

Let M represent a real point in 3D space. M = (x,y,z). Also, let m1 and m2 be the homo-

geneous coordinates of the image points in image 1 and 2 respectively. Assuming the

initial point m1 is at 0 and the corresponding point m2 is at t. The unknown intrinsic cam-

era parameters K make the camera transformation matrices to be

[K|0] and [[K][R]|[K]t]

before and after the motion t respectively. Determining the epipolar line in the second

image for the point x, the camera centre and point at infinity become

[K]t and [K][R][K]-1m respectively.

As a result, the epipolar line is given by

l = [K]t × [K][R][K]-1m

Since m’ lies on the epipolar line l

m’ T
 Fm = 0

thus

F = [K]t × [K][R][K]-1

Which is

F = [K]*[t × R][K]-1

Where [K]* is the adjoint of K, and from (2.25)

F = K1
-TEK2

-1

Which is (2.27) and known to exist.

QED

 29

From the discussion above, it should be clear that epipolar geometry depends

upon the orientation and internal physical characteristics of two cameras. The geometry

does not depend on the structure of the scene. i.e. The 3D points external to the cameras

have no bearing on the actual geometry.

2.8 Robust Methods for Computing the Epipolar Geometry

The above methods make the assumption that there is no noise present in the cor-

responding pairs, which in practical situations is simply unreasonable. In [20] it was

shown that mismatches and noise are unavoidable in practical situations and robust meth-

ods are required to estimate the epipolar geometry. The generation of the correspondence

pairs results in two potential types of errors, these are: incorrect location of a pair (inlier

error) match, and incorrect pairing (outlier error). Figure 2.12 below shows these two

types of errors.

Figure 2.12: THE TWO TYPES OF CONJUGATE PAIR ERRORS

Inlier error is assumed to exhibit a Gaussian distribution. This means that most error

will be small and within one or two pixels. However, a few points will be incorrectly lo-

calized with an error of more than 3 pixels. Error of more than 3 pixels will severely de-

grade the estimation of the fundamental matrix.

Incorrect correspondence (conjugate) pairing is a more serious problem that occurs

when two points that are not a valid correspondence are selected incorrectly as being a

valid pair. Because the epipolar constraint may not yet available, the search for conjugate

pairs must be conducted in 2D. Thus, the potential number of incorrect conjugate pairs

 30

could be quite high. These invalid conjugate pairs completely spoil the estimation of the

fundamental matrix and therefore F would be inaccurate.

The precision of the fundamental matrix is seriously affected by errors of these

types, and robust methods need to be employed when calculating F. Robust methods try

to minimize the error caused by inliers, and remove the inaccuracy caused by outliers.

Since one outlier will make the estimated fundamental matrix F useless, we need to use

as many sets of valid pairs as we can to compute F. Several classes of robust techniques

exist to compute the fundamental matrix, these are highlighted very well in [11] and [21].

The algorithm that performed best was RANSAC (RANdom Sample Concensus).

2.8.1 RANSAC
RANSAC, performs an estimation by randomly selecting the minimum required

number of correspondences to compute F. For each F computed, the set of inliers is cal-

culated. The F with the highest consensus of inliers is selected to be the final computed

F i.e. the one with the most support. This computation is repeatedly completed until a

certain level a certainty is achieved.

The basic random sampling algorithm is as follows:

Repeat for M samples

• Select a random sample of the minimum required correspondences to
estimate a valid fundamental matrix F.

• Compute a putative matrix F
• For all putative correspondences, compute the set of inliers
• Select the F with the greatest number of inliers over all samples

2.9 Three View Geometry

The next natural step from epipolar geometry is to add a third camera view. The

trifocal tensor approach is one such extension and maintains its basis in projective ge-

ometry. This model has been proposed and developed by Hartley [18], Sashua [22], Torr

[23], and Faugeras [24] among others. Figure 2.13 represents the 3-view imaging sce-

nario.

 31

In the 3-view situation, the trifocal plane is formed by the three optic centers C’, C’’ and

C’’’. The intersection of this plane with the three image planes produces three lines

called the trifocal lines (not shown in figure 8). One could use standard epipolar geome-

try and consider three fundamental matrices (one for each pair of optical centres) F12, F23

and F31. Intersecting epipolar lines should show the position of the point (shown in fig-

ure 2.13). However, if a point M is in the trifocal plane, or the optical centres C’.C’’, and

C’’’ are collinear, the fundamental matrices cannot determine if its 3 images a point be-

long to a single 3D point because the epipolar lines are collinear and therefore intersect at

more than one point.

FIGURE 2.13: TRIFOCAL GEOMETRY

In the case of two views, given a point in one image, it is possible to construct a line in

another using the fundamental matrix. However, given a point in the first image and a

point in the second image, one can directly compute the coordinates of the corresponding

third point using a structure called the trifocal tensor which is the analog of the funda-

mental matrix for 3 view situations.

2.9.1 The Trifocal Tensor
The trifocal tensor is intended to describe line correspondences. This has been a

well-known problem to those in the computer vision community dealing with structure

from motion [25] [26]. Several years had passed before the tensor was formally identi-

fied and defined by Hartley and Shashua [18] [22]. In the projective sense, the tensor is

known as the trilinear tensor.

M

C1 C3

C2

m1

m2
m3

 32

The tensor can be considered as a 3 x 3 x 3 cube operator, defined by 27 parameters in

total. Typically, one uses this tensor (ℑ) to map a line in image 1 (l1) and a line in image

2 (l2) to a line in image 3 (l3). This is known as transfer. This mapping is a linear expres-

sion

l3 = ℑ(l1,l2) (2.29)

which is more formally represented by:

l l li j k ijk

kj

= ℑ
==
∑∑ ' ' ' ' '

1

3

1

3

 (2.30)

The tensor can also map corresponding points in two views to their triple corresponding

point in the third view. Points are transferred via the following formula:

x x x x xl i k

k

kjl j k

k

kil' ' ' ' ' ' '= ℑ ℑ
=

−
=

∑ ∑
1

3

1

3

 (2.31)

The same tensor can be used to transfer lines and points due to the principle of duality.

2.9.2 Constraints on the Tensor
For every three views of a static scene, there exists a 3 x 3 x 3 tensor with the fol-

lowing properties given any three corresponding image points (m,m’,m’’). For every

line l’ through m’ and l’’ through m’’ in their appropriate views, the trifocal constraint is

described by one equation:

 l’T[ℑm]l’’ = 0 (2.32)

where

[ℑm]ij = ℑ1ijx + ℑ2ijy + ℑ3ij (2.33)

It is important to realize that we are not restricted to using lines with the tensor. In fact,

the tensor constraints exist for points as well. If we assume we have a triple correspon-

dence (u, u’, u’’) the trifocal constraints are defined using four equations:

u’’ℑℑℑℑi13ui – u’’u’ℑℑℑℑi33ui – u’ℑℑℑℑi31ui - ℑℑℑℑi11ui = 0
u’’ℑℑℑℑi13ui – u’’u’ℑℑℑℑi33ui – u’ℑℑℑℑi32ui - ℑℑℑℑi12ui = 0
u’’ℑℑℑℑi23ui – u’’u’ℑℑℑℑi33ui – u’ℑℑℑℑi31ui - ℑℑℑℑi21ui = 0
u’’ℑℑℑℑi23ui – u’’u’ℑℑℑℑi33ui – u’ℑℑℑℑi32ui - ℑℑℑℑi22ui = 0

Other combinations of image features also allow us to compute the tensor. The table be-

low shows the feature combinations and the number of equations that describe the trilin-

ear constraints.

 33

Image Features # of equations
3 points 4

2 points, 1 line 2
1 point, 2 lines 1

3 lines 2
Table 2.3: Overview of trifocal constraints and resulting number of equations

Since we are concerned mainly with points in images, further derivation of the constraints

is not necessary to understanding this thesis. A complete set of derivations of the trilinear

constraints for points and lines can be found in [30].

2.9.3 Robust Computation of the Tensor
In a manner similar to robustly computing the fundamental matrix, we can use the

RANSAC paradigm to compute the tensor.

The basic random sampling algorithm is as follows:

Repeat for M samples

• Select a random sample of the minimum required triple correspondences to
estimate a valid tensor.

• Compute a putative tensor T.
• For all putative correspondence triplets, compute the set of inliers
• Select the T with the greatest number of inliers over all samples

2.10 N-View Geometry

The next obvious question that comes to mind when considering multiple view

geometry is what new constraints if any are found in four views. Triggs [27] and Hartley

[28] have examined the concept of the quadrifocal tensor. Triggs claimed the existence

of only 3 types of geometric relationships, bilinear (epipolar), trilinear, and quadrilinear

linking two, three, and four views respectively. In [29], Faugeras showed that the quad-

rilinear constraint is a natural result due to the epipolar and trilinear constraints. In fact,

as the number of views increases, additional constraints can be expressed using epipolar

and trilinear constraints. A complete and formal review of multiple view geometric rela-

tionships is given in [30].

 34

2.11 Feature Tracking

Shi and Tomasi [50] present a feature tracking algorithm based on Kanade and

Lucas registration technique [49] that selects features which are optimal for tracking in

the sense that the tracking equations dictate what characterizes a good feature track. The

basic principle of the tracker is that a good feature is one that can be tracked well, so

tracking should not be separated from feature extraction. In other words, features are se-

lected because they are optimal for the feature tracking equations, rather then developing

a tracking equation for certain features. A good feature is a textured patch with high in-

tensity variation in both x and y directions, such as a corner. We will re-examine the fea-

ture selection process after we present the tracking equations. Briefly, features are lo-

cated by examining the minimum eigenvalue of a 2x2 image gradient matrix. The fea-

tures are tracked using a Newton-Raphson method of minimizing the difference between

the two windows around the feature points.

2.11.1 The Feature Tracking Equations
The tracking algorithm defines a measure of dissimilarity that quantifies the

change in appearance of a window around a feature in the first frame and the current

frame. The algorithm allows for affine distortion changes in the window. However, a

pure translation model of the motion is used to track the selected best features through the

sequence. For reliable and fast processing, the maximum displacement is limited, but lar-

ger than that of conventional optical flow approaches. Feature tracking is performed on

the luminance channel (grey map) for the video frames. The luminance channel is com-

puted as follows:

Luminance = Red*0.299 + Green*0.587 + Blue*0.114 (2.34)
Given a point p in an image I, and its corresponding point q in an image J, the displace-

ment vector δ between p and q is best described using an affine motion field:

δ = Dp + t (2.35)
where

xx xy

yx yy

d d
D

d d

 
=  
 

 (2.36)

 35

is a deformation matrix and t is the translation vector of the centre point of the tracked

feature window. The translation vector t is measured with respect to the feature in ques-

tion. Tracking feature p to feature q is simply the problem of determining the six parame-

ters that comprise the deformation matrix D and the translation vector t. In the case of

pure translation, D will be the identity matrix and thus

δ = p + t (2.37)

Because of this, the case of pure translation is computationally simpler and thus prefer-

able due the higher frame rates typically found in video data. Since the motion between

adjacent frames of standard video is generally quite small, it turns out that setting the de-

formation matrix to identity is a safe computation [50], leaving us with the translation

vector being exactly the displacement vector. The displacement vector is computed us-

ing a pyramid of resolutions because processing a high resolution image is computation-

ally intense. The multi-resolution pyramid within the feature tracker reduces the resolu-

tion of the entire image, say by a factor of 2. Tracking occurs by tracking a features gen-

eral area in the lowest resolution and upgrading the search for the exact location as it pro-

gresses up the pyramid to the highest resolution.

 The displacement vector t is chosen as the offsets that minimize the difference

between the windows surrounding the features. The difference is referred to as the resi-

due (ε) and is formally defined by the following double integral over the windows in im-

ages I and J:

wdxxJtxI
W∫∫ −−= 2)]()([ε (2.38)

Where w is a weighting function that can be set to one in the simplest scenario, could be

Gaussian to allow more weight to the centre of the window or could be more complex to

de-emphasize regions of high curvature. When the translation vector t is small, the image

intensity function can be approximated by a Taylor expansion that is truncated to linear

terms:

tgxItxI ⋅−=−)()((2.38)

and we can re-interpret the residue function (2.38) to be

wdxtghwdxxJtgxI
WW ∫∫∫∫ ⋅−=−⋅−= 22)()]()([ε (2.38)

 36

Where h = I(x)-J(x), and g is the image gradients.

 This makes the residue quadratic in t and the minimization occurs when the first

derivative of the residue is 0. Differentiating the residue and setting it equal to zero re-

sults in

0)(=⋅−∫∫ wdAgtgh
W

 (2.39)

and since (g·t)g = (ggT)t we have

∫∫∫∫ =






WW

T hgwdAtwdAgg)((2.39)

Which is a system of two scalar equations in two unknowns.

For ease of explanation in the next section, equation 2.39 is reconstructed as

etG = (2.40)

Where G and e are the from 2.39, and t is the displacement vector.

In plain English: ε is the sum of squared differences of the window gradients, and we

are looking to find the matching window (at displacement t) that minimizes ε.

2.11.2 Good Features to Track
The basic strategy of selecting features is to find areas with sufficient texture

changes in both the X and Y direction. Often these “interest” features are thought of as

texture regions or corners and their detectors usually will find good features to track.

However, the method looks to find optimal regions to track based on the tracking equa-

tion. By removing windows that are not optimal, the features selected are optimal by

construction. We are able to track features from frame to frame when equation 2.39 is

easily solved.

Effectively this means that the 2x2 coefficient matrix represented by G must be

greater than the noise level and well conditioned. Greater than the noise level means that

the two eigenvalues of G are large; and well conditioned means that the eigenvalues can-

not differ by several orders of magnitude. When the eigenvalues are small, we have a

uniform (non-textured) area. A large and small eigenvalue correspond to a unidirectional

texture (i.e an edge) and two large eigenvalues represent a bi-directional texture (i.e. ei-

ther a corner or salt-and-pepper like texture). Only when the two eigenvalues are large, is

the equation in 2.39 considered optimal, and therefore can we achieve reliable tracking.

 37

As a result, the window for tracking is acceptable when both eigenvalues surpass

a given threshold. When we are selecting a certain number of features (N) to track, we

simply take the windows corresponding to the N largest eigenvalue pairs. Furthermore,

we can apply some level of non-maximal suppression to ensure that features we are track-

ing are at least some distance apart.

 38

Chapter 3

3 Computing Camera Positions from Uncali-
brated Video/Image Sequences

3.1 Introduction

Recently, a great deal of research has been done in the field of projective vision [22,

27, 31, 32]. Furthermore, a number of systems have been implemented [33, 34, 35, 36]

that can, in theory, compute a 3D model automatically from an uncalibrated image se-

quence. The idea is to compute photogrammetric information from image sequences

without requiring a prior camera calibration process. We believe that there are four pri-

mary reasons for the recent rapid advances in the projective framework.

1. Basic theoretical work defining the fundamental matrix, the trilinear tensor

and their characteristics.
2. Simple and reliable linear algorithms for computing these quantities from

a set of 2D image correspondences.
3. Robust random sampling algorithms for filtering noisy and inaccurate cor-

respondences.
4. Advancement of algorithms for performing autocalibration using only the

projective camera positions.

This combination of advances has made it theoretically possible to create a 3D

VRML model of a scene from image sequences. Projective methods are normally used to

deal with uncalibrated image sequences; however, we believe that even when calibration

information is available it is often better to use the projective approach to automatically

compute image correspondences and sparse depth information. By computing the fun-

damental matrix and the trilinear tensor for image pairs and triplets, it is possible to pro-

duce a reliable and accurate set of correspondences. When calibration information is

available these correspondences can be used directly by a photogrammetric process to

compute the camera positions in Euclidean space.

Often it is the case that new research into the field will require the implementation of

many of these projective algorithms. These algorithms are often quite complicated to

implement and result in many months delay before new research can actually begin. In

 39

this chapter, we describe a system that is freely available for researchers to help facilitate

expedient research into the field of projective vision. By this, we hope to make it possi-

ble for others to explore and experiment within this paradigm, which we believe will

have a significant future influence on the field of computer vision.

Beyond merely describing our experience in re-implementing published core algo-

rithms, this chapter makes a number of other contributions that address some outstanding

issues in the field.

1. These programs are not generally available to the public in either source

or binary form. As of 2000, the only exception we know of is [36]. The
systems described in this work have been made publicly available to fa-
cilitate efficient future research and is, to our knowledge, the first publicly
available system that computes the trilinear tensor.

2. We show that, in practice, projective methods along with random sam-
pling algorithms solve the correspondence problem for many image se-
quences and that this is relatively simple, even in the presence of known
calibration parameters.

3. We present a way to stabilize the corner selection process, and introduce a
simpler relaxation-like methodology based on the idea of disparity gradi-
ent.

4. We present a way of dealing with the problem of cumulative error in the
tensor computation and demonstrate that projective methods can handle
surprisingly large baselines, in certain cases over one third of the image
size.

5. We present a way of dealing with non convergence of the bundle adjust-
ment photogrammetric process that is due to minute baselines.

In most papers on projective vision, the goal is to compute a projective reconstruc-

tion, assuming that camera calibration information is not available [33, 34]. This is gen-

erally followed by an autocalibration process which enables the projective reconstruction

to be upgraded to metric (Euclidean) form [17]. The implication is that, if calibration in-

formation were available, one should use traditional structure-from motion-algorithms

(SFM) to process the image sequence. We claim that this is not necessarily the case. Sur-

prisingly, for most image sequences it is not necessarily easier to compute reliable corre-

spondences when calibration information is available. The reason is that the random

sampling algorithms, which are the key to dealing with bad correspondences, are much

easier to use in a projective framework than in a calibrated framework [20].

 40

FIGURE 3.1: SYSTEM FOR GOING FROM VIDEO TO 3D CAMERA POSITIONS

Using projective methods in combination with algorithms from the field of robust

statistics [37, 38], one can automatically obtain very reliable correspondences for many

image sequences, even those with considerable camera motions (i.e. a wide baseline).

Producing such accurate correspondences is a multi-step process, where the final result is

the trilinear tensor and thus indirectly a projective reconstruction. We take a sequence of

images and show that the correspondences that support the trilinear tensors are correct

and accurate enough to be input directly to a photogrammetric package to compute a set

of 3D camera positions, assuming we have a prior camera calibration, or go through an

autocalibration process such as the one presented in Chapter 5. To improve the accuracy

of projective reconstruction across an image sequence it is usual to perform a projective

bundle adjustment. However, we believe, as do others [39], that the non-linear optimiza-

tion inherent in the bundle adjustment is better done in metric space than projective space

[40]. For this reason, we will not use the tensor for its projective reconstruction, but only

to produce a set of accurate image correspondences. In this way, the tensor need only be

accurate enough to identify individual matching features in adjacent images; a required

accuracy of only a single pixel. Effectively, this means that the cumulative error of the

tensor over an image sequence is not an issue.

The correspondences that support the tensor are used as input to a photogrammet-

ric bundle adjustment program to accurately compute camera positions [41]. Once we

have these camera positions, it is possible to rectify these images so that the Epipolar

lines are horizontal. Then one can compute dense depth maps using traditional stereo al-

 41

gorithms [33]. If the goal is to make 3D models, this is not necessarily the best approach

as stereo algorithms will not work in regions without natural texture. For this reason, we

believe that it is best to compute dense depth using active methods, since they will suc-

ceed even when there is no texture [42]. However, passive methods are sufficient for

computing camera positions since this requires sparse, not dense depth, which is much

easier to obtain. Furthermore, once these camera positions are known they could be used

to rectify 3D data acquired from active sensors that are attached to a rig with the passive

cameras. The passive sensors would be used to find the position of the active sensors,

which in turn will be used to actually obtain the dense depth necessary to make a 3D

model. Therefore our goal is to go from an image sequence to a set of camera positions

using only passive technology because much work has gone into rectifying active scanner

data [42].

It is important to note that, in practice, this process is divided into two distinct

phases.

The first phase computes correspondences from the overlapping image sequence and re-

sults in a series of fundamental matrices and trilinear tensors. We dub this stage the cor-

respondence stage, and consists of the following steps:

1. Select images are extracted from image sequences that maximize overlap,

with the constraint that baselines cannot be too minute. (§ 3.2.1)*
2. Corner like points are found in each image using a local interest point op-

erator [43, 44] (§ 3.2.2)*.
3. A feature matcher finds a set of potential corner pair matches between two

adjacent images in the sequence [36] (§ 3.2.3).
4. These potential matches are pruned using some type of local consistency

filter (§ 3.2.4)*.
5. A fundamental matrix is computed from the pruned matches using a ran-

dom sampling algorithm [14, 20, 34, 45] (§ 3.2.5).
6. Guided matching using the initially computed fundamental matrix (§3.2.6)
7. A set of potential triple matches across three consecutive images are found

from the supporting matches from the fundamental matrix (§ 3.2.7).
8. A trilinear tensor is computed from these potential triple matches, again

using a random sampling algorithm [46] (§ 3.2.8).

* These marked areas denote that improvements over what is commonly seen in the literature have been
made.

 42

Producing the trilinear tensor is equivalent to creating a projective reconstruction of

the camera position, along with a projective reconstruction of the matching corner points.

However, what is more useful in this work is that the final set of correspondences that

support the tensor are in practice, error free, for the vast majority of cases. There are a

number of reasons for this result. First, unlike the fundamental matrix, the tensor encodes

the constraints among three image pairs. It can therefore produce correct correspondences

in the degenerate situation in which the epipolar lines of the two image pairs of the image

triple happen to be collinear. The other reason for the reliable results is the use of robust

methods to discard bad correspondences. The process begins with a large number of pos-

sibly unreliable corner matches and continually prunes these to a smaller set of more reli-

able matches.

If the final goal is to produce a dense reconstruction of the scene, then once the trilin-

ear tensor is computed the next phase of the process is the reconstruction phase and typi-

cally consists of the following steps:

1. Optionally autocalibrate the image sequence (if calibration information is

unknown) to allow us move from a projective to a metric reconstruction
[17]. Alternative methods of auto calibrating are covered in Chapter 5.

2. Compute camera positions in Euclidean space [41].
3. Rectify the image pairs in the sequence so that the epipolar lines are hori-

zontal and coincident [33].
4. Run a stereo algorithm to compute dense depth from the rectified image

pairs [33].

The set of steps in this last phase makes a number of assumptions, and have been well

addressed over the years as calibrated stereo vision problems. The first assumption is that

the goal is actually to create a dense 3D metric reconstruction of what has been viewed

by the image sequence. However, for some applications, the output of the first phase, a

set of projective camera positions, may be sufficient. An example occurs the field of

augmented reality in which the goal is to place synthetic objects in an image of a real

scene. In this case, the computed tensors can be used to place these synthetic objects in

appropriate positions without having either dense depth or metric camera positions. As

previously noted, we believe that for obtaining dense depth it is best to use active, not

 43

passive methods. However, for obtaining the position of an active sensor it is feasible to

use only an image sequence from a passive co-mounted sensor [47]. Also, in many model

building applications it is not difficult to obtain camera calibration, and we assume this

information is available either directly or from an autocalibration routine such as the one

presented in Chapter 5.

Our goal is to find the 3D camera positions from an image sequence using projective

methods to solve the correspondence problem and well known methods [41] to compute

the 3D reconstruction. The details of the procedure are described in the next section.

3.2 Processing Steps

We now describe the details of the process that takes a video image sequence and

computes a set of 3D camera positions. In doing so, we highlight the changes and addi-

tions that have been made over what is described in the literature.

3.2.1 Selecting Frames that are well suited
We have noticed that the photogrammetric bundle adjustment software [41] will

sometimes not converge if the spacing between the image pairs is too minute. This is of-

ten the case with video data. A good selection of frames from a video sequence can pro-

duce a much better set of input image data so that the bundle adjustment algorithms are

more likely to converge and therefore ensure a more reliable reconstruction. Due to the

wide availability and simplicity of use, video cameras are ideal image acquisition de-

vices. The high frame rate ensures that full coverage of the scene is possible; however

this advantage is surprisingly a disadvantage as well. The large volume of frame data is

not only impractical to process in a timely manner, but the minute baselines between

frames can also cause problems during the bundle adjustment phase of the structure from

motion (SfM) algorithms. The method described here is a novel approach to preprocess-

ing video image sequences to select a sub-sequence from larger sequence of video frame

data. Based on a proven tracking mechanism, the algorithm remains quite simple yet ef-

fective for identifying and extracting salient frame data for subsequent use in computing

camera positions.

 44

The obvious approach of regular frame sampling (effectively reducing the frame

rate) shows its inadequacies quickly. Due to banding and interlaced video, the regularly

selected frames may not be ideal for image processing. Another problem is that frames

selected in this manner have not been picked for their suitability to the structure from mo-

tion problem, but rather on a frame rate assumed to be good. The structure from motion

algorithms work best on images with large overlap to allow for good feature matching yet

significantly large baseline to ensure parallax large to enough to keep the problem well

conditioned. By simply changing the frame rate it is clear that the images produced by

this method may cause the structure from motion algorithms to be ill conditioned. High

frame rates increase the chance that parallax will not be sufficient and low frame rates

reduce the amount of overlap required to adequately match features. Clearly selecting a

fixed frame rate is not an effective approach to salient frame extraction for the structure

from motion problem. In fact, the ideal frame rate turns out to be variable, depending on

the two factors that make the structure from motion problem well conditioned: overlap

and parallax.

3.2.1.1 Motion Estimation and Feature Tracking

The feature tracker we use is based on the early work of Lucas and Kanade [48]

that was developed fully by Tomasi and Kanade [49], Shi and Tomasi provide a complete

description [50] that is readily available. Recently, Tomasi proposed a slight modifica-

tion, which makes the computation symmetric with respect to the two images; the result-

ing equation is fully derived in [51]. Briefly, features are located by examining the mini-

mum eigenvalue of a 2x2 image gradient matrix that is noticeably very similar to the Har-

ris corner detector [44]. The features are tracked using a Newton-Raphson method of

minimizing the difference between the two windows.

We continue by presenting a very brief outline of the work by Tomasi etal

[48,49,50,51]. Given a point p in an image I, and its corresponding point q in an image J,

the displacement vector δ between p and q is best described using an affine motion field:

δ = Dp + t (3.1)

where

 45

D = 







yyyx

xyxx

dd

dd
 (3.2)

is a deformation matrix is a Hessian matrix, and t is the translation vector of center point

of the tracked feature window. The translation vector t is measured with respect to the

feature in question. Tracking feature p to feature q is simply determining the six parame-

ters that comprise the deformation matrix D and the translation vector t.

Clearly in the case of pure translation, D will be the identity and thus

δ = p + t (3.3)

Because of this, the case of pure translation is computationally simpler and thus prefer-

able. Since the motion between adjacent frames of standard video is generally quite

small, it turns out that setting the deformation matrix to identity is the safest computation

[50], leaving us with the translation vector being exactly the displacement vector. A

complete explanation of the tracking equations is given in Chapter 2, Section 2.11

In the preprocessing system described in Section 3.2.1, our goal is to monitor the

parallax and overlap between frames in order to ensure the stability and well conditioning

of the structure from motion algorithms. Monitoring the motion through lost features and

feature parallax via feature tracking allows us to decide when there is suitable parallax

and overlap between frames for the structure from motion algorithms. The exact criterion

for extracting two frames to be fed into the structure from motion algorithms is described

in the next section.

3.2.1.2 Salient Frame Extraction
Once the input video sequence has been segmented into its individual shots, and a

complete description of once such method is presented in Chapter 4, each shot can then

be independently processed to extract salient frames and then further processed using the

correspondence and reconstruction phases of the system. Since the salient frame extrac-

tion the structure from motion parts of the system are independent, this processing is dis-

tributable and easily made parallel.

 46

Briefly, the extraction is done by selecting a set of features smaller than the set

used by the structure from motion algorithms and tracking them across adjacent frames.

A salient frame is signaled when enough features have surpassed a certain user specified

parallax and/or enough features have disappeared and can no longer be tracked. This cri-

terion is exactly what is required to ensure the success of the structure from motion algo-

rithms.

In algorithmic form, salient frame extraction

1. Select good features for frame 1 place in feature list FL
2. For each frame x in the video

a. Track features from FL in current frame x
b. Count number of lost features
c. Count number of features that have passed the parallax threshold
d. If detecting boundaries (cuts)

i. If (features lost > boundary threshold)
1. Signal boundary and extract boundary frame
2. Refresh the feature list FL using boundary frame

ii. Endif (i)
e. Endif (d)
f. If (features lost + features over parallax threshold) > threshold

i. Signal & extract frame
ii. Refresh feature list FL using current frame x

g. Endif (f)
3. Endfor (2)

The number of features to track the parallax threshold will vary depending on

video dimensions, however a good rule of thumb is the following: 25 features for every

10000 pixels, the parallax threshold should be 1/8 of the smallest dimension, and a sensi-

tivity threshold of 75 percent. For example, a video that is 320x240 would have 192 fea-

tures to track, a parallax threshold of 30 pixels (240/8), and a sensitivity threshold of 75

percent. This will supply images with significant overlap and sufficient parallax. When

detecting images, a boundary threshold of 95% or greater is sufficient.

3.2.1.3 Salient Frame Extraction Results
A series of small video clips was created to test the accuracy and capabilities of

the algorithm. These master clips consist of three smaller subsequences that are cut to-

gether. These sequences were created using a standard analog video camera commonly

found in many stores and digitized using a video capture card and converted to an MPEG

sequence.

 47

Master
Sequence

Sub-Sequence
Frame
count

Selected
frames

Reduction
rounded to
nearest %

1 Medical Centre 350 13 96
1 Warehouse 336 13 96
1 Body Shop 153 6 96
2 KFC 207 6 97
2 Caisse Populaire 252 10 96
2 Doctors Office 319 5 98
3 House 1 333 16 95
3 House 2 542 15 97
3 House 3 369 12 97
4 Play structure 653 25 96
4 Little House 662 20 97
4 Slide 375 12 97
5 Barn ** 374 26 93
5 Temple 1 481 7 99
5 Temple 2 ** 429 36 92

Table 3.1: Frame reduction for image sequences

The cut detection capabilities proved flawless and correctly identified all se-

quence start and end points. Surprisingly, this was more accurate than a pixel level cut

detection mechanism used to initially verify the sequence start and end points. The pixel

level cut detection missed one of the sequence starting points. We explore these capabili-

ties in detail in Chapter 4.

** the sequence was taken from a moving vehicle, the higher camera speed results in more
frames being selected as an overall percentage.

 48

FIGURE 3.2: EVERY 2ND
 EXTRACTED FRAME FROM EXAMPLE SEQUENCE

As one can see from Figures 3.2 and 3.3, the spacing of the extracted frames is very con-

sistent and regular. These baselines also make the structure from motion algorithms well

conditioned and hence the images taken from the sequences are well suited by construc-

tion..

FIGURE 3.3: ALL FRAMES FROM EXAMPLE SEQUENCE

3.2.2 Finding corners/interest points
The next step is to find a set of corners or interest points in each extracted image.

These are the points where there is a significant change in image gradient in both the x

and y direction. We offer the use of Smallest Univalue Segment Assimilating Nucleus

(SUSAN) corner detector [43] or the more commonly used Harris corner detector [44].

Studies have shown the Harris detector to be the more stable of the two [52].

Both methods typically require a user selected threshold to determine whether or

not a pixel and its surrounding area represents a corner. Instead of setting a corner

threshold, we return a fixed number of corners from each method by sorting the appropri-

ate gradient values, that have had a non-maximal suppression operator applied, and return

the top N strongest corners. This relatively simple addition to the standard corner detec-

tors tend to stabilize the results when the images have differening contrast and brightness

because the proper threshold is selected automatically and only the strongest corners are

returned. Furthermore, the running time of the sorting algorithm represents the upper

bound on this addition to the corner finding. The final results are not particularly sensi-

 49

tive to the number of corners that the user finds, and typically we use in the order of 800

corners selected from an image. This stage returns a set of corners Ci for image i in the

sequence.

3.2.3 Matching Corners
The next step is to match corners between adjacent images. A local window

around each corner is correlated (using normalized cross correlation at a sub-pixel level)

against all other corner windows in the adjacent image that are within a certain distance

that represents the upper bound on the image disparities. We generally set this upper

bound to approximately 1/3 the length of the longest dimension. Any corner pair within

the specified image disparity that passes a minimum correlation threshold is flagged as a

potential match. This gives us a one-to-many relationship in the putative match set which

is complicated. We reduce the complexity by enforcing a simple symmetry test.

The symmetry test is effectively reducing the one-to-many relationship to a one-

to-one relationship where corners strongly match one another. For example, consider a

corner p in the left image, and a corner q in the right image of an image pair. Assume that

the strongest match for p in the opposite image, the right image, is labeled Right(p). Simi-

larly for q the strongest match in the left image, is labeled Left(q). The symmetry test re-

quires the correlation be maximal in both directions. In other words a match (p; q) is ac-

ceptable if and only if p = Left(q), and q = Right(p).

The symmetry test reduces the number of possible matches significantly and

forces the remaining matches to be one-to-one. The total number of possible matches be-

tween images is therefore less than or equal to the total number of corner points. Without

the symmetry test constraint there are far more matches; but these matches are much less

reliable. For wider baseline images, it is useful to relax the symmetry test and to accept

the n best matches (usually in the order of 4). In this case we still require that the results

be symmetric, that is that each of these matches actually be one of the n best in a sym-

metric fashion.

 50

3.2.4 Local consistency filtering
The next step is to perform some type of local filter on these matches. The idea is

that just by looking at the local consistency of a match relative to its neighbours it is pos-

sible to prune many obvious false matches. This is not always done in the literature, but is

a sensible step, since the computational cost of using a local filter is low. One possible

approach to prune matches is to use relaxation [14]. We use a simpler relaxation-like

process to prune false matches, one based on the concept of disparity gradient [53]. The

disparity gradient is a measure of the compatibility of two correspondences between an

image pair. Assume the first correspondence maps a corner point pl (x1left; y1left) in the

left image to another corner point pr (x1right; y1right), in the right image. Similarly, a sec-

ond correspondence maps corners (x2left; y2left) into (x2right; y2right). The disparity of these

two correspondences are the vectors d1 = (x1left – x1right; y1left – y1right) and d2= (x2left –

x2right; y2left – y2right). The cyclopean separation of the vectors d1 and d2 (cs(d1,d2))is de-

fined as the vector that joins the midpoints of d1 and d2. The disparity gradient is the ra-

tio of the magnitude of the difference of the two disparity vectors d1 and d2 and the mag-

nitude of the cyclopean separation

),(
.

21

21

ddcs

dd
graddisp

−
= (3.4)

Corner points that are close together in the left image should have similar disparities, and

the disparity gradient is a measure of this similarity. Thus, the smaller the disparity gradi-

ent, the more the two correspondences are in agreement and vice-versa. The disparity

gradient measure has been used in some calibrated stereo algorithms to prune invalid cor-

respondences. Typically, these algorithms reject any correspondence with a disparity gra-

dient greater than 1.5. In our case, we compute the disparity gradient of each correspon-

dence with respect to every other correspondence. The sum of all these disparity gradi-

ents is a measure of how much this particular correspondence agrees with its neighbours.

We iteratively remove correspondences until they all satisfy the condition that the

correspondence with maximum disparity gradient sum is within a small factor (usually

2.0) of the correspondence with minimum disparity gradient sum. Using this simple dis-

parity gradient heuristic we are able to remove significant numbers of bad correspon-

 51

dences at a very low computational cost. Typically, at least 40% of the total number of

incorrect correlation matches is removed by this process. There is an additional benefit

derived by performing this localized filtering: Efficiency in the next step. By reducing

the number of false matches in the set the random sampling process requires fewer sam-

ples to converge to correct answer. This is because the numbers of correct matches ap-

pear in a higher proportion and random selection of a subset of these matches will result

in a higher proportion of the selected matches being correct. The number of iterations (n)

required to get a good fundamental matrix is given by the following equation:

)1log(

))Pr(1log(
8p

Fgood
n

−
−= (3.5)

where Pr(Fgood) is the probability of computing a good fundamental matrix F, and p is

the proportion of good matches in the putative match set. This step results in a set of pu-

tative matches DMij for image pair i and j.

3.2.5 Computing the fundamental matrix
The original matches between image i and j produced by the correlation process

are labeled as the set Mij , and the filtered matches that pass the disparity gradient test as

the set DMij. The next step is to use these filtered matches to compute the fundamental

matrix which is the uncalibrated version of the essential matrix. This process must be ro-

bust, since it can not be assumed that all of the correspondences in DMij are correct. Ro-

bustness is achieved by using concepts from the field of robust statistics, in particular,

random sampling [10, 11, 12, 21, 23] as outlined in Chapter 2. A fundamental matrix, Fij,

is then computed from this minimal set. The set of all corners that support this fundamen-

tal matrix is called the support set SFij. The fundamental matrix Fij, with the largest sup-

port set SFij is returned by the random sampling process.

While this fundamental matrix has a high probability of being correct, it is not necessarily

the case that every correspondence that supports the matrix is valid. This is because the

fundamental matrix encodes only the epipolar geometry between two images. A pair of

corners may support the correct epipolar geometry by accident (this is known as degener-

acy []). This can occur, for example, with a checkerboard pattern when the epipolar lines

 52

are aligned with the checkerboard squares. In this case, the correctly matching corners

can not be found using only epipolar lines (i.e. computing only the fundamental matrix).

This specific type of ambiguity can be dealt with by computing the trilinear tensor.

The PVT supports the computation of the fundamental matrix from a variety of

different algorithms, including Affine, Hartley’s 8 point algorithm, Phil Torr’s algorithm,

and Kanatani’s renormalization procedure. Furthermore the toolkit allows the computa-

tion of homographies for planar warps and rotations.

3.2.6 Guided matching
Once a putative fundamental matrix has been computed we revert back to match-

ing corners phase as outlined in section 3.2.3. Again we use normalized cross correlation

but we restrict our matching criteria even further by only looking for putative matches

that fall near the epipolar lines defined by the previously computed fundamental matrix.

This back step allows us to generate a new set of correspondences have a higher probabil-

ity of being a proper corresponding pair. One the new putative guided match set GMij has

be computed, we again perform a disparity gradient filter followed by a final computation

of the fundamental matrix (Fij) that in practice gives us a larger support set (SFij) than

was computed by the previous stage.

3.2.7 Computing putative triple correspondences
This stage is a simple matching using the transitive property of equality. In prac-

tice, 10 to 25 percent of these putative triplets are not exact matches and are often mis-

matched by several pixels. These putative triple correspondences are then used to com-

pute the trilinear tensor in a random sampling process. We compute the trilinear tensor

from the correspondences that form the support set of two adjacent fundamental matrices

in the image sequence. Consider three adjacent images, i, j and k and their associated

fundamental matrices Fij and Fjk. Each of these matrices has a set of supporting corre-

spondences, which we call SFij and SFjk. Say a particular element of SFij is (xi yi ; xj yj)

and similarly an element of SFjk is (x'j y'j ; xk yk). Now if these two supporting correspon-

dences overlap, that is if (xj yj) equals (x'j y'j) then the triple created by transitivity then is

 53

a member of PTijk, the putative triplet set. The set of all such possible supporting triples is

the input to the random sampling process that computes the tensor.

3.2.8 Computing the trifocal tensor
The trilinear tensor relates the image coordinates of matching corners in three im-

ages instead of two images. It is therefore inherently a more stable, and a more discrimi-

nating quantity that the fundamental matrix [31]. We use the putative triple matches,

PTijk, over three views to robustly computer the trifocal tensor using techniques outlined

in Chapter 2. The result is the trifocal tensor Tijk, for three views i,j,k, computed using a

random sampling method [21]. Furthermore a set of triples (corner in the three images)

that actually support the computed tensor is output, which we call STijk. The toolkit al-

lows the computation of an affine tensor, and projective tensors using methods outlined

by Hartley [18] or by Torr [23].

3.2.9 Computing the 3D information
We have gone from a set of corner points Ci; Cj , and Ck; to a set of matches Mij ,

and Mjk; to a set of filtered matches DMij , and DMjk; to a pair of fundamental matrices

Fij; Fjk and support SFij and SFjk; to a set of putative triplets PTijk, to a tensor Tijk with

support STijk. The cardinality of each of the supporting match sets always decreases, but

the confidence that each match is correct increases. The entire process begins with many

putative matches, and refines these to a few high confidence matches. The final matches

STijk that support the tensor Tijk range in cardinality from 20 to 100, and in practice, have a

very high probability of being correct. As we stated in the introduction, the goal is to

compute the 3D camera positions from the image sequence, not to compute dense depth.

We therefore do not perform the steps in the second phase; rectification and stereo. In-

stead, we take the correspondences that support the overlapping tensors and send them to

a photogrammetric bundle adjustment program [41]. Assume that we have a sequence of

images numbered from 1 to n, and have computed a set tensors T123, T234, … T(n-2)(n-1)(n) .

Consider the tensors Tijk and Tjkl which have supporting correspondences (xi yi , xj yj , xk

yk) in STijk and (x'j y'j , x'k y'k , x'l y'l) in STjkl. Those correspondences for which (xj ; yj ;

xk; yk) equals (x'j ; y'j ; x'k ; y'k) represent the same corner in images i, j, k and l. This cor-

responding corner list is then sent directly to the commercial bundle adjustment program

 54

Photomodeler [41] which, as a commercial product, uses established algorithms. Since

we know the camera calibration, either aproiori or via an autocalibration method such as

the one as outlined in Chapter 5, we use these correspondences, the calibration informa-

tion and Photomodeler to compute the 3D camera positions, along with the 3D co-

ordinates of the matching features.

3.3 Experiments

Over 20 experiments have been conducted under a variety of lighting conditions

and camera motions. Some of these experimental data samples come from the computer

vision literature, while others have created using modern digital cameras. All of the ex-

perimental results can be found as a part of the Projective Vision Toolkit example sets2.

Due to limitations in space, only a few are presented in this thesis, particularly those ex-

amples that are found in the previous literature because the capture process was not under

our control.

In our first example we begin with a complete video sequence taken of an indoor

scene. The camera operator is performing some “sky writing” motions. The video se-

quence, which has 1400 frames, has the frame extraction process described in section

3.2.1 executed to reduce the frames in the sequence down to only 81. In figure 3.4 we

see a selection of 9 frames from the reduced original video sequence. We proceed to run

the 81 selected frames through the modular process described above to automatically

solve the correspondence problem for the selected subsequence. The correspondences

and the camera calibration parameters are fed into the structure from motion software and

the 3D reconstruction of the 2355 correspondence points and the 80 camera positions are

computed. As we can see in Figure 3.5, the “sky writing” experiment is effectively cap-

tured when the camera positions and points are reconstructed in a virtual rendering of the

3D points and cameras and spell out the letters N, R, and C.

2 The Projective Vision Toolkit webpages can be found here: http://cg.scs.carleton.ca/~awhitehe/PVT/

 55

FIGURE 3.4 SELECTION 9 OF IMAGES FROM VIDEO SEQUENCE

FIGURE 3.5 RECONSTRUCTED CAMERA POSITIONS AND POINTS FROM A VIDEO CAMERA

Attempts to run the entire 1,400 frames through the process and then into the struc-

ture from motion algorithms would be computationally intense and the bundle adjustment

phase would have problems converging due to the minute baselines present that are

caused by the high video frame rate.

 56

In our next example, we present results using the well-known Carnegie Mellon House

sequences. In this sequence, the camera was moved with deliberate fixed motions that

offer us a known ground truth. In the tables below, we see how the number of matches

decreases as we step through each of the previously described phases of computation.

FIGURE 3.6 3 SAMPLES FROM THE CMU-BIGHOUSE SEQUENCE, FRAMES 1,6 & 11.

For two views, we have an approximate 10 percent drop in matches for each stage, and a

50 percent drop when we generate putative triples and finally another 20 percent drop for

those triples that support the computed tensor.

Image Pair Correlation
Matches

Locally filtered
Matches

Fundamental
Matches

1-2 417 389 363
2-3 349 321 313
3-4 470 447 420
4-5 487 479 455
5-6 393 373 366
6-7 531 530 518
7-8 422 405 393
8-9 509 506 494

9-10 505 504 487
10-11 433 411 398

Table 3.2 Match counts for pair wise phases

Image Triplet Putative Matches Tensor Support
Matches

1-2-3 185 156
2-3-4 209 196
3-4-5 279 236
4-5-6 269 236
5-6-7 278 168
6-7-8 311 243
7-8-9 310 238

8-9-10 378 353
9-10-11 287 225
Table 3.3 Match counts for triplet phases

 57

Once we have computed these high confidence correspondences, we proceed by

passing the correspondence information and camera calibration information (obtained

either via a calibration process or autocalibration) into the photogrammetry software to

compute the camera positions and sparse depth information for the corresponding points.

As we can see in Figure 3.7, the major structures of the scene such as the peaks in the

roof are quite evident. Furthermore, the camera positions show the deliberate well con-

ceived motions.

FIGURE 3.7 RECONSTRUCTED CAMERA POSITIONS AND FEATURE POINTS

For those not familiar with the CMU-Bighouse sequence, the cameras were deliberately

moved forward and backward in certain cases and the cameras are not visible in the re-

construction as shown in Figure 3.7. However as we can see in Figure 3.8, a close up

view of the cameras shows the backs of the cameras in their original positions. However

the rendering of the cameras in their new positions effectively overwrites the front of the

cameras in the original position.

Finally, in Figure 3.9 we present an image taken from the sequence with the re-

constructed points in black re-projected and overlaid onto the image. The camera posi-

 58

tions are also re-projected back onto the image plane, and we can see that the points are

quite accurately projected to their original locations.

FIGURE 3.8 RECONSTRUCTED CAMERA POSITIONS WITH OVERLAPS HIGHLIGHTED

FIGURE 3.9 ORIGINAL IMAGE WITH FEATURES AND CAMERAS OVERLAID

In our final example, we have another well known sequence, the Oxford basement.

This example is particularly difficult because the camera is moving in a forward motion

that similar to that of a change in focal length along the Z-axis. An interesting effect to

note here is that because the focus of expansion falls within the image plane, the localized

filtering does not appear to be useful way to prune false matches. Upon reflection of dis-

parity gradient, this result makes sense because the magnitude of the individual corre-

 59

spondence vectors decrease in size as they near the location of the focus of expansion.

This will result in the cyclopean separation generally being much larger than the magni-

tude of the difference of the two vectors. This will result in very small disparity gradient

values and therefore prevent pruning of correspondences.

FIGURE 3.10 EXAMPLE IMAGE WITH OVERLAID CAMERA POSITIONS AND POINTS

Image Pair Correlation
Matches

Locally filtered
Matches

Fundamental
Matches

0-1 281 280 241
1-2 288 286 263
2-3 291 289 236
3-4 273 272 233
4-5 277 276 240
5-6 254 252 219
6-7 279 275 242
7-8 238 232 145
8-9 229 226 148

9-10 256 252 212
Table 3.4 Match counts for pair wise phases

Image Triplet Putative Matches Tensor Support
Matches

0-1-2 198 167
1-2-3 184 134
2-3-4 171 140
3-4-5 180 135
4-5-6 170 144
5-6-7 168 132
6-7-8 114 66
7-8-9 79 46

8-9-10 103 54
Table 3.5 Match counts for triplet phases

 60

As we can see from Table 3.4 the disparity gradient filtering results in very little change

in the number of correspondence, while the support sets for both the fundamental matrix

and the tensor reduce the correspondence count by approximately 10-20% each.

Finally, we conclude the experiments section with a tabular review of all the ex-

periments conducted and presented as part of the Projective vision toolkit. The exact

match counts for each image pair and triplet can be found in Appendix A.

Sequence
Average

Correlation
Matches

Average
Filtered
Matches

Average
Fund.

Support
Matches

Average
Putative
Triple

Matches

Average
Tensor
Support
Matches

Ex1a 452 437 421 278 228
Ex1b 293 214 192 57 44
Ex1c 239 123 81 22 18
Ex1d 236 204 148 44 26
Ex2a 185 166 141 31 25
Ex2b 140 138 86 12 12
Ex2c 276 230 115 32 23
Ex3a 233 171 94 24 20
Ex3b 215 173 124 44 35
Ex3c 375 325 157 54 29
Ex3d 343 264 222 104 71
Ex4a 270 218 148 48 36
Ex4b 222 181 90 18 14
Ex4c 175 166 45 7 6
Ex5a 267 264 218 152 113
Ex5b 322 238 199 108 73
Ex5c 193 153 135 61 45

Table 3.6 Reduction in feature correspondence for PVT example sets.

3.4 Conclusions and Discussions

We have presented a modular system for computing a reconstruction of the cam-

era positions from an image sequence. Since our goal is to find the metric camera posi-

tions we do not need to create a dense 3D reconstruction. We assume that we have cam-

era calibration information available, but we do not use this calibration information when

computing the correspondences. Instead reliable correspondences are computed using the

uncalibrated projective method. However, the calibration information is used for comput-

ing the 3D camera positions from these correspondences. The final correspondences,

those that support the trifocal tensor, are error free in the vast majority of cases. The re-

 61

sults are demonstrated experimentally on a number of examples. There is no doubt that

reliable results can be obtained for a wide variety of images, both indoor and outdoor.

In performing our experiments we have drawn some conclusions about the best

approaches for each step of the projective reconstruction process. We have described a

novel method for extracting a manageable subset of frames from a video sequence and

we have also described a way to locally filter invalid correspondences based on the dis-

parity gradient. We believe that projective methods in combination with random sam-

pling solve the correspondence problem for many image sequences. The support set of

the fundamental matrix and trifocal tensor are correct correspondences in the vast major-

ity of cases. If the goal is to compute the metric camera positions and the camera calibra-

tion is known, we believe that it is best to send the supporting correspondences of the

tensor directly to photogrammetry software. Our justification is that a bundle adjustment

process is necessary to compute the camera positions accurately and we believe that this

is better done in metric space, rather than projective space.

The software used in these experiments has been made publicly available to facili-

tate expedient future research into the field. To our knowledge, this is the first publicly

available software that allows the computation of the trifocal tensor. The toolkit runs on

most Unix systems, along with Windows NT/2000/XP/98. The input is a sequence of

overlapping images, and the output is a series of fundamental matrices and trifocal ten-

sors, pair wise and triplet correspondences. A more complete description of the toolkit is

given in Appendix C.

 62

Chapter 4

4 Segmenting Video Sequences

4.1 Introduction

Recently, investigation into shot boundary detection schemes has gathered much

momentum [54-63]. Cut detection is seemingly easily solved by an elementary statistical

examination of inter-frame characteristics; however a truly accurate and generalized cut

detection algorithm still eludes researchers. Reliable shot boundary detection forms the

cornerstone for video segmentation applications as shots are considered to be the elemen-

tary building blocks that form complete video sequences. Applications such as video ab-

straction, video retrieval and higher contextual segmentation all presuppose an accurate

solution to the shot boundary detection problem [60, 64, 65, 66]. Automatic recovery of

these shot boundaries is an imperative primary step, and accuracy is essential.

Shot transitions can be classified into four classes based on the 2D image transforma-

tions applied during transition production [54].

• Identity class: Neither of the two shots involved are modified, and no

additional edit frames are added. Only hard cuts qualify for this class.
• Spatial Class: Some spatial transformations are applied to the two

shots involved. Examples are wipe, page turn, slide, and iris effects.
• Chromatic Class: Some color space transformations are applied to the

two shots involved. Examples are fades and dissolve effects.
• Spatio-Chromatic Class: Some spatial as well as some color space

transformations are applied to the two shots involved. All morphing
effects fall into this category.

In this work, we concentrate only on the identity class, as our goal is to improve the accu-

racy of cut detection by introducing a new differencing metric based on stable feature

tracking from frame to frame. The basic idea behind the technique has been shown to

detect fades [62], but we concentrate solely on cuts in this work.

 63

4.2 Additional Background

In 1965, Seyler developed a frame difference encoding technique for television

signals [67]. The technique is based on the fact that only a few elements of any picture

change in amplitude in consecutive frames. Since then much research has been devoted to

video segmentation techniques based on the ideas of Seyler. Much work has been com-

pleted in the area of scene detection, shot detection and annotation and as a result, the

methods and algorithms are quite mature. However, a truly accurate cut detection algo-

rithm has yet to be introduced. Any improvements in cut detection will ultimately im-

prove the applications that rely on it.

Hard cuts are the most common transition between shots. A hard cut is the direct

concatenation of two shots without the presence of transitional frames. Formally, the re-

sulting sequence S(x,y,t)is composed by joining two shots S1(x,y,t) and S2(x,y,t) and is

characterized by the following:

-1 hardcut 1 -1 hardcut 2S (x, y, t) = [[1 - u (t - t)] S (x, y, t)] + [[u (t - t)] S (x, y, t)]⋅ ⋅ (4.1)

where thardcut denotes the time stamp of the first frame after the hard cut and u-1 (t) is the

unit step function (1 for t ≥ 0, 0 otherwise). [56]

FIGURE 4.1: HARD CUT BETWEEN FRAMES 206 AND 207 OF A VIDEO SEQUENCE.

A hard cut produces a visual discontinuity in the video stream as we see in Figure 1. Ex-

isting hard cut detection algorithms differ in the feature(s) used to measure the inter-

frame differences and in the classification technique used to determine whether or not a

discontinuity has occurred. However, they almost all define hard cuts as isolated peaks in

the features time series. In [56] a complete survey is given on techniques to compute in-

ter-frame difference and classify the type of transition. A variety of metrics have been

suggested to work on either raw video or compressed data and we briefly outline methods

 64

that have been used in the past, or are currently in use, forming the basis of our compari-

sons. We will briefly outline the techniques next.

4.2.1 Quantifying Inter-frame Differences
The basic idea behind shot/scene detection is to evaluate the similarity of adjacent

frames using some metric. When the similarity measures cross a certain threshold, a

scene change or shot boundary will be classified as occurring. By selecting a better

method to quantify the inter-frame differences results in the classification algorithm be-

coming more accurate and easier to implement. In this section we outline several known

inter-frame difference quantification techniques.

4.2.1.1 Individual Pixel Differences
Equations (2) and (3) describe a pixel level change metric and a cut classifier respec-

tively.

 DIi(x,y) = 1 if |Ii(x,y)-Ii+1(x,y)| > t

 0 otherwise (4.2)

1 1

(,)

(*)

X Y
i

x y

DI x y
T

X Y= =
>∑∑ (4.3)

In (4.2), we compute the difference between pixel values between images i and i+1 to

create a difference image DI, where t is a threshold signifying individual pixel difference.

We then compute the overall image difference using (4.3). If the percentage of image

change is greater than a threshold T, we declare a shot boundary. The pixel level detec-

tion metric displayed in (4.2) and (4.3) is the most basic form for raw, uncompressed

video.

Unfortunately, this simple metric measure is very susceptible to object and cam-

era motion. Even if camera motion is compensated and pixels are transformed before be-

ing compared, object motion still poses significant difficulties. More sophisticated meth-

ods use optical flow, the number and distribution of motion vectors and the strength of

the residual derived by block matching as features [57, 58]. In addition, performance of

the segmentations relies directly on the adequate selection of two threshold values.

 65

4.2.1.2 Intensity/color histograms
Histogram change metrics utilize histogrammed values of the pixel data rather

than the pixel values themselves. This makes the entire system more robust to noise and

small object motion. There exist many different histogram possibilities that could be

used as there exist many different color spaces. Color spaces such as RGB, YUV, HSV,

HIS, YIQ, Lab, Luv, Munsell and opponency colors can all be easily converted from one

to another. As such they can be considered equivalent. In practice, simple histogram dif-

ferencing has shown to be capable and quite efficient. Performance capabilities have

been outlined in [56, 57]. Specific examples of histogram techniques are presented in

[67, 68, 69]. Note that in general, for histogram techniques, greater improvements in cut

detection performance can be attained by making a proper choice for the categorization

algorithm than can be attained by using alternate color spaces or by fine tuning the histo-

gram difference functions [55].

4.2.1.3 Edge based features
The edges of objects between two adjacent frames in a cut cannot usually be

found and appropriately put in correspondence. An edge based feature approach was pre-

sented in [70] that used the so-called Edge Change Ratio (ECR) and was further refined

in [71]. The ECR is defined as number of dilated edge pixels in two adjacent frames that

do not conform. Edges are detected using a Canny [72] edge detector, and in order to

handle object motions a dilated edge is compared in a windowed area around the pixels

rather than a single pixel. Such a method is prone to failure in the presence very fast

camera or object motion, multiple moving objects, moving cameras with moving objects,

and occlusions. A comparison of histogram techniques against the edge change ratio

technique has shown that the histogram techniques provide similar results without the

added complexities [55].

While the ECR methods provide advances in capabilities, especially for fades and

dissolves, they suffer greatly increased runtimes due to the added complexities. A recent

review [73] managed to get real time capabilities of the edge feature-based method pre-

sented in [71] but only on micro-frames of 88x72 pixels. When the frame sizes were in-

 66

creased to 352x288 (a more standard resolution) the frame-processing rate dropped to

approximately 2 frames per second.

4.2.2 Classifying Differences as cuts and non-cuts
Once a metric that quantifies the inter-frame differences has been defined, a clas-

sifier is required to separate the differences into cuts and non-cuts. Two basic classifica-

tion techniques that revolve around thresholding techniques as linear discriminators have

been proposed; they are global and adaptive thresholding.

4.2.2.1 Global threshold
The input to a global thresholding technique is all of the difference values for a

given video, which in the ideal case is supposed to show a single large peak at hard cut

locations. A hard cut is declared each time the feature difference value surpasses a glob-

ally fixed threshold. A common problem of global thresholding is that in practice it is

impossible to find a single global threshold that works with all kinds of video material

[55].

4.2.2.2 Adaptive threshold
The input to an adaptive thresholding technique is a windowed subset of differ-

ence values for a given video, which in the ideal case is supposed to show a single large

peak at cut locations. A hard cut is detected based on the difference of the current feature

values with respect to its local neighborhood. Usually a temporal sliding window of size

w centered on the current frame is chosen to represent the local neighborhood [55]. A cut

is classified when the ratio between the largest and the second largest value in the win-

dow surpasses a second threshold [59].

In Figure 4.2, shots are easily seen to be length 2 (664-665) and length 4 (666-

669). Both adaptive thresholding techniques in combination with color histogram differ-

ences between frames have been shown to lead to higher performance [59, 60]. However

this type of adaptive thresholding is prone to false negatives in highly edited sequences.

We have found that in commercial video sequences, shots of length two, three and four

frames are more common than one would expect. Figure 2 shows a sequence with sev-

 67

eral cuts that may be missed when the window in an adaptive thresholding technique is

too large.

FIGURE 4.2: SEQUENCE FROM THE MOVIE PSYCHO

3.

4.3 Feature Tracking for Quantifying Dissimilarity
We propose in this paper a new approach that uses feature tracking as a metric for

dissimilarity. Furthermore we propose a methodology to automatically determine a

threshold value by performing density estimation on the squared normalized per-frame

lost feature count. It has been reported that the core problem with all motion-based fea-

tures is due to the fact that reliable motion estimation is far more difficult than detecting

visual discontinuity, and thus less reliable [55]. Effectively, a simple differencing tech-

nique is replaced with a more complex one. Experimentally we have found that the pro-

posed feature tracking method performs flawlessly on all simple4 examples where pixel

and histogram based methods did not achieve such perfect results.

FIGURE 4.3: DIAGRAM OF SYSTEM TO COMPUTE CUTS

We continue by outlining the feature tracking method, an outlier pruning algorithm and a

signal separation methodology. We follow up in the next section with a method to dy-

3 All copyrights © belong to their respective owners. Psycho is an Alfred Hitchcock movie, produced by
Shamley Productions and distributed in North America by Universal Pictures.
4 Here we define simple to be cases of clearly obvious cuts, which were well separated over time and space.

NO

YES

QUANTIFYING
INTER-FRAME
DIFFERENCES

Track Fea-
tures from
Frame I to

I+1

Prune false
tracking with
the Minimum
Spanning Tree

Compute
and store the
square of %
feature loss

For
Each

Frame I,

COMPUTING
LINEAR

Compute the
PDF and

first deriva-
tive of the

Histogram
the squared
% feature

loss into 101

Compute
Obvious
Discriminator

Compute Can-
didate Set
Thresholds

Obvious
Discriminator?

 68

namically select a global threshold. In Figure 4.3 we see the entire flow chart for com-

puting the positions of cuts in a video sequence. Each block within the diagram is de-

tailed in this section and the next.

4.3.1 Feature Tracking
Previous feature based algorithms [70, 71] rely on course-grained features such as

edges and do not track edge locations from frame to frame. Rather they rely on sufficient

overlap of a dilated edge map and search a very small local area around the original edge

locations. In contrast, the proposed method of tracking fine-grained features (corners) on

a frame-by-frame basis in less constrained by the original location due to the pyramidal

tracking approach. This allows the proposed method to be more robust to object and

camera motions. Cuts are detected by examining the number of features successfully

tracked (and lost) in adjacent frames, refreshing the feature list for each comparison.

We utilize a corner-based feature tracking mechanism to indicate the characteris-

tics of the video frames over time. As we track corner features over time, we detect pro-

duction features within the video and can annotate the sequence depending on the fea-

tures that are successfully tracked over time versus those that are lost. Feature tracking is

performed on the luminance channel (grey map) for the video frames. The luminance

channel is computed as follows:

Luminance = Red*0.299 + Green*0.587 + Blue*0.114 (4.4)

The feature tracker we use is based on the work of Lucas and Kanade in [48]. This work

was further developed by Tomasi and Kanade in [49] of which Shi and Tomasi provide a

complete description in [50].

Briefly, features are located by examining the minimum eigenvalue of a 2x2 im-

age gradient matrix that is noticeably similar to the Harris corner detector [44]. The fea-

tures are tracked using a Newton-Raphson method of minimizing the difference between

the two windows around the feature points. We continue by presenting a very brief out-

line of the work by Tomasi et al [48, 49, 50].

 69

Given a point p in an image I, and its corresponding point q in an image J, the displace-

ment vector δ between p and q is best described using an affine motion field:

δ = Dp + t (4.5)

where

xx xy

yx yy

d d
D

d d

 
=  
 

 (4.6)

is a deformation matrix and t is the translation vector of the centre point of the tracked

feature window. The translation vector t is measured with respect to the feature in ques-

tion. Tracking feature p to feature q is simply the problem of determining the six parame-

ters that comprise the deformation matrix D and the translation vector t. In the case of

pure translation, D will be the identity matrix and thus

δ = p + t (4.7)

Because of this, the case of pure translation is computationally simpler and thus

preferable. Since the motion between adjacent frames of standard video is generally quite

small, it turns out that setting the deformation matrix to identity is a safe computation

[50], leaving us with the translation vector being exactly the displacement vector. Com-

plete details for the tracking equations and feature selection can be found in Chapter 2,

Section 11.

FIGURE 4.4: END RESULT FOR FEATURE TRACKING OVER SEVERAL FRAMES.

 70

In Figure 4.4, stationary objects in the foreground and a quickly moving object (noted by

the long motion vectors) in the background. Gray squares are lost features; white squares

represent the tracked feature and its original position.

The displacement vector is computed using a pyramid of resolutions because

processing a high resolution image is computationally intensive. The multi-resolution

pyramid within the feature tracker reduces the resolution of the entire image, say by a

factor of 2. Tracking occurs by tracking a features general area in the lowest resolution

and upgrading the search for the exact location as it progresses back up the pyramid to

the highest resolution. An example of tracked feature and displacement vectors is given

in Figure 4.4.

While tracking features it is possible that an extremely large object motion be-

tween frames does occur. It has been noticed that in such cases the tracking mechanism

begins to fail because the disparity between adjacent frames is too large. The result, fea-

tures are lost and cannot be tracked any further. This fact indicates that some large shift

in the adjacent frames has occurred and can be handled at the cost of substantially higher

processing time by increasing the pyramid dimensions or by removing the identity con-

straints of the matrix D.

4.3.2 Pruning False Tracking
In the case of a cut at frame i, all features being tracked should be lost from frame

i to i+1. However, there are often cases where the pixel areas in the new frame coinci-

dentally match features that are being tracked. In order to prune these coincidental

matches, we examine the minimum spanning tree of the tracked and lost feature sets.

We can see from Figure 4.5 a, in the case of a cut, that there is a very small percentage of

features that are tracked. This is clearly an erroneous situation because the two consecu-

tive frames are so obviously different. We can remove some of these erroneous matches

by examining properties of the minimum spanning tree of the tracked and lost feature

sets. By severing edges that link tracked features to lost features we end up with several

disconnected components within the graph. Any node (feature) in the graph that be-

comes a singleton (not connected to any other feature) has its status changed from tracked

 71

to lost, and is subsequently included in the lost feature count. The property we are ex-

ploiting here is the fact that erroneously tracked features will be minimal and surrounded

by lost features. Clusters of tracked (or lost) features have localized support that we use

to lend weight to our assessment of erroneous tracking

(a) (b)

(c)

FIGURE 4.5: THREE CONSECUTIVE FRAMES FROM A SEQUENCE.
(a) shows a very high proportion of successfully tracked features from the previous frame to current frame
(b) shows successfully tracked features from (a) (previous) to (b) (current) (c) shows those features cannot
be found in very high proportion indicating a cut. Above each frame is the minimum spanning tree for each

of the feature sets, (+) are tracked features, (X) are lost features.

 72

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401 2601

Frame Number

%
 L

os
t F

ea
tu

re
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401 2601

Frame Number

%
 L

os
t F

ea
tu

re
s

(S
qu

ar
ed

)

FIGURE 4.6: THE RESULTS OF SQUARING.

Top is the original signal, bottom is the squared signal. The separation between the cuts
and the non-cuts has been greatly increased.

Our inter-frame difference metric is the percentage of lost features from frames I

to i+1. This corresponds to changes in the minimum spanning tree, but is computation-

ally efficient. Because we are looking to automatically define a linear discriminator be-

tween the cut set and the non-cut set, it is advantageous to separate these point sets as

much as possible. In order to further separate the cut set from the non-cut set, we square

the percent feature loss which falls in the range [0..1]. This has a beneficial property of

ensuring the densities of the cut set and the non-cut set are further separated and thus ease

the computation of a discriminating threshold. The idea here is that in the case of optimal

feature tracking, non-cut frame pairs score 1 (all features tracked) and cut frame pairs

score 0, no features tracked. Squaring, in the optimal case, has no effect as we are al-

ready maximally separated. However, in practice, squaring forces the normalized values

 73

for non-cut frame pairs closer to zero. Figure 4.6 shows the effect of stretching on the

inter-frame differences.

4.4 Automatically Determining a Linear Discriminator

Having a difference metric and a method to further separate the cut set from the

non-cut set, we can now compute the linear discriminator for the two sets. There is no

common threshold5 that works for all types of video. Next we present an algorithm to

auto-select a global threshold. There are two classes of frame differences, cuts and non-

cuts; and our goal is to find the best linear discriminator that maximizes the overall accu-

racy of the system. The cut set and the non-cut set can be considered to be two separate

distributions that should not overlap, however in practice they often do, as illustrated in

Figure 7b. When the two distributions overlap a single threshold results in false positives

and false negatives. An optimal differencing metric would ensure that these two distribu-

tions do not overlap; in such a case the discriminating function is obvious and accuracy is

perfect. The quality of the difference metric directly affects the degree to which the two

distributions overlap, if any. Until an optimal difference metric is proposed, the problem

of optimal determination of the discriminator must be considered.

To avoid the problems illustrated in Figure 2 that may occur with a windowed adaptive

threshold, we have opted to examine the density of the recorded inter-frame difference

values for an entire sequence. The idea here is that there should be two distinct high-

density areas, those where tracking succeeded (Low feature loss) and those where track-

ing failed (high feature loss). In practice, this situation appeared about 50% of the time in

our data set. We will introduce the idea of a candidate set in section 4.4, which is the set

of features that can be discriminated by zero crossings of the probability density function

that characterizes the densities of the inter-frame differences. It needs to be noted here

that while we examine the density for the entire sequence to determine a global threshold,

it is possible to apply the method outlined next in a windowed manner to determine local-

ized thresholds.

5 Note that a threshold is a linear discriminator with the function y = some_value.

 74

FIGURE 4.7: (A) NON-OVERLAPPING DISTRIBUTIONS, (B) OVERLAPPING DISTRIBUTIONS
(a) the discriminator is obvious. (b) the cut set on the right and the non-cut set on the left.

The ideal discriminator lies within the overlap region.

4.4.1 Density Estimation
In order to auto-select a threshold, we examine the frequency of high and low fea-

ture loss. We are looking to exploit the fact that the ratio of non-cuts to cuts will be high,

and therefore the ratio of low feature loss frame pairs to high feature loss frame pairs will

also be high. As the frame to frame tracking of features is independent of all other video

frames, we have n independent observations from an n+1 frame video sequence. The ex-

trema of the probability density function can be used to determine the threshold to use.

We can use the statistical foundations of density estimation to estimate this function.

The intention of density estimation is to approximate the probability density function f(●)

of a random variable X. Given that we have n independent observations x1, …, xn (our

tracked feature percentage squared) from the random variable X (our video sequence).

The kernel density estimator for the estimation of the density value f(x) at point x is de-

fined as

1

1ˆ ()h

n
i

i

x x
f x K

nh h=

− =  
 

∑ (4.8)

Where K(●) is the so-called kernel function, h is the bandwidth (window size), and n is

the number of samples (number of frames-1). There have been variety of kernel func-

% Feature Loss
 (a)

D
e
n
s
i
t
y

% Feature Loss
 (b)

D
e
n
s
i
t
y

Max
Recall

 Max
F1-Score

 Max
Precision

 75

tions presented in the past and we performed an empirical evaluation of the 9 kernel func-

tions listed in Table 1 to determine which kernel is the most appropriate for our problem.

Table 1: Density Estimation Kernel functions.

Kernel Name Kernel Function K(α)
Uniform ½ α

Rectangle α
Epanechnikov ¾ (1 – α2)

Biweight 15/16 (1 – α2) 2
Triweight 35/32 (1 – α2)3

Gaussian
1 2
2

1

2
e

α
π

−

Triangular | α |)

Cosine Trace cos
4 2

π π α 
 
 

Laplacian
1

2
eα

We want a kernel estimator that will facilitate the identification of extrema in the

probability density function. In Figure 8 we examine each of the kernels in detail to

evaluate the effects the smoothing kernel has on each. It is important to select a kernel

that does not over smooth, resulting in a loss of discrimination capabilities. As well, we

must not select a kernel that under-smoothes, resulting in a ragged signal and thus a mis-

representation of the position of extrema. In the case where the distributions overlap, we

determined that the triangular kernel provided the best smoothing properties.

Generally speaking, we found that the Laplacian, Uniform and Rectangular ker-

nels under smoothed the signal, leaving too many extrema for reliable subsequent analy-

sis. We also found that the Gaussian, Triweight, and Epanechnikov kernels over

smoothed the signal, making accurate determination of extrema difficult. The remaining

3 kernels, Biweight, Cosine Trace and Triangular appeared to have a very similar effect

on the original signals. The triangular kernel was selected from the remaining three be-

cause it did not over-smooth locally, making the determination of extrema easiest of the

three. In Figure 4.8 we see an analysis of the all kernels for a single data source with

non-overlapping distributions. The results presented were consistent across many differ-

ent samples from our data set. From Figure 8 we draw the conclusion that in the case that

 76

the two distributions do not overlap, a smoothing of the function will not destroy the ob-

vious discriminating threshold.

(a)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% Lost Features

D
en

si
ty

Rectangle Epanechnikov Biweight Triweight

Triangular Uniform Cosine Trace Laplacian

(b)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.89 0.91 0.93 0.95 0.97 0.99

% Lost Features

D
en

si
ty

c

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.89 0.91 0.93 0.95 0.97 0.99

% Lost Features

D
en

si
ty

FIGURE 4.8: DETAILED EXAMINATION OF KERNEL FUNCTIONS.
 (a) Examination of all 9 kernels for the same video sequence. (b) all nine kernels at
the high feature loss areas. (c) Biweight, Cosine Trace, and Triangular kernels

Now that the triangular kernel has been selected to smooth our function, we need

to determine the bandwidth (window size) for the kernel. We performed a analysis with

kernel widths 3,5,7,9,11,13,and 15. In Figure 9 we show a triangular kernel for window

sizes 3,7,11 and 15. Widths 9 through 15 represented almost identical curves and thus

any kernel width over 7 provided no further information and likely is over smoothing.

 77

The apparent extrema that appeared in widths 3 and 5 indicated under smoothing. By

elimination, we were left with a kernel width of 7, which has provided good results in our

experiments.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

% Lost Features

D
en

si
ty

Widt h = 3 Widt h = 7 Widt h = 11 Widt h = 15

FIGURE 4.9: TRIANGULAR KERNEL AT VARIOUS BANDWIDTHS (WINDOW SIZES)

4.4.2 Computational Considerations
In the case of an exact computation of the density estimates, the kernel function

must be evaluated O(hn2) times. This increases the computation time as the number of

frames becomes large (keep in mind that a 2 hour movie contains 216,000 frames). An

alternative, and faster, way is to approximate the kernel density estimate is to use the

WARPing (Weighted Average of Rounded Points) method [15] The core concept behind

WARPing is to effectively histogram the data into bins of length d. The bin centre of its

corresponding bin then replaces each observation point for subsequent computation. A

typical choice for d is to use h/5 or (xmax-xmin)/100. In the latter case, the effective sample

size i can be at most 101. This property nicely reflects our situation, where we are keep-

ing track of the percentage of features tracked per frame pair, which is in the range of 0 to

100 percent, or 101 bins.

For the WARPing method, the kernel function needs to be evaluated only at O(h·r/d) plus

the initial pass to histogram the data being O(n). In total, the number of steps is O(n) +

 78

O(h·r/d) where h is our window width (7), the range I is 101 and the bin length is 1. This

reduces the number of steps to O(n) + O(h·r). Since n greatly exceeds h·r (707 in our

experiments), we are have an upper bound of O(n). This is considerably faster than the

exact computation, when the sample size is large.

4.4.3 Non-Overlapping Distributions
Non-overlapping sets of distributions are very easily determined by looking for a

large plateau of zero density. The first appearance (traveling the curve from 0 to 100) of

a large plateau indicates the range of the separation point. Selecting the extreme end

point (closest to the non-cut set) for the threshold has yielded the correct result on all

cases of non-overlapping distributions in our test suite.

4.4.4 The Candidate Sets (Overlapping Distributions)

We now introduce the ideas around what we term the candidate sets. We define 3

candidate sets, where each set contains the frames that maximize the precision, F1 and

recall rates. Precision is the portion of the declared cuts that were correct. Recall is the

portion of the cuts that were declared correctly. F1 is a combination of precision and re-

call. A complete description of these terms and their formulae are given in the experi-

ments section. Depending on user need, precision, recall or best overall performance,

these candidate set thresholds are now able to be determined.

The candidate sets are 3 sets that for convenience we will call the precision set (P),

the F1 set (F) and the recall set I. These sets have the following property:

• R ⊆ F ⊆ P

In the case of non overlapping sets, precision, recall and F1 scores are all 1.0 and the

frames in each set are the same. In the case of overlapping sets, the frames in the preci-

sion set appear in the F1 set, and those in the F1 set appear in the recall set.

The candidate sets are determined by examining zero crossings of the first deriva-

tive of the computed probability density function (PDF). There are often many consecu-

tive zero crossings of the function over time, so we use a modified function G(x) to make

 79

the large changes in density more apparent. The first derivative of the PDF f(x), is modi-

fied to a function G(x) using the following rules:

() () (1) :

ˆif () 0 then () 0

ˆif () 0 then () 1

G x g x g x

f x g x

f x g x

= + +

′ ≤ =

′ > =

 (4.9)

In Figure 10, we see the original first derivative function and the modified function.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Percent Feature Loss

(a)

D
en

si
ty

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Percent Feature Loss
(b)

G
(x

)

FIGURE 4.10: (A) ORIGINAL PDF (B) MODIFIED FIRST DERIVATIVE (G(X))

The zero crossings, starting from 1.0 and following G(x) as x decreases are used to

determine the thresholds for each of these sets using the criteria listed here:

• (P) is The first zero crossing

• (F) The position of the minimum of PDF corresponding to the plateau of G(x)
given:

If the next zero crossing has opposing direction as the first (i.e. is not u or
n shaped) and is part of the plateau of first zero crossing use this plateau,
otherwise use the next plateau.

• The next subsequent zero crossing

P

F

R

 80

The arrows in Figure 4.10(b) point to the zero crossings used. The first zero crossing is

at 0.98 (P) and because the next zero crossing at 0.93 is also an upwards direction (u

shaped), we skip to the next plateau to determine F. The next zero crossing (not on the

plateau) is used for R.

4.5 Experiments

In this section we perform a variety of experiments on data sources that were

deemed to be difficult6. We outline our metric for comparing the proposed method

against other methods followed by the experimental results. We conclude this section

with some information on running time and how feature count and selection will affect

the system.

4.5.1 Comparison Metrics
Contingency tables are often used in the quantification of the results categoriza-

tion systems. Considering the system to be a 2-category classifier (cuts and non-cuts) we

can do the evaluation of the effectiveness using a contingency table and its associated sta-

tistics. Commonly, precision and recall are used, however we will also address accuracy,

error and the so-called F1 score as means of evaluating the effectiveness of the cut detec-

tion.

We continue by defining each statistic available for use in our evaluation. All of

the statistics are calculated based on a so-called contingency table, where our classifier

(cut detector) detects cuts (positives) or non-cuts (negatives). The cut detector can prop-

erly detect a cut (true positive), improperly detect a cut (false positive), properly detect a

non-cut (true negative), or improperly detect a non-cut (false negative). The elements in

the set of cuts and non-cuts will never intersect because a frame cannot be double classi-

fied as both a cut and a non-cut. Our contingency tables have this form:

 True Cut True Non-Cut
Classified Cut True Positive (T+) False Positive (F+)
Classified Non-Cut False Negative (F-) True Negative (T-)

6 By difficult we mean frames with quick motion, both camera and object, many cuts in short succession.

 81

T+, F+, F-, and T- are the counts that reflect how the classified categories matched the cor-

rect categories. From the contingency table we can compute the following statistics:

Accuracy – This measures the percentage of all decisions that were correct decisions.

Range: 0 to 1, with 1 being the best score. It is defined as:

+ -

+ - + -

T + T

T + T + F + F
Accuracy = (4.10)

Error – This measures the percentage of all decisions that were incorrect decisions.

Range: 0 to 1, with 1 being the best score. It is defined as:

+ -

+ - + -

F + F

T + T + F + F
Error = or: 1-Accuracy (4.11)

Precision – This measures the percentage of the classified categories that were correct.

Range: 0 to 1, with 1 being the best score. It is defined as:

+

+ +

T

T + F
Precision = (4.12)

Recall – This measures the percentage of the correct categories that were classified.

Range: 0 to 1, with 1 being the best score. It is defined as:

+

+ -

T

T + F
Recall = (4.13)

F1-score – This measures a combination of precision and recall. Range: 0 to 1, with 1

being the best score. It is defined as:

2 Precision Recall
1

Precision + Recall
F

× ×= (4.14)

In terms of T+, F+, and F-:

−++

+

++×
×=

FFT

T
F

 2

2
1 (4.15)

The F1 score is the only statistic that is worth trying to maximize on its own. Per-

fect precision can be achieved by never detecting a cut and perfect Recall by always de-

tecting a cut. A truly accurate system will assign the correct categories and only the cor-

rect categories, maximizing precision and recall at the same time, and therefore maximiz-

ing the F1 score.

 82

Attempting to maximize the accuracy score, thus minimizing error, is an inappropriate

measure in the case because the size of the non-cut set is so large in comparison to the cut

set. Simply declaring all frames as non-cuts will result in a high accuracy. Any metric

for cut detection that uses the True negative number in its evaluation is not a good indica-

tor of quality because of the distribution of cuts to non-cuts in video data. This is casu-

ally confirmed if we consider the redundancy that video data contains.

In [28], the authors suggest an alternate computation for accuracy as:

Accuracy = 1 F F

T F T F

− +

+ − + +− −
+ +

 (4.17)

With some algebraic manipulation, we can see their definition of accuracy is simply

Accuracy = Precision + Recall – 1 (4.18)

As Matter and Robinson’s metric is a function of precision and recall, we will omit using

it and rely on the more standard metrics of precision, recall and the F1 score.

4.5.2 Experimental Results
To start, we perform a set of experiments to compare the proposed method against

a histogram-based method, specifically ‘cutdet’ from the MOCA project [27]. We used

the precompiled version of cutdet and treated the internals as a black box. We ran a se-

quence through cutdet with various threshold settings to determine its characteristics. We

examined the precision, recall, and F1 score. The sequence is from a television show and

the quality of the capture is quite high. The action and motion is not extreme, and the

colours are vibrant and distinct. It was assumed, based on the ideas behind histogram

comparisons, that this sample would highlight the capabilities of the cutdet system. In

Figure 11 we see that the F1 score has platitude at threshold 0.45 which indicates the best

threshold for cutdet on this particular sequence. The exact values of precision, recall and

F1 score are: 1, 0.941, and 0.969 respectively. In the case of perfect detection, precision,

recall and the F1 score will all be 1. As the F1 score hit a platitude at 0.969, the cutdet

method would be unable to achieve a perfect score in this example.

 83

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.175 0.25 0.35 0.375 0.45 4.75 0.5 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25

Threhold setting

S
co

re

Precision Recall F1

FIGURE 4.11: GRAPH OF PRECISION, RECALL AND F1 SCORES FOR A SEQUENCE RUN THROUGH THE CUTDET

SYSTEM.

When the proposed method was run against the same sequence, it received a perfect de-

tection rate. The clear selection of threshold can be seen in Figure 12 as the feature track-

ing was clearly working very well and the separation between the cut set the non-cut set

is obvious due the large space of zero density between the cut and non-cut sets.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.7 0.75 0.8 0.85 0.9 0.95 1

Percent Feature Loss

D
en

si
ty

FIGURE 4.12: DENSITY ESTIMATION GRAPH.

In the experiment that follows, a selection of video clips that represent a variety of

different video genres are used for cut detection. In Table 2, we present the data set with

explanation why it is being used in the experiments. We compare the results of the pro-

posed method against a pixel-based method with localization information and a histo-

gram based method (specifically cutdet, from the MOCA project [27]). The localization

information in the pixel based method relies on the statistical improbability that the posi-

tions of pixel values will remain the same over a cut frame pair. In this experiment, we

are attempting to maximize the F1 score. For the proposed method, we ran each sample

 84

through the system once and computed the F1 candidate set threshold. For cutdet, and

the pixel based method we ran 13 different thresholds and computed the precision, recall

and F1 scores for each of the runs. The best F1 score was selected for comparison. This

effectively required the two methods to be executed 13 times in comparison to the 1 time

for the proposed method.

Table 2: Experimental data set

Source
Label

Characteristics of video data Genre

A Cartoon clip. Substantial object motion. Cartoon

B
Substantial object motion. This clip is taken from a
film where a blue filter was used to simulate low
lighting conditions.

Action

C
Black and white movie. Substantial action and mo-
tion. Many close proximity cuts. This clip is the
murder scene from the movie psycho.

Horror

D High quality �pipolar�ct� of a television show. Drama
E Low quality �pipolar�ct� of a television show. Sci-Fi

F
Commercial, no cuts, quick motion, many produc-
tion effects. Meant to show that dissolves are not
mistakenly classified as cuts.

Commercial

G Commercial sequence from the MOCA Project Commercial
Q Video abstract from the MOCA Project Comedy/Drama
I News Sequence from the MOCA Project News/Documentary

J
Trailer for a film. This clip has many computer gen-
erated features, many close proximity cuts. Trailer
for the movie Lawnmower Man.

Trailer/Sci
Fi/Action

In Table 3, we present the results of running the 3 methods on the dataset. The

proposed method outperforms both the histogram-based method and the pixel based

methods. In most cases (8 of 10) the proposed method provides the maximal F1 score. A

simple statistical analysis of the overall capabilities is given at the end of Table 3. The

average, variance and standard deviation for the 10 samples were computed. On average,

the proposed method significantly outperforms the other two methods. The variance and

the standard deviation show that the results offered by the proposed method are also more

stable across a variety of different video genre.

 85

Table 3: Results on data set.

 Proposed feature
tracking method

Pixel Based
method with lo-

calization

Histogram
MethodCut Det

(MOCA)

D
ata

Source

P
recision

R
ecall

F
1

P
recision

R
ecall

F
1

P
recision

R
ecall

F
1

A 1 1 1 1 1 1 1 1 1
B 1 1 1 .825 .825 .825 1 .375 .545
C .595 .870 .707 .764 .778 .771 .936 .536 .682
D 1 1 1 1 1 1 1 .941 .969
E .938 1 .968 .867 .867 .867 .955 .700 .808
F 1 1 1 0 0 0 1 1 1
G .810 .944 .872 .708 .994 .809 1 .667 .800
H .895 .895 .895 .927 1 .962 .971 .895 .932
I 1 1 1 1 1 1 1 .500 .667
J .497 .897 .637 .623 .540 .591 .850 .395 .540

AVG .874 .961 .908 .774 .800 .783 .971 .701 .794
VAR .034 .003 .018 .090 .101 .093 .002 .060 .036
STD.
DEV

.185 .054 .134 .301 .318 .304 .048 .246 .190

It is not surprising that ‘cutdet’ out performs the proposed system in H, because

the abstract was created by the MOCA project from which cutdet originates. However, it

is surprising that the pixel based method outperformed both. In examples C and J, the F1

score was not maximized as the heuristic to determine the F1 candidate set threshold did

not achieve the best value, rather a good value. Within the range of the F1 candidate set

threshold plateau, maximum F1 was achievable.

4.5.3 Processing Speed
For all the experiments given in Table 3, we tracked 100 features with a minimum

inter-feature distance of five pixels. The processing time for a frame pair is approxi-

mately 70 milliseconds on a 2.2 GHz Intel processor on frames sized 320x240. This is

significantly faster than [28] without a loss in granularity. Unlike the pixel and histogram

based methods, the running time of the tracker is not a function of the size of the video

frames and remains constant regardless of the video size. Tracking over an n-frame in-

terval can cut this time by a factor of n. By skipping every other frame, we still maintain

the 70ms processing time per frame pair, but have reduced the number of frames by a

 86

factor of 2. By increasing the number of frames skipped, we decrease the frame accuracy

to which we can report, and risk losing tracking context in the presences of large object

and camera motions. We ran several data samples through the system set to skip one and

two frames between tracking. As expected the running times reduced to approximately

half and a third respectively. However, we experienced a reduction in the F1 scores in

half the samples and all the samples for skipping one and two frames respectively. Play-

ing with the tracking parameters may reduce the error, but is beyond the scope of this

work.

4.5.4 The Effect of Feature Selection
We have chosen the number of features to track to be 100. However it should be

noted that the optimal number of features to track has yet to be determined, if at all possi-

ble. Logically, there must be enough features to track and ensure a certain amount of

coverage of the frame, however selecting too many features will result in features that are

less than ideal being selected for tracking and therefore increase the likelihood that those

features will not be reliably tracked from frame to frame. We have performed some ru-

dimentary experiments that show as the number of features selected to be tracked de-

creases, and thus the overall quality of those features (for tracking purposes) increases,

the percentage of lost features in a cut situation increases overall. Specifically, when the

number of features tracked decreases, the threshold that is automatically selected ap-

proaches 100 on simple sequences. However, when the number of features tracked de-

creases, the system becomes more susceptible to object motion, occlusions and very

quick camera motion because we lack spatial coverage of the frame, therefore reducing

the accuracy on more difficult sequences.

Another selection option that needs consideration is how wide the non-maxima

suppression window should be. This option is effectively selecting the best corner fea-

ture within a given radius. By selecting a radius that is too large will result in features

being selected that are less optimal for tracking while a radius that is too small results in

feature clustering that is prone to loss due to object motion and occlusions. We have

found empirically that a radius of five pixels provides good results; a radius of fifteen

pixels provides worse results.

 87

4.5.5 Known Problem Areas
There are some very clear restrictions on this feature-based method for detecting

cuts. Primarily, the quality of the digital video plays a fundamental role because we are

tracking fine-grained features (corners) rather than coarse-grained features such as edges,

color blobs, and histograms. Overly noisy digitization will result in the feature tracking

having a difficult time properly tracking selected features and will result in a higher over-

all percentage loss of tracked features. This will result in an overlapping of the cut set

distribution and the non-cut set distribution and therefore result in an overall lower accu-

racy. As well, dropped frames in the digitization process may result in unnatural spaces

between frames. This will also cause the feature tracker to potentially lose features and

categorize a cut. To complicate the matter, it is not clearly defined whether or not these

situations should be classified as cuts. Other anomalous glitches in the digitization proc-

ess will result in feature loss as well. The figure below illustrates digitization artifacts

that can cause problems for our fine-grained feature tracker because of the high gradient

changes on the digitization scan lines.

(a) (b)

FIGURE 4.14: DIGITIZATION ARTIFACTS
(a) original frame (b) exemplary amplification of artifact errors. Notice the lines around

the explosion.

Each of the examples in Figure 15 represents problems that the proposed cut de-

tection method faces. Because we are tracking features in the luminance space, we are

subject to feature loss when large changes in brightness occur. The system is robust to

gradual dissolves, however high speed dissolves (over a small number of frames) cause

problems because of the large the number of pixels that change greatly. This results in

the tracking windows being very different and the correlation computations result in re-

siduals that are simply too large. Finally, we have noticed in several cases that problems

 88

occur with computer-generated video data. This is usually due to the fact that the objects

in computer generated video move at rates that are unusually quick. Take for example

the 3 consecutive frames from Figure 15, part e: The motion exceeds what a normal ob-

ject videotaped at 30 frames per seconds (often because animation is at 10 frames per

second), and failure occurs.

a) Sudden flash, causing
an abrupt change in lu-
minance, improperly
declared a cut.

b) A longer sequence of
changed illumination,
returning to original il-
lumination.

c) A quick dissolve.
Changes in luminance
declared as cuts, or fade
to black because the
large change in pixel
values caused the track-
ing systems correlation
checks to fail.

d) A quick dissolve
over two frames. Often
declared as two consecu-
tive cuts because the
pixel changes cause the
tracking systems resid-
ual checks to fail.

e) Computer generated
graphics that move
sharply. There is also
little texture allowing
inferior selection of fea-
tures for tracking.

FIGURE 4.15: EXAMPLES
7
 OF PROBLEM SITUATIONS.

7 All copyrights © belong to their respective owners. Lawnmower Man is a Brett Leonard movie, produced
and by distributed in North America by New Line Cinemas.

 89

4.6 Conclusions and Discussion

We have presented a fine-grained feature-based method for video segmentation,

specifically cut detection. By utilizing feature tracking and an automatic threshold com-

putation technique, we were able to achieve F1, recall and precision rates that generally

match or exceed current methods for detecting cuts. The method provides significant im-

provement in speed over other feature-based methods and significant improvement in

classification capabilities over other methods. The application of feature tracking to

video segmentation is a novel approach to detecting cuts.

Due to problems associated with a window based adaptive thresholding, we have

introduced the concept of candidate sets that allow the user to prejudice the system to-

wards results that are suitable to individual needs. This kind of thresholding is a novel

approach to handling the overlapping region of two distributions, namely the cut set and

the non-cut set in video segmentation.

 90

Chapter 5

5 Autocalibration from the Fundamental Matrix

5.1 Introduction

Calibration is the process of computing internal physical quantities of a camera’s

geometry. Parameters such as focal length, center of projection, and CCD sensor array

dimensions are required in order to get 3D information from a series of images. Auto-

calibration has become popular recently because of the desire to create 3D reconstruc-

tions from a sequence of uncalibrated images without having to rely on a formal calibra-

tion process. The standard calibration model for a pinhole camera has five unknown in-

trinsic parameters defined in a 3x3 calibration matrix (K). These parameters are the focal

length, aspect ratio, sensor skew and the center of projection x and y (the principal point).

The accurate estimation of these 5 parameters directly from an image sequence without

having a formal calibration process is the ultimate goal of autocalibration.

Autocalibration works by computing aforementioned quantities directly from 2D

image correspondences, and then using invariants of these quantities to find the camera

calibration. The fundamental matrix, and the full projective reconstruction are two quan-

tities that can be computed from a set of 2D image correspondences, and they are the ba-

sis of most autocalibration algorithms. As such autocalibration algorithms can be divided

into three classes that we will refer to as classes A, B and C. In class A algorithms, we

compute the calibration matrix K from the fundamental matrix (the recovered epipolar

geometry) [75, 76, 77, 78, 79]. In Class B algorithms (K) is computed from a projective

reconstruction [17, 80, 81] of the scene. Class C algorithms autocalibrate from homo-

graphies and planar features within an image sequence [82, 83].

While Class C algorithms can compute intrinsic camera parameters from a set of

inter-image homographies [84], we loosely consider them autocalibration routines. Be-

cause a homography is a planar transformation, Class C algorithms require the use of

planar targets [85, 103] or the automatic detection and correspondence of planar regions

 91

within an image sequence. While it has been shown that planar regions may be robustly

detected in images [52], it is highly probable that an image sequence will exist where

there are no planar objects, or the existing planar objects are not suitable for robust detec-

tion. The aforementioned requirements must be known apriori to the computing the cali-

bration parameters and therefore Class C algorithms are not generalized, rather they rely

on specific features that may not be present. Due to these facts, it is questionable whether

or not a Class C algorithm is truly an autocalibration routine in the sense that it requires a

target (therefore not autocalibration), or is presupposed by the planer region detec-

tion/correspondence problem (therefore not generalized). Because of these problems,

Class C algorithms are not considered in this work.

In this work we compare against class B algorithms with are thought to be nu-

merically superior to other calibration methods. Since the projectively reconstructed

frames must all be warped to a consistent relative base, Class B algorithms are computa-

tionally difficult in comparison to simply finding the fundamental matrix between image

pairs. It is often claimed that Class B autocalibration algorithms are superior to Class A

and Class C algorithms because those algorithms do not enforce the constraint that the

plane at infinity (an invariant between projective and Euclidean space) be the same over

the entire image sequence [86]. It is precisely this constraint that makes Class B algo-

rithms computationally difficult. In this paper, we provide evidence that Class A algo-

rithms combined with the use of evolutionary systems produce as accurate an autocalibra-

tion as their Class B counterparts.

Another concern with Class A algorithms is the existence of extra degenerate mo-

tions, these being pure rotations, pure translations, affine viewing and spherical camera

motions [86, 87]. However, there exist many practical situations that do not contain these

degenerate motions. Also, in many cases autocalibration is the only option, and even a

less accurate autocalibration result is better than no calibration at all. For example, there

are many photographs and video clips in existence for which there is no knowledge of the

camera. In order to reconstruct the 3D world from those image sequences, autocalibration

is the only option.

 92

Autocalibration has been criticized in the past [88] because many different cali-

brations will provide a 3D reconstruction with reasonable Euclidean structure. In other

words, the corresponding reconstruction will usually look good because the different

right angles look square and the different length-ratios look correct. However, this de-

pends considerably on the image sequence, and the camera used to acquire that sequence.

All that we can conclude from this fact is that using the “look” of a reconstruction to

evaluate the autocalibration results is unreasonable. It is necessary to have the ground

truth camera calibration to do a proper performance evaluation. In this paper we evaluate

the proposed autocalibration algorithms on image sequences for which the ground truth

camera calibration is known a-priori as well as comparing against results of the Class B

algorithms.

The constraining equations for the two autocalibration methods presented in this

work are non-linear and based on the fundamental matrix. In what follows, we will show

that it is possible to reformulate the process of autocalibration into the minimization of a

cost function of the calibration parameters. While this type of reformulation has been

achieved for class A algorithms and is clearly evident in Class C algorithms, this is not

the case for class B algorithms. For example, in [17] the basis of the class B autocalibra-

tion algorithm is the modulus constraint. The modulus constraint is a non-linear relation-

ship between the camera calibration parameters and the projective camera matrices that

makes autocalibration possible [80]. The application of the modulus constraint produces a

set of X polynomial equations for every pair of images, and a system of polynomial equa-

tions for the entire image sequence. Given an M image sequence, we have XM-1 equations

in the system. The solution of such a polynomial system is very difficult to compute.

One possibility is to find all the permutations of exact solutions in closed form and then

to combine the results [79]. This is rather cumbersome. Another way to solve such a

polynomial system is to use a continuation method [89]. Unfortunately, continuation

methods only work well for a small number of equations, and are not suitable for the

large polynomial systems generated by long image sequences. By contrast, the methods

presented in this work are computationally efficient (with a known upper bound on the

 93

number of times the cost function will be executed) even for large image sequences.

Furthermore, the accuracy of these algorithms improves as the image sequence lengths

increase.

In this work, we examine two class A autocalibration algorithms based on the

fundamental matrices; one based on Kruppa’s equation [75, 77, 79], and the second based

on the idea of finding the calibration matrix which optimally converts a fundamental ma-

trix to an essential matrix [78]. In both cases the problem can be formulated as the mini-

mization of a cost function of the calibration parameters, which will be described in detail

in Sections 3 and 4. The correct camera calibration is the global minimum of this cost

function over the space of possible camera parameters. In the past, claims have been

made that such minimization approaches to autocalibration are sensitive to the initial

starting point of the gradient descent algorithm [76, 90]. However, when computing only

one parameter, the starting point is irrelevant because we can accurately solve the associ-

ated 1D optimization problem using standard numerical approaches [91]. When there is

more than one parameter, such as focal length and aspect ratio, we use a simple stochastic

approach [92] from the field of evolutionary computing to overcome this problem. We

show experimentally that for this type of cost function the stochastic method reliably

finds the global minimum. As well, a number of experiments are performed on image se-

quences with known camera calibration. We compare the results of our method against

Class B results on some of the same image sequences, and provide evidence that shows

that the stochastic approach achieves results that are comparable.

Our first Class A algorithm relies on the fact that the fundamental matrix can also

be decomposed into terms of the essential matrix and the camera calibration matrices as

described by (5.1). Our second algorithm relies on the existence of the projection of the

absolute conic within an image pair.

 94

5.2 Autocalibration via Equal Eigenvalues

5.2.1 Single Image Pairs
The essential matrix can be considered as the calibrated version of the fundamen-

tal matrix. Given the camera calibration matrix K and the fundamental matrix F, then the

essential matrix E is related by the following equation:

E =KT FK (5.1)

Since F is a 3x3 matrix of rank two with the condition that there are exactly two non-zero

eigenvalues, E is also of rank two. The essential matrix (E) however, has an added con-

straint that the two non-zero eigenvalues must be equal [93]. It is this constraint that is

used to create the autocalibration algorithm [78]. The goal is to find the calibration matrix

K that makes the two eigenvalues of E equal, or as close to equal as possible. Given two

non-zero eigenvalues of E, σ1 and σ2 where σ1> σ2, in the ideal situation (σ1 - σ2) should

be zero. Consider the difference (σ1 - σ2) / σ1, which can be rewritten as:

1-(σ2/σ1) (5.2)

If the eigenvalues of E are equal, (5.2) computes to zero; as they differ, equation (9) ap-

proaches one. Clearly, (5.2) becomes the cost function to be minimized.

5.2.2 Multiple Image Pairs
Since we are dealing with a sequence of M images, we can have at most M-1 ad-

jacent image pairs. Since a fundamental matrix is computed between each adjacent image

pair we therefore have M-1 different fundamental matrices Fi (i=1..M-1). Based on our

assumption that the intrinsic parameters of the camera do not vary, our goal is to find K

by minimizing the cumulative values of (5.2) for all the fundamental matrices (Fi) in the

sequence. Assume Fi is the fundamental matrix relating image ik and ik+1. To autocali-

brate over the M image sequence, we must find the K that minimizes:

1

2 1

1

(1 /)
M

i

i

iω σ σ
−

=
−∑ (5.3)

Where ϖi is a weighting factor, between zero and one, which defines the confidence we

have in the computed fundamental matrix Fi. The weights ωi are set in proportion to the

 95

number of matching 2D feature points that support a given fundamental matrix. The lar-

ger the number of 2D points that support the epipolar geometry characterized by F, the

more confidence we have in that fundamental matrix, and therefore the smaller the

weight (remember we are minimizing). Each weight ωi is normalized to a range from

zero to one.

5.3 Autocalibration via Kruppa’s Equations

In a similar manner, we can convert Kruppa’s equations into a cost function that

can be used in either single or multiple image pairs.

5.3.1 Single Image Pairs
Another way to perform autocalibration from the fundamental matrix is to use

Kruppa’s equations [86, 93]. To understand these equations we must first define the abso-

lute conic. In Euclidean space the absolute conic lies on the plane at infinity, and has the

equation:

x2 + y2 + z2 =0 . (5.4)

The absolute conic contains only complex points that satisfy the equation MTM = 0. If

we consider a standard camera projection matrix

P = K[R|-Rt]. (5.5)

Where R is the rotational component of the motion of between camera positions and t is

the translational component of the camera motion, then a 3D point x on the absolute

conic projects to a 2D point:

m =P(M)=KRM. (5.6)

Where

M = RTK-1 m, (5.7)

and since MTM = 0, this implies:

mTK-1RRT K-1m = mTK-TK-1 m = 0 . (5.8)

 96

This clearly shows that any 2D point m is on the image of the absolute conic if and only

if it lies on the conic represented by the matrix

K-TK-1 (5.9).

From projective geometry,

KKT (5.10)

is the dual absolute conic, and is labeled as C. If we can find C, then we can directly

compute the camera parameters K by Cholesky factorization [94].

Kruppa’s equations relate the fundamental matrix to the terms of the dual absolute

conic. The first form of these equations required the computation of not just the funda-

mental matrix, but also of the two camera epipoles, which are known to be unstable [93].

Recently, a new way of relating the fundamental matrix and the dual absolute conic was

described which does not require the computation of the camera epipoles [75]. Consider

the singular value decomposition of a fundamental matrix F to be UDVT. We let the col-

umn vectors of U and V be u1, u2, u3 and v1, v2, v3 respectively. This gives the new form

of Kruppa’s equation as:

22
2

11

11

12

11
2

22 2

Cuus

Cvv

Cusru

Cvv

Cuur

Cvv
T

T

T

T

T

T

=
−

= (5.11)

To autocalibrate we must find the C which makes these three ratios equal, or in the case

of estimation, as close to equal as possible. We let factor1 be equal to:

11

12

11
2

22 2

Cusru

Cvv

Cuur

Cvv
T

T

T

T −
− (5.12)

And we define factor2 and factor3 similarly as the other two possible permutations of the

system of ratios. Autocalibration can then be achieved by finding the C (KKT) that mini-

mizes the sum of the factors squared.

5.3.2 Multiple Image Pairs
Given the same M-1 fundamental matrices defined in the previous section then autocali-

bration with the Kruppa method over M images requires the minimization of:

 97

∑
−

=

+ +
1

1

2
3

2
2

2
1)(

N

i

i factorfactorfactorω (5.13)

Again, ϖI is a weight factor, between zero and one, which is the confidence in the com-

puted fundamental matrix Fi as described in the previous section.

5.4 The Evolutionary Approach

Since the two autocalibration methods based on the fundamental matrix have an

associated cost function we can use a gradient descent algorithm to find the solution. The

caveat here is that there are often many local minima in the cost function, so the solution

that is found depends on the starting point. However, we note that the calibration parame-

ters can all be bounded; i.e. the center of projection rarely varies from the image center,

the aspect ratio is generally one and the skew is almost always 90 degrees. Thus we are

attempting to find the global minimum for a set of real-valued, bounded optimization pa-

rameters. This problem has been dealt with in the field of evolutionary computing.

There are many possible evolutionary approaches, but they are not all equally ap-

plicable to every problem. We use the ideas around Genetic Algorithms (GAs) [95]. The

idea behind GAs is to simulate evolution by defining each solution as a chromosome, and

then defining the appropriate crossover and mutation operators. While GAs are a very

powerful framework, they must be adapted and tuned specifically for each application. In

our application of function minimization the process of simulated annealing has also been

successful [91]. The idea behind simulated annealing is to perform function optimization

by simulating the process of annealing crystals; essentially by slowly lowering the tem-

perature. The issue we face is: Which evolutionary approach is best? We define this

problem to mean the simplest and most effective algorithm that arrives at the correct an-

swer.

As the camera calibration problem is being recast as a parameter optimization

problem for a set of real-valued, bounded optimization parameters, we use the dynamic

hill climbing technique that combines the strengths of genetic algorithms and hill climb-

 98

ing techniques that was specifically designed for this type of problem. Dynamic hill

climbing (DHC) can be considered a hybrid evolutionary algorithm because the algo-

rithm makes use of concepts such fitness, population expansion and mutation, but utilizes

a hill climbing technique for determining local extrema. Also, by using a mutating coor-

dinate frame combined with local extrema exploitation DHC has been empirically shown

to outperform classical genetic algorithms, simulated annealing and typical hill climbers

when optimizing parameters of the DeJong [96] test suite [92]. DHC optimization results

on the DeJong test suite were independently confirmed in [97] and subsequently used in

range image registration. The compared methods included genetic algorithms, simulated

annealing and the DHC algorithm. Experimental results showed that the DHC algorithm

was the most successful evolutionary approach for this type of bounded, real-valued

function optimization. For the above reasons, we chose DHC and we describe the dy-

namic hill-climbing algorithm in detail next.

5.4.1 Dynamic Hill Climbing
The workhorse behind the DHC algorithm is simple, yet very efficient hill climb-

ing algorithm and the use of population expansion via mutation to cover the search space.

The process begins by selecting an individual randomly from the population (search

space) and applying mutations to the single individual, expanding the population. The

parent and all the offspring (mutations) are considered for the next generation, with the

fittest individual from the family surviving. At each generation the age of individual is

increased, however when the offspring are determined to be the fittest and selected for

survival, they inherit the age of the parent i.e. the generational age. The mutations are

performed by scalar adjustment to each of the coordinates in each direction. This means

we perform 2N mutations in an N dimensional search space, keeping within any bounds

that may limit the search space.

As the age of the population increases, the magnitude of the mutations propor-

tionately decreases allowing convergence toward the local extrema, and a more thorough

exploration near the local extrema as the population ages. While a variety of heuristics

may be used to determine the magnitude of the scalar adjustment, we use a logarithmic

halving of the bounded dimensions of the search space. This results in an upper bound of

 99

O(log D) generations where D is the largest range within the search parameters. Fur-

thermore, in an N dimensional search space there are N generations considered as the

mutations adjust only a single parameter at a time. Finally, because each generation will

perform the fitness evaluation 2N times, we have an upper bound of 2N2log(D) function

evaluations and an upper bound of O(N2logD) fitness function evaluations. Within the

scope of camera calibration, we have an upper bound of the search space being 5 dimen-

sional and a reasonable practical range for the parameter space, limiting D allowing us to

determine a concrete upper bound on the time complexity for camera calibration.

5.4.2 Mutating coordinate frames

A static coordinate frame results in premature cessation at a local extrema (the

foothill problem) because the hill climber cannot move in the direction necessary to reach

the true extrema. For example, if a hill climber can move in only 4 directions, say the

major compass directions, when a true extrema can be reached by moving in a northwest

direction the classical hill climber will fail. DHC addresses this issue by allowing a mu-

tating (dynamic) coordinate system. DHC keeps a historical record of previous move-

ments and constructs a new basis via a Gram Schmidt orthogonalization of the last two

positions. By doing this, DHC is able to adjust for directional changes within the struc-

ture of the search space, which avoids the foothill problem in certain cases.

5.4.3 Exploiting local optima
Dynamic hill climbing also tries to avoid early convergence to a local extrema by

ensuring that diversity of the population is considered directly, and independently of the

fitness function. Because the local hill climber has a mutation size that decreases with

age, the local area is searched more thoroughly to help ensure that there is no other local

extrema with better fitness. Once a local extrema is found, the individual is moved to a

separate pool of static individuals that have found local extrema. When the search sys-

tem stalls, DHC will examine the pool of static individuals who have achieved a local

extrema and select a new population that is as different as possible from the static pool.

 100

To facilitate this, DHC examines the Hamming distance (The number of differing

bits) between the two individuals and tries to maximize the distance. We note here that it

is possible that this strategy is not without its own problems, the following example illus-

trates this: Suppose a local extrema exists at 127, bit set 11111110, the maximum ham-

ming distance results in bit set 00000001, or 128, which is not sufficiently far from 127.

However, it should be noted that that a sufficiently large population reduces the probabil-

ity of getting stuck when using this strategy of exploiting the local optima.

5.4.4 Coverage of Search Space
The basic idea in the DHC approach is to repeatedly perform gradient descent in

the search space but to start the gradient descent in an area of the search space that is as

far removed as possible from previous solutions. We call this principle of operation Sta-

tistically Distributed Randomized Starting (SDRS).

FIGURE 5.1: SCATTER PLOT OF 2D SEARCH SPACE GENERATED BY SDRS.
250 points with a trend line indicating an even disbursement of start points.

The effect is to cover the search space very thoroughly, and at the same time

avoiding areas that have been previously explored and therefore avoiding the local mini-

mum. This covers the search space very effectively, as is shown in Figure 2. In this Fig-

ure we show the start points of the gradient descent in a 2D SRDS process. It is clear

from the distribution that the search space is uniformly explored.

 101

SRDS covers the search space as completely as possible with a user specified number of

starting points. Essentially SRDS is a simplified variation of dynamic hill climbing’s ex-

ploitation of local optima. The only operating parameter is the number of repeated gradi-

ent descents to try, and this is manually set to be approximately one hundred. It is impor-

tant to note that the range of the calibration parameters, focal length and aspect ration is

bounded. In practice, the focal length is in the range of 1 to 10,000 pixels, and the aspect

ratio is in the range of .5 to 2.0. Under these conditions and operating parameters the

DHC algorithm has had good practical success.

The pseudo-code for SDRS is below:

SDRS()

For each parameter in the search space

Find the largest region that has not had a start point
 Compute a random point X in this

region
 Set point X to the start point

for this parameter
Endfor

Return N-dimensional startPoint for the next gradient descent (DHC)

5.4.5 Autocalibration Algorithm
The algorithm ESTIMATE_K returns the calibration parameters in the matrix K

that produced the minimum value from the cost function. It is based on the SRDS and the

DHC algorithms described previously. As we have shown in the previous sections, the

actual evaluation of the cost function for the two different autocalibration methods is very

efficient and the upper bound on the number of calls to these functions is also known to

be O(N2log(D)). The equal eigenvalues approach requires only the computation of the

eigenvalues of a three by three matrix, and for the Kruppa approach the computation of

three ratios based on the SVD of a 3x3 matrix. Furthermore, precomputing the SVD and

storing them in a lookup table for use by the algorithm can further optimize the process

and reduce the time required to execute the cost function. A single gradient descent of

 102

the cost function uses the Powell optimization algorithm, which is in turn based on re-

peated applications of the one dimensional Brent method [91].

As we know the upper bound on the number of times the cost functions are called,

we have an upper bound on the entire process of O(N2logD), which is the upper bound

for the DHC algorithm. The remainder of the autocalibration algorithm is simply the ad-

dition of constants affecting the computation time which are equal to the time required to

execute 1 instance of the cost function. To be precise: Given an image sequence of M

images, and computing N intrinsic parameters, bounded by a maximum range of D, the

running time on the autocalibration will be no more than O(MN2log(D)) computations of

the cost function. As we can see this is linear with respect to the number of images, as

opposed to the exponential number of equations generated using the modulus constraint

based methods.

The basic pseudo-code for estimating K:

ESTIMATE_K()
For n times
 StartPoint = SRDS()
 Perform the DHC gradient descent

from StartPoint.
 IF Cost function (Equal Eig.

OR Kruppa) is minimal
 Save this K.
 ELSE
 Discard this K
 Endfor

Return K

5.5 Degeneracy

The method presented makes use of all the computed inter frame geometries;

however no consideration is given for incorrectly computed fundamental matrixes. An

incorrect fundamental matrix can occur and is known as a degeneracy case. It is com-

monly known that there are degenerate situations where many epipolar geometries will

support the same feature match set [98].

 103

FIGURE 5.2: DEGENERATE EPIPOLAR GEOMERTY
Two epipolar geometries that support a feature match set, yet only one can be correct.

(From [98])
As shown in Figure 5.2, we have 27 corresponding points and two computed epipolar ge-

ometries that support them. Clearly there can be only one truly correct geometry; how-

ever, it simply takes a single outlier to potentially produce an incorrect geometry. Clearly

an incorrect fundamental matrix will result in an incorrect self-calibration when using

only the one incorrect fundamental matrix.

The potential for computation of a single degenerate fundamental matrix from a

sequence of images when using a RANSAC method is unavoidable and thus all com-

puted geometries from an image sequence are to be considered. By simply using the fun-

damental matrix with the highest support, we will achieve incorrect results when that

computed geometry is degenerate. By using all of the computed fundamental matrices,

we have some knowledge on the effect each fundamental matrix has on the cost function.

If we assume for demonstrations sake, that we have equal confidence in each and every

fundamental matrix that has been computed for an M+1 image sequence. A single de-

generate geometry will weigh in at 1/M and therefore only affect the computation propor-

tionally to the number of images in the sequence.

5.5.1 Handling Degeneracy
While methods exist that attempt to detect degenerate configurations [98], we

have chosen to use the number of supporting matches for each fundamental matrix as a

measure of confidence. This metric, while not theoretically as reliable as a method that

detects degeneracy, is suitable because the automated methods for computing the funda-

mental matrix [99] provide a relatively large number of matches with the associated fun-

damental matrix. Our experiments are performed under the assumption that the number

 104

of feature matches used to compute the fundamental matrix reduces the likelihood of

computing a degenerate geometry. We rely on the effectiveness of the software pre-

sented in [100] to produce many feature matches and compute fundamental matrices with

sufficient support that the probability of outlier caused degeneracy is greatly reduced, yet

any reliable computation of the fundamental matrix will have the same result. Therefore,

we use magnitude of the support feature set that was used to compute the geometry as a

measure of our confidence.

Degeneracy can also be effectively handled in other ways and we outline a couple

of methods next. The first obvious solution is to use the PLUNDER algorithm (Pick

Least UNDEgenerate Randomly) outlined by Torr in [98], however it is more compli-

cated to implement than other solutions. The benefit of handling degeneracy this way is

that we can be sure that all fundamental matrices we are using are not degenerate. An-

other alternative is to prune fundamental matrices that produce calibrations parameters

that are not consistent with the entire set. Effectively we perform a single image pair

calibration for each fundamental matrices in the sequence and perform a statistical analy-

sis of the individual results. We can now prune any fundamental matrix whose individual

calibration results are outside an acceptable level of error. Using covariance analysis or

Frobenius norm will provide reasonable results.

5.6 Experiments

There is no practical reason to autocalibrate all five intrinsic parameters [88],

however, by assuming the principle point and the skew are fixed, results are encouraging.

This problem is not unique to our method, and occurs in Class B algorithms as well [81].

In [81], the principle point could not be computed accurately using the Class B algorithm

and for this reason it was also assumed to be fixed.

For many autocalibration algorithms the evaluation of performance consists of a

simple visual inspection of the resulting 3D reconstruction. This is not an adequate metric

because it has been shown that the quality of the final reconstruction is visually accept-

able for a wide variety of calibration parameters [88]. In order to test the capabilities of

 105

the presented evolutionary method, we used test data for which the ground truth was

known; i.e. the intrinsic parameters are already known apriori. Some of these data sets

are the same ones used in the literature, in particular those for the class B algorithms. The

conclusions are that the results of the Class A algorithms using the evolutionary approach

is comparable to that of the Class B algorithms yet the simplicity and efficiency of the

evolutionary method is significant. The experimental results also give an indication of

what the autocalibration errors are for a typical image sequence. We performed these ex-

periments a number of times, to make sure that the results of the SRDS algorithm are re-

peatable and unbiased.

The first set of experiments described in Table 1 show how the autocalibration

process works when we are calibrating only the focal length. Table 1 shows the results

for a number of different test sequences that have been processed in previous autocalibra-

tion papers [17, 77, 79, 101]. In particular, the Castle sequence [79] is used as a test case

for comparison with the class B approach that requires a projective reconstruction. We

see that our autocalibration results are comparable to those of other class B self-

calibration algorithms.

In Table 1 we list our autocalibration results compared to the previously published

results in the literature, which we assume to be correct. In the last example from [101]

shown in Table 1, the error with the Kruppa autocalibration is quite large. A possible ex-

planation is that the motion is close to being a pure translation, which is known to be a

degenerate motion for the Kruppa algorithm [86, 87]. It is also a good indicator of how

the Equal Eigenvalues method performs well in spite of these degenerate motions. In

these experiments we take the image sequences as input and compute the matching fea-

ture points automatically, using the software described in [100]. In other words we are

not given matching 2D feature points, but simply a set of images. Therefore the closeness

of our results to those published in the literature is significant because we are actually

using different software to compute the fundamental matrices. We also are unable to ver-

ify independently that the published ground truth focal lengths are correct, it is possible

that the stated focal lengths have some level of error in them as well.

 106

In the next set of experiments outlined in Table 2, the 2D feature points were se-

lected by hand as part of a photogrammetric model building process. From these manu-

ally selected correspondences we compute the fundamental matrix between all image

pairs in the sequence. In this experiment we know the intrinsic parameters of the camera

a-priori from the project parameters of the photogrammetric package [41]. We therefore

assume that all the intrinsic parameters are set apriori, except for the focal length which

we autocalibrate. Table 2 shows the autocalibrated focal length in millimeters versus the

true focal length, along with the percentage error for both autocalibration methods.

Since we have the associated 3D reconstructions for the corresponding 2D features, we

can use more sophisticated performance measures, namely reprojection error.

For a given autocalibrated focal length we compute the reprojection error for all

the corresponding feature points. The reprojection errors are the pixel differences be-

tween the projection of the 3D feature points into 2D and the original corresponding 2D

features. We compute the median of the reprojection errors using the correct focal length,

the focal length found by the eigenvalue method, and the focal length found by Kruppa’s

method. The median of the reprojection errors is a good indicator of the quality of the

�pipolar�cttion for a given focal length. We see that the median reprojection error in-

creases for the autocalibrated focal lengths, but only slightly. This implies that the error

in the autocalibrated focal lengths would not have a significant impact in terms of recon-

struction quality; this independently verifies the work of Bougnoux [88].

In the next experiment we attempt to autocalibrate both aspect ratio and focal

length using the two class A methods. We are again using as input a series of photo-

grammetric projects for which we know the 2D feature correspondences as well as the

ground truth.

While the results as shown in Tables 3 and 4 are reasonable, the errors when auto-

calibrating two camera parameters are sometimes higher than autocalibrating just one pa-

rameter. The error again compounds when we attempt to auto calibrate all parameters. In

 107

particular, the percentage error in the focal length increases slightly. One possible expla-

nation is that the gradient descent algorithm is stuck in a local minimum. To verify this,

the results shown in these two tables were computed by averaging over one hundred

separate runs of the optimization algorithm. The variance as shown in Tables 3 and 4 for

the autocalibrated aspect ratio and focal length is very small over these runs. This indi-

cates that it is highly likely that the stochastic optimization algorithm is finding the cor-

rect global minimum.

Table 1: Results of autocalibration for focal length vs other algorithms. Focal length

is in pixels. Correspondences are computed automatically.

N
am

e

of
Im

ages

Stated Focal

C
om

puted fo-
cal length
(E

q.E
igen)

%
 error vs.
Stated

C
om

puted fo-
cal length
(K

ruppa)

%
 error vs.
Stated

Castle 27 1100 1156.50 5 1197.7 8
Valbone 9 682 605.5 11 685.71 0.5

Nekt 6 700 798.58 14 872.44 24.6
etluueshiba 5 837 857.25 2.4 1233.85 47.4

Table 2: Results of autocalibration for focal length for photogrammetric sequences.
Focal length is in mm., and reprojection error is in pixels. Correspondences selected by

hand.
N

am
e

of Im
-

ages

T
rue focal
length

E
igen fo-

cal length

%
 error

K
ruppa fo-

cal length

%
 error

C
orrect re-

proj.

E
igen re-
proj.

K
ruppa

R
eproj.

Curve 4 6.97 4.71 32.4 7.49 1.13 7 2.23 1.44
Cylinder 3 28 26.35 5.9 31.70 13.21 0.96 2.07 2.60

Plant 6 24.20 22.55 6.8 24.39 0.78 0.80 1.49 1.04
Statue 7 5.11 3.67 28.2 5.29 3.5 3.93 9.61 1.95

Table 3: Results of autocalibration for focal length and aspect ratio for photogram-
metric sequences. The equal eigenvalue method is used and focal length is in mm.

N
am

e

T
rue as-
pect

E
igen A

s-
pect

V
ariance

%
 error

T
rue F

ocal

E
igen fo-

cal

V
ariance

%
 error

Curve 1.0 1.08 0.003 8 6.97 3.46 0.062 50
Cylinder 1.0 0.98 0.002 2 28 26.72 0.52 4.5

Plant 1.0 0.98 0.012 2 24.2 22.96 0.39 5.1
Dam 0.81 0.972 0.0001 20 30.75 38.52 0.089 9.8

 108

Table 4: Results of autocalibration for focal length and aspect ratio for

photogrammetric sequences. The Kruppa autocalibration method is used.

N
am

e

T
rue as-
pect

K
ruppa

A
spect

V
ariance

%
 error

T
rue F

ocal
(m

m
)

K
ruppa fo-

cal (m
m

)

V
ariance

%
 error

Curve 1.0 0.997 0.011 1.3 6.97 7.56 0.21 8.4
Cylinder 1.0 1.03 0.0001 3 28 32.91 0.0001 17.5

Plant 1.0 0.92 0.003 8 24.2 26.33 0.12 8.8
Dam 0.81 0.997 0.0001 19.75 30.75 38.43 0.0001 24.9

Table 5: Results for autocalibration of focal length for three

sequences taken from the same uncalibrated camera.

Name
of Im-

ages
Eigen
focal

Kruppa
Focal

Chapel 12 27.82 31.31
Climber 13 27.91 33.88

Workshop 8 26.19 38.09

The next set of experiments, shown in Tables 5,6 and 7, have as input image se-

quences that were taken with the same camera with invariant intrinsic parameters. There

are image sequences that we have taken by hand, for which ground truth is known, or

from various other modeling projects [102]. In these experiments we again compute the

correspondences automatically using the software described in [100]. Test cases Chapel

and Workshop are almost pure translation while the Climber sequence has a motion with

significant translation and rotation. We autocalibrate only the focal lengths, which should

be equal for all three sequences. The variance of the computed focal length for the eigen-

value method is 0.96 mm and for Kruppa approach is 3.42mm. It is not surprising that the

autocalibration results differ, since certain motions are degenerate with regards to the

Kruppa based autocalibration [86]. What these results clearly show is that for a given

camera, and substantially different sequences, the evolutionary algorithms (especially the

equal eigenvalues method) are convergent. Furthermore, longer sequences converge with

a more accurate estimation of the intrinsic camera parameters.

The final set of experiments, shown in Tables 6 and 7, has as input image se-

quences that are used as test data for the ISPRS Working Group V/2 on Scene Modelling

and Virtual Reality [102]. These images are used to test different model building software

 109

packages, and the ground truth is known. In Tables 6 and 7, we again compute the corre-

spondences automatically using the software described in [100], and autocalibrate only

the focal length. We see, in Table 6 that the results are reasonable given that the true fo-

cal length is 1737 pixels in all cases, but that sometimes Kruppa’s approach does not

converge. The likely causes are sensitivity to motion degeneracy and the difficulty of

convergence with a small number of images associated with the Kruppa method.

Table 6: Results for autocalibration of focal length for three sequences used by the
ISPRS Working Group on Scene Modelling and Virtual Reality.

Name
of Im-

ages
Eigen
focal

Kruppa
Focal

Indoor 5 1663 1815
Waterways 3 1759 fail
Building 2 1609 fail

Table 7: Results for autocalibration of focal length and comparison to ground truth.

Project
Focal

length (in
pixels)

Computed
Focal
length

(in pixels)

of Images
%

Error

Amsterdam 1736.7 1866.7 4 7.48
Benches 1736.7 612 7 64.76
Chapel-l 2105 1640 2 22.0
Chapel-S 2105 1473 7 30.0

Corfu 2923.4 2995 7 0.02
Fitting 1684 1681 2 0.001

Florence 1897.3 1787 6 0.058
Light 2348.3 3647 4 55
Nikh 2348.3 2348 2 0.001

Oldbuild 1649.5 1588 7 0.037
Reg-1 2095 1609 7 23.1
Reg-2 611 747 27 22.2
Sphinx 1754 1764 16 0.0057

Table 7 presents a variety of experiments also from the ISPRS workgroup. In certain ex-

amples that error is very large, however the average error is only 17.25 percent with a

standard deviation of 21.99. By removing the two grossly incorrect samples from the ta-

ble the percent error and standard deviation drop in almost in half to 9.54 and 12.11 re-

spectively.

 110

In summary, Table 1 shows that the evolutionary approach is as good as the pub-

lished results for Class B algorithms, particularly the castle sequence. However, the class

B algorithms are not easily scalable from a computational point of view, and thus cannot

handle long image sequences. The class A, fundamental matrix based, approaches are

very efficient computationally because single evaluations of the cost functions do not

take long and accuracy increases as the sequence length increases. The time taken for

autocalibration is in the order of seconds for all the image sequences on a 400 MHz Pen-

tium II processor. It seems that the equal eigenvalues method is superior to the Kruppa’s

method for degenerate motions and smaller sets of images. There are cases, however,

where the Kruppa’s method clearly outperforms the equal eigenvalues method. Further

investigation is necessary to determine whether or not a heuristic can be developed to

choose one algorithm over the other by pre-determining the camera motion using arbi-

trary intrinsic camera parameters in a first step and using this knowledge to select an ap-

propriate Class A, B, or C algorithm that using an evolutionary approach.

5.7 Conclusions and Discussion

This work presents an algorithm for self-calibration that has four major advantages:

1) Simplicity (and ease of implementation)
2) Accuracy and Reliability
3) Scalability (handles very long sequences)
4) Speed of Execution (known upper bound)

In theory, the autocalibration methods that use fundamental matrices should not

perform as well as those that use the camera projection matrices of a projective recon-

struction [86, 87, 93]. However, we show that for non-degenerate motions both methods

perform equally well when we are calibrating only the focal length, or the focal length

and aspect ratio. The equal eigenvalues approach, combined with evolutionary methods is

very simple and performs as well as any Class B method we compared it against. While it

is theoretically equivalent to the Kruppa approach, it performs better numerically in situa-

tions where we are closer to degenerate motions, such as pure translation and seems to

converge better for smaller sets of images. Experimentally we have shown that evolu-

 111

tionary based autocalibration using class A algorithms produces similar results to their

class B counterparts.

We have shown that in practice the Statistically Distributed Random Starting

(SDRS) helps to find the global minimum of the cost function reliably. We have also

shown that the error in the autocalibration of the focal length is usually in the range of to

15%. This is adequate for applications in which the final results are used for visualization

purposes, such as model building but clearly not for applications that currently require

exact depth information.

When dealing with long image sequences, class B algorithms will produce a set of

polynomial equations for each image pair. This results in a large system of equations for

the entire image sequence. Continuation methods can solve small systems of equations

but are ill posed when the number of equations becomes large. The methods proposed in

this work have advantages for long image sequences. The methods we have described are

computationally efficient with a known upper bound that is better than any published

class B method on long image sequences and produces comparable results. It is also the

case that processing long image sequences is advantageous in that any error for an indi-

vidual fundamental matrix (because of a degenerate motion for example) will have less of

an impact on the final result. For example, an M image sequence has M-1 adjacent pairs

and therefore M-1 representative fundamental matrices. As M becomes larger (i.e. then

number images in the sequence increases) the individual error associated with a single

image pairs has less effect. The accuracy of the estimation only increases with the size of

the image sequence. As the sequence length tends to infinity, the error can be more

closely associated to the error within the individual computation of the fundamental ma-

trix. Another advantage of long image sequences is that the global optimum is better de-

fined than when using short image sequences. In other words with long sequences the

global optimum tends to be sharper and better defined making the results more stable.

Due to a lack of standardized data sets that can be used to effectively benchmark

different autocalibration routines; the “look” of a resulting reconstruction is often used as

 112

a benchmark, which is not appropriate for performance evaluation. For proper perform-

ance analysis of autocalibration algorithms it would be very useful to have a standardized

set of images for which the ground truth is known. A start has been made in [26], but

more needs to be done. At the very least, results using such test data should include the

accuracy of the parameter values, consistency of results (similar to experiment 5), and an

accuracy to image sequence length ratio benchmark.

Evolutionary based autocalibration with varying intrinsic parameters still remains

an open problem; however it is conceivable to adapt the cost functions to allow for vary-

ing focal lengths between image pairs.

 113

Chapter 6

6 Synchronizing Multiple Video Sequences

6.1 Introduction

There are many common applications of multiple video cameras today that range

from video surveillance of large areas such as shopping centers, parking lots and cam-

puses, to videography and filmmaking that utilize multiple video cameras when shooting

individual scenes of a screenplay. However, in some situations such a photogrammetry

and camera metrology, the use of multiple cameras is required when there are moving

objects in the scene [1]. As different human operators may control these cameras, and

only in certain situations is it feasible to use a professional camera synch slate, there is

the fundamental problem of sequence synchronization that needs initial resolution.

Figure 6.1: Camera Sync Slate, a.k.a. clapper board8

Intuitively, the synchronization problem refers to the following: Given k different

video sequences that overlap in time, identify one frame from each of the different se-

quences that refer to the same point in time. Such a set of frames is called a synchronized

cross camera subset. More formally, for each video sequence i, let the frame-time func-

tion Ti(f) map an integral frame number f of sequence i to a universal time, i.e.

RNfTi →:)((6.1)

The synchronization problem can now be expressed as finding a set of frames numbers,

f1, f2, … , fk, one from each video sequence, such that the synchronization equality T1(f1)

8 Picture from Filmtools, Burbank CA. http://www.filmtools.com/ Used with permission.

 114

= T2(f2)= … = Tk(fk) holds. Such a set of frames that exactly solves the synchronization

equality is said to be in perfect integral synchronization.

However, due to possible minute variations in camera start times and variations in

frame rates, perfect integral synchronization does not always exist. In such a case we

search for a set of frames whose pair-wise difference with respect to the synchronization

equality is minimized. We provide exact bounds on the value of this pair-wise difference

in the next section. If we remove the restriction of integral frame numbers, the frame-

time function maps frame values (integral and non-integral) to a point in time, i.e:

RRfTi →:)((6.2)

In this case, the frame-function maps a real frame number (sub-frame accurate) to an ex-

act moment in time. In such a case, there will always exist a set of real frame numbers,

f1, f2, …, fk, one from each video sequence such that synchronization equality T1(f1) =

F2(f2)= … = Tk(fk) holds.

In summary the synchronization problem is:

1. …referred to as the full frame synchronization problem when restricted to integral
frame numbers, and seeks to minimize the pair-wise differences of the synchroni-
zation equality. i.e. |Ti(fi) – Tj(fj)| is minimal for all sequence pairs i,j.

2. …referred to as the exact synchronization problem when unrestricted, and seeks
to exactly solve the synchronization equality.

We fully explore the details of the functions, the equality and their use in both fla-

vours of the synchronization problem in section 6.2.

6.1.1 Additional Background
Synchronization is often assumed [104], however, since the processing of large

volumes of video data is becoming tractable, recent work has investigated the problem of

synchronizing video sequences. In [105] the synchronization problem is constrained to

having a large planar surface present. The method computes the homography that de-

scribes the transformation of the ground plane and looks for the frame pair with the most

consensus of the moving objects. The method suffers under certain 3D motions such as

similar objects moving in a line with constant velocity. In [106], the method is also con-

strained by a large ground plane being present, but further requires intrinsic camera pa-

 115

rameters so that the 3D information about trajectories can be computed and subsequently

corrected in conjunction with the epipolar geometry. Furthermore, the method assumes a

homogenous camera system. In [107] a fixed set of extrinsic camera parameters, identi-

cal frame rates, and a static scene are required so that motion of the rig is identical on a

frame to frame basis. This allows the algorithm to simply find the matching geometric

changes between frames N and N+1 for camera 1, M and M+1 for camera 2, leaving the

offset in frames being |M-N|. In [108], the authors also take advantage of the fact that

objects moving on a planar surface produce a 3D trajectory contour that is identical from

camera to camera. Upon finding the contour similarities, the frame synchronization is

identified. Under repeating motion the contours will be identical, and synchronization

will not be possible. In [109], the synchronization is based on viewing similar non planar

3D motion trajectories in time with applications to telelearning so that exact precision in

synchronization is not fundamentally necessary. In [109, 110], the imposition of rank

constraints on corresponding frame features is examined, rather than the epipolar geome-

try. In order to determine the synchronization a search is performed for frame pairs that

minimize the rank constraint. However, in robust computations of the epipolar geometry,

the rank constraint should be enforced.

Generally speaking these methods are restrictive because of the requirements of

large planar surfaces being present or the requirement that the camera system be partially,

if not fully, calibrated. Furthermore, as synchronization is simply a means to an end, they

examine the full frame synchronization problem rather than the exact synchronization

problem. In this work we examine the theoretical nature of the synchronization multiple

video sequences and prove the maximum upper bound on the difference between full

frame and exact synchronizations. We propose a novel method that handles a much lar-

ger set of input sequences and does not rely on any particular camera configuration or

constraints on the objects. The method is performed solely in projective space and does

not require trajectory correspondence to be solved apriori. The main constraint of our

method is that there are at least three cameras that remain stationary throughout the video

capture process; a very common situation in many multi-video applications. The motion

of the moving objects is slightly constrained in that it cannot have a periodic characteris-

 116

tic such as a pendulum, nor can the motion be directly along the optical axis of one of the

cameras. Any camera count over three can be handled by our method on an overlapping

basis.

In this chapter we examine the following: Section 6.2 formalizes the problem of

synchronizing video sequences and introduces terminology. Section 6.3 outlines our

proposed method that includes 1) Computing camera geometries, 2) Generating trajecto-

ries, 3) Using inflection points to grossly approximate the synchronization, and 4) using

the computed geometries to compute the exact synchronization. Section 6.3 ends with an

adaptation to handle errors in the computed geometries. In Section 6.4, we perform ex-

periments with our proposed method and present results. In section 6.5, we examine

some practical issues and finally we draw some conclusions.

6.2 Problem Formalization

We begin by formalizing the synchronization problem, and follow up by introduc-

ing terminology used in the description of the proposed solution.

6.2.1 The synchronization problem
We first examine some properties of the relationship between multiple video se-

quences and specify terminology. We let Fi:R {0,1} be the frame-capture function.

Fi(x) = 1 if at time x, a frame in video sequence i is being captured and Fi(x) = 0 other-

wise. Close examination reveals that the frame-capture function is periodic in nature and

therefore the model for video capture and synchronization we use is wave based, not lin-

ear as one might expect. The time between peaks in the function Fi is known as the pe-

riod (in wave mechanics terminology) and what is commonly referred to as the frame

rate (ρ), is actually the frequency. Recall that frequency and the period are inversely re-

lated. Figures 6.2 and 6.3 plot the function Fi. The peaks (value 1) occur when a frame is

captured and the valleys occur (value 0) when frames are not being captured. Notice that

in the case of multiple video sequences there exist what we call primary synchronization

points that minimize the distance between the exact synchronization times and the full

frame synchronization times.

 117

Defintion: A primary synchronization point is a point in time that minimizes the differ-

ence between the exact synchronization function (6.2) and the full frame synchronization

function (6.1) for all sequences. i.e. The frame numbers that satisfy the synchronization

equality and minimize the difference given by (6.3).

Formally, the difference between full frame and exact synchronization is given by:

 )5.0()(+− fiTifiTi (6.3)

Any synchronization time that does not minimize the difference (6.3) is termed a secon-

dary synchronization point i.e. any non primary synchronization point. As we see in Fig-

ure 6.2, given 3 video sequences of differing frame rates that are perfectly synchronized

in time, clearly visible cycles of primary synchronization occur. For perfectly synchro-

nized video sequences, these primary synchronization points correspond to the full

frames that were taken at the exact same moment in time.

Figure 2: Perfect integral synchronized video sequences with varying frame rates show-

ing primary synchronization points. .

Primary synchronization points occur at regular intervals that are a function of the

frame rates of the individual sequences. The number of frames between these primary

sync points for two sequences is a function of the frame rates given by:

},min{

},max{
),(

2

2

1

1
21

ρρ
ρρρρ =frames (6.4)

The time between two primary synchronization points (λ) is determined by the maximum

frame rate and the least common multiplier of (6.4) for all pairs of sequences.

{ } 1 s.t. |),(max NjiijframesLCM ji <<<∀•= ρρρλ (6.5)

Primary synchronization points

 118

We coin the term primary synchronization period, denoted by the symbol λ, to be the

time between these events.

In practice however, we do not always have perfectly synchronized video se-

quences as shown in Figure 6.2. Instead, we have a slight synchronization offset. We

can see in Figure 6.3, for sequences that are slightly out of sync, that the offset is minimal

at the primary synchronization points. Furthermore, this offset has a maximum bound for

any secondary synchronization point. We explore this bound next.

Figure 6.3: Imperfectly synchronized video sequences with varying frame rates showing

primary and secondary synchronization points.

Given two imperfectly synchronized video sequences, the maximum full frame

sync offset is half the maximum difference between two frame captures of the higher

frame rate sample. As we can see in Figure 3 for any pair of sequences, a frame in the

slower frame rate sample straddles two frames of the higher frame rate sample, and thus

full frame synchronization will be with the closest frame, in time, of the higher rate sam-

ple. For two video sequences, the quality of full frame synchronization is bounded by:

2

1
,

1
min

),(
21

21








=
ρρ

VVoffset
(6.6)

For N video sequences, the error is bounded to a maximum error defined by (6) for all

camera pairs and is characterized by:

{ } NjiijVjVoffset i <<<∀=∆ 1 s.t.),(max (6.7)

Primary synchronization points

Secondary synchronization point

Full frame
sync
offset

 119

It turns out that the maximum error will always be between the slowest and the 2nd slow-

est video frame rates, and thus for N cameras, ∆ can be easily determined using (6.6) and

the two slowest frame rates.

Lemma 2.1 For N video sequences, the maximum full frame offset is bound by half the 2nd
slowest camera period.

Proof: Let ρ1, ρ2 and ρ3 be the three slowest frame rates from N sequences such that: ρN <
…< ρ3 < ρ2 < ρ1. For all sequence pairs, the offsets defined by (6.5) are ρ2/2, ρ3/2, and
ρ3/2 respectively. Since ρ2 is greater than ρ3, ρ2/2 is greater than ρ3/2. As ρ3, ρ2 and ρ1 are
the three slowest rates, any other frame rate ρi (i>3) from the N sequence is less than ρ3
resulting in an application of (6.5) resulting in ρi/2 which is less than our largest value
ρ2/2. Therefore, the error is bounded by ρ2/2, half of the 2nd slowest frame rate. □

Figure 4: Video sequences with respect to a universal time line.

Given two frames from a single video sequence i, the amount of time that elapses

between frame f1 and f2 is (f2-f1)*ρi. We let Ei represent the amount of time that has

elapsed between the first frame and the nth frame (denoted ni) in sequence i. Specifically,

the nth frame (ni) in sequence i will be taken at elapsed time Ei and is given by the follow-

ing equation:

iii nE ρ⋅= (6.8)

Because the sequence start time is the beginning of the sequence, we have a simple linear

relationship between the frame rate and the frame number. However, since we want to

synchronize video cameras that were not necessarily started at the same point in time, it is

time

Sk

Sj

Si

Primary synchronization point
Ei

Ej

Ek

 120

necessary to determine the elapsed time within the context of a universal timeline, and

not simply within the time line of the single sequence itself. We can now specify the ex-

act nature of the function described in (6.1) and (6.2) by by:

iii SEnTi +=)((6.9)

where the start time of the sequence i, is at some offset Si from the universal start time.

This offset in the universal time line represents a phase shift in wave mechanics termi-

nology. As we see in Figure 4, three cameras started at different points in time have dif-

ferent phase shifts with respect to the universal time line. We see that there are phase

shifts Si, Sj, and Sk that correspond to the differences in time for which the cameras

started capturing video sequences.

Given multiple video sequences, the synchronization consists of the frame num-

bers that were taken at the same instant in universal time, within the known bounded er-

ror ∆ given in (6.7). For 3 video sequences (i, j, k), the universal time line obeys the syn-

chronization equality:

kkjjiii SESESEnTi +=+=+=)((6.10)

The problem of synchronization is now, in fact, two fold. 1) finding the inter-sequence

times (Ei) where a synchronization point occurs and 2) solving for the universal time

phase shifts (Si). In practice, we can impose the constraint that S1 be set to universal time

0 and base our phase shift values on a time frame dictated by camera start events. We

can determine the camera start order by examining the elapsed sequence times in the or-

der of highest to lowest.

The goal of synchronization is now to solve for the synchronization equality

(6.10). This can be done on an integral frame basis, knowing that we can only be accu-

rate to within the time frame given by (6.7), or it can be solved exactly by allowing sub

frame accuracy determination in equation (6.10). If we choose to only support integral

frame numbers, equation (6.10) has constraints on the determination of the inter-sequence

times that account for the maximum error ∆.

 121

∆≤

∆≤

∆≤

+−+

+−+

+−+

)()(

)()(

)()(

kki

kkjj

jjii

SESiE

SESE

SESE

 (6.11)

Additional cameras are a simple extension of the equality from (6.10) and the constraints

from (6.11). Primary synchronization points minimize the constraints given by (6.11),

and in practice should be sought.

The E’s are solved by finding a primary synchronization point where each frame

was taken at the same moment in time of the same 3D scene, and the S’s by setting S1 to

be zero, therefore becoming the universal start time, and using algebraic manipulation to

solve for the remaining.

2.1 Terminology
We continue by specifying terminology that defines the core concepts behind the pro-

posed solution. A camera sequence (CS) is the linear sequence of frames from a single

video camera; like a single reel of film. A cross camera subset (CCS) is a set of N im-

ages, where each image in the subset comes uniquely from one of the N cameras. A syn-

chronized CCS is a cross camera subset where each frame of the set is full frame syn-

chronized as outlined in equation (6.1).

A cross camera subset is not necessarily aligned in time, we denote a CCS to be simply a

selection of N frames, one from each of N camera sequences. The problem of camera

synchronization is that of determining the exact the same moment in time for each of the

video sequences, i.e. finding a synchronized CCS.

We further sub-classify cross camera sets into dynamic-CCS and static-CCS. As their

names elude, a static-CCS is comprised of those images that have the same static content

(or in practice, a majority of static content). There are multiple static-CCS candidates

among a set of video camera sequences. The term static-CCS is not to say that there is no

dynamic motion within the frames, but rather we are interested only in the static content

of each frame so that we can compute the camera geometries. A dynamic-CCS is the set

of images in which we are utilizing the dynamic aspects of the cross camera set. Again

 122

this is not to say that all pixels within a set of candidate frames are moving, but rather

they contain the same moving objects.

Figure 6.5: 3 camera sequences in a three video camera setup with varying frame rates,

with a synchronized cross camera set in gray.

6.3 Recovery of the synchronization
Because we are utilizing multiple non-moving video cameras, we can use the fun-

damental matrices [9] and the trifocal tensor [10] of the three views to determine the syn-

chronization offsets. There is only one instant in time where all moving and non-moving

features will have perfect consensus on the camera geometries, and this is when the mov-

ing objects are captured at the same instant in time. When dynamic-CCS objects concur

with the geometry computed with static-CCS, the frames that comprise the dynamic-CSS

are full frame synchronized. Moreover, the best geometric support will come from a

primary synchronization point. It is also important to note that more than one dynamic-

CSS will support the geometry computed from the static-CSS; those being any dynamic-

CSS that contain synchronized frames.

Clearly a pure brute force method (using all frame permutations) of finding the

dynamic-CCS that supports our computed camera geometry is not an option since the

combinations are exponential to the number of cameras. This would require MN combi-

nations to be examined, where N is the number of cameras and M is the frame count.

One way to reduce the cost of the brute force method is to align groups of 3 adjacent

cameras. With a maximum synchronization offset of just 30 frames (±15), a three camera

t t
t

Cross
Camera
Subset

 123

system will yield 27,000 combinations to be tested. This still remains computationally

intense. In general, the number of combinations required to perform such a computation

for an N camera sequence with a maximum offset of max_offset frames, would be:

3)2(max_offsetN ⋅− (6.12)

We alleviate the need to perform these brute force computations (even smarter

brute force) by creating a virtual image that embeds the dynamic object trajectories in

2D. We utilize these virtual trajectory images to quickly determine the synchronization.

The core idea we utilize is that the camera geometry and the object trajectories will con-

cur, allowing us to quickly compute the frames with maximal geometric consensus and

therefore implicitly generate the synchronization offsets. We use a basic 4 step system:

1) compute the camera geometry from a static-CCS, 2) generate trajectory images for

each sequence, 3) Narrow down trajectory images via inflection points, 4) Refine the se-

lection via consensus to single frame accuracy and via pure geometric support to sub

frame accuracy.

6.3.1 Computing Camera Geometry from the Static-CCS
Because the cameras are static, and the features considered in a static-CCS are

also stationary and we can select any frames as candidate frames so long as they mini-

mize the effect of the moving objects. There are a variety of ways to achieve this, from a

brute force examination of the frame data using some difference metric, to a user selected

set of frames. Selecting static features that do not change from frame to frame, i.e. back-

ground subtraction, or utilizing optical flow methods to remove pixels that are not static,

simply adds computational overhead that is practically not necessary.

Selecting frames that are relatively close to the synchronized frames should be

avoided in this step to prevent outliers from being included, resulting in a degenerate

computation of the camera geometry. However, due to the large ratio of frames to cam-

eras, and this will be true in most practical cases, we can simply sample frames from each

camera sequence so that they are well distanced in time.

 124

FIGURE 6.6: REQUIRED GEOMETRIES FOR A 3 CAMERA SYNCHRONIZATION

Once the static-CCS has been selected, it is used to first compute information about

the camera geometry. In Figure 6, we see the required geometries to compute the syn-

chronization of three video sequences. The fundamental matrices F12, and F23, and the

trilinear tensor, T123, are required from a 3 camera system and can be computed robustly

using techniques outlined in [9][10], furthermore, one can simply use the tensor alone

since F12 and F23 can be derived from T123. We use the software presented in [11] for our

experiments.

6.3.2 Generating the Trajectory Images
We utilize a feature tracking mechanism to generate the trajectory images. As we

track features over time, we associate the current frame number to the position within the

trajectory image. Feature tracking is performed on the luminance channel (grey map) for

the video frames. The luminance channel is computed as follows:

Luminance = Red*0.299 + Green*0.587 + Blue*0.114 (6.13)

The feature tracker we use is based on the work of Lucas and Kanade in [49]. This work

was further developed by Tomasi and Kanade in [50] of which Shi and Tomasi provide a

complete description in [51].

Briefly, features are located by examining the minimum eigenvalue of a 2x2 im-

age gradient matrix. The features are tracked using a Newton-Raphson method of mini-

mizing the difference between the two windows around the feature points. We continue

by presenting a very brief outline of the work by Tomasi et al [49,50,51].

F12 F23

T123

 125

Given a point p in an image I, and its corresponding point q in an image J, the displace-

ment vector δ between p and q is best described using an affine motion field:

δ = Dp + t (6.14)

where

xx xy

yx yy

d d
D

d d

 
=  
 

 (6.15)

is a deformation matrix and t is the translation vector of the centre point of the tracked

feature window. The translation vector t is measured with respect to the feature in ques-

tion. Tracking feature p to feature q is simply the problem of determining the six parame-

ters that comprise the deformation matrix D and the translation vector t. In the case of

pure translation, D will be the identity matrix and thus

δ = p + t (6.16)

Because of this, the case of pure translation is computationally simpler and thus prefer-

able due the higher frame rates typically found in video data. Since the motion between

adjacent frames of standard video is generally quite small, it turns out that setting the de-

formation matrix to identity is a safe computation [50], leaving us with the translation

vector being exactly the displacement vector. A complete description of the tracking

equations and feature tracking criteria can be found in Chapter 2, section 11.

FIGURE 6.7: INITIAL IMAGE, TRAJECTORY IMAGE
(target and head features) tracked over 45 frames, final image

The displacement vector is computed using a pyramid of resolutions because

processing a high resolution image is computationally intense. The multi-resolution

pyramid within the feature tracker reduces the resolution of the entire image, say by a

factor of 2. Tracking occurs by tracking a features general area in the lowest resolution

 126

and upgrading the search for the exact location as it progresses back up the pyramid to

the highest resolution.

While tracking features it is possible that an extremely large object motion be-

tween frames does occur and features cannot be tracked any further resulting in smaller

object trajectories. This is especially true in the case of slower frame rates. So long as

the object trajectories overlap in time, the length of the trajectory bears little relevance,

although longer sequences help in finding inflection points and help to ensure that trajec-

tory correspondences exist. In Figure 6.7, we have a trajectory image for 3 seconds of a

video sequence along with the first and last frames from the from the trajectory sequence.

FIGURE 6.8: TRAJECTORY IMAGE (ENLARGED) FOR A 3 SECOND INTERVAL.

In Figure 6.8 we present an enlarged version of the trajectory image. The image main-

tains a separate colour for each point feature tracked and specifies the exact point feature

position in black for each frame.

6.3.3 Gross approximation of synchronization via trajectory images
We begin by performing a gross approximation of the full frame synchronization.

Because we are not assuming trajectory correspondence, we must have enough interest

points tracked to ensure correspondence between the 3 views. This will result in clut-

tered trajectory images, however we can reduce the trajectory images in the presence of

inflection points.

An inflection point is found examining the trajectories for similarities in overall

shape. In the presence of object motion where direction is changed suddenly; the trajec-

tories show this change at a very obvious point shown in Figure 6.9. In practice this al-

 127

lows us to get within a few frames of correct synchronization, but is never guaranteed to

be exact. The reason for this is due to differing frames rates combined with perspective

distortions of the fluidly moving objects causing a many-to-one, frame-to-pixel location

of inflection points in the trajectory images.

a b c

FIGURE 6.9: 3 TRAJECTORY IMAGES WITH OBVIOUS COINCIDENT POINTS OF INFLECTION

In practice, the presence of obvious inflection points may be quite difficult to find,

especially when the motions of the dynamic objects are not under control of the applica-

tion. Furthermore, the trajectories of non rigid objects have different times in which the

change of motion represents itself. For example, the loose fitting clothing of a basketball

player making a jump shot continues moving upwards after the player has reached the

apex of the jump causing the abrupt change in motion of the player’s head and clothing to

occur in different features at different points in time. In order to resolve these discrepan-

cies, it would be necessary to first solve the trajectory correspondence problem.

A closer examination of motion trajectories and the corresponding frames in the

video sequences helps to show how the gross approximation errors occur. When object

motion changes, especially if it is in the direction of the optical axis, there are several

frames associated to a single pixel location. Furthermore, should the object motion be

extremely slow, there are multiple frames associated with the feature location and there-

fore a higher error in the gross approximation will result. To confirm, we tracked a target

over 15 frames as it moved towards a camera along the optical axis. The result was a

many to one, frame to pixel location association that made exact localization of the

frames impossible.

Once we have identified the inflection points, and implicitly the gross approxima-

tion of the synchronization, it is further refined by creating a reduced trajectory image

 128

around the point of inflection and a geometric consensus stage is applied. In cases where

inflection points cannot be reliably found, the gross approximation stage can be omitted

and we use the larger trajectory images in the consensus stage. This will result in many

more consensus trials being performed, as we see in Figure 6.10a, because the epipolar

line will potentially intersect with many more trajectories causing the candidate set to be

larger. In Figure 6.10b we show a reduced trajectory image (enlarged for viewing) for an

8 frame track after the point of inflection.

a b
FIGURE 6.10: EPIPOLAR LINE AND TRAJECTORIES.

The intersection of trajectories and the epipolar line make up the candidate set of points.
(a) large trajectory (b) reduced trajectory

6.3.4 Refinement via maximal geometric consensus
During the creation of the trajectory images, we associate a list of frame numbers

to each tracked pixel position of the dynamic objects in the trajectory image. We can

now effectively compute the synchronization to sub-frame accuracy using the camera ge-

ometry and the trajectory images. We do this by selecting a point x in any trajectory in

the first image. We then compute the epipolar line that will intersect the corresponding

trajectory in the second trajectory image. The epipolar line will also cross other trajecto-

ries in the second image, and we use the intersections of the epipolar line and the trajecto-

ries to create a candidate set of matching points. As shown in Figure 6.11, these candi-

date frames can be computed to sub-frame accuracy as the intersection of the trajectory

line joining two point positions in adjacent frames. For each point in the candidate set,

tensor transfer is applied along with the first point to compute a third point in the third

trajectory image. The computed 3rd point (via tensor transfer) is used to find the closest

trajectory point. This closest point is also computed to sub frame accuracy as shown in

Figure 6.11.

 129

Once the 3 points have been associated to their respective trajectories, the nearest

full frames are selected for a consensus trial. We compare a window around the exact

tracked point position for each of points using normalized cross correlation to determine

whether or not the three points are similar enough to perform the consensus trial. When

the points agree, we then verify that a variety of features in the selected frames support

the given geometry by generating corner features and performing matching that is guided

by the pre-computed geometries. The putative synchronized frame set with the highest

consensus overall is selected as the synchronized CCS.

FIGURE 6.11: COMPUTING FRAME VIA EPIPOLAR AND TENSOR TRANSFER.

In practice, one should always start with the slowest camera when selecting the first point

x because it will help to reduce the number of potential consensus trials as the two slow-

est cameras define the largest possible error in synchronization time as discussed in sec-

tion 2. Moreover, attempts should be made to use a reduced trajectory image so that the

number of many-to-one frame-to-pixel associations is minimized and therefore the size of

the candidate set of matching points will be smaller. If any of the computed points lie on

overlapping tracks, we test all the possible combinations of frames. For a point x whose

epipolar line intersects X trajectories and the subsequent tensor transfer is equidistant to

Y trajectories results in a consensus trial for X·Y frame triplets, a drastic reduction in

consensus trials compared to (N-2)max_offset3 which is the number of trials for a smart

brute force method as discussed in section 3.

T

x epipolar line

Tracked point in
frame n

Tracked point
in frame n+1

F12x

Candidate set
point n + 0.45

Tracked point in
frame m

Tracked point
in frame m+1

Point on
trajectory
(m+0.6) Computed point

via tensor
transfer

 130

6.3.5 Synchronization in the face of erroneous geometries.
In the presence of error in the computed geometries, an exact answer cannot be

trusted. Even a single pixel displacement of the epipolar line will result in an incorrect

location of the intersection of trajectories and the epipolar line, which will result in an

inexact time localization. In the presence of larger inaccuracies, it is beneficial to exam-

ine a broader range of frames when operating our consensus trials. We do this by modi-

fying the generation of the candidate set to include multiple frames from each track that

intersect with the epipolar line. We examine a number (ε) of complete frames on either

side of the epipolar line. The value for ε is dictated by our confidence in the computed

geometry, its error and the distance between tracked points. This will increase the num-

ber of consensus trials by a factor of (2ε+1)2 times, the number of trials where we have

absolute confidence in the computed geometries. The optimal epsilon is function of the

frame rates and guarantees us to search at least one primary synchronization point. For

each sequence, i, epsilon is:









=

iρ
λε

2
 (6.17)

This will result in (N-2)(2ε+1)2 consensus trials. For our experimental trials, we set ε to

be 2 as computed from (6.17).

6.3.6 Algorithm Review: Synchronize
 We quickly review the synchronization algorithm

Input: 3 video camera view sequences
Output: frame numbers for 3 synchronized frames

External Functions:
Projective_Transfer(p1,p2) performs tensor transfer between p1,p2 returns point p3
Xcorr(f1,p1,f2,p2,f3,p3) performs pair wise normalized cross correlation for 3 points (px)
in 3 frames (fx)and returns the minimum correlation of all 3 pairings.

1 Select frames that a form static-CCS
2 Compute fundamental matrices(F12 and F23) & triliner tensor(T123)
3 Generate trajectory images at 3 second intervals
4 Find and match inflection points in trajectory images
5 Generate reduced trajectory images around inflection points
6 Select a point x from 1f on a trajectory image 1

7 l = F12x (compute Epipolar line)

 131

8 Compute the candidate set of points (xci) i.e. the intersections
of the trajectories and the epipolar line l

9 For each point pair (x, xci) do
10 xt = Projective_Transfer(x, xci)
11 Compute frame number f2 from xci to sub-frame accuracy (Fig 13)
12 Compute frame number f3 from xt and the nearest trajectory to

sub-frame accuracy (Fig 13)
13 If (Xcorr(1f ,x,  5.02 +f ,xci,  5.03 +f , xt) < threshold)

14 Perform guided matching using frames      5.03,5.02,5.01 +++ fff and

the geometry computed in (2)
15 If consensus feature count is maximal then
 Save f1, f2, and f3
16 Endfor(9)
17 Return f1, f2, and f3

6.4 Experimental Results

We have applied the algorithm to various sequences, both synthetic and those

captured by a variety of different cameras of varying quality and frame rates. We com-

pare to known ground truth where possible, while in the other cases, we compare to our

hand selected ground truth.

6.4.1 Synthetic Data
In our synthetic data set, we have a series of static 3D points in a variety of posi-

tions. Our dynamic 3D points are the vertices of a cube which we move before construct-

ing each frame in our sequence. The frame rates are the same and constant for each gen-

erated sequence, and the sequences are perfectly synchronized. This scenario represents

a system of cameras with identical frame rates that are full frame synchronized. The off-

sets were set to be 0, 5 and 10 frames respectively. In this case, the motion of the cube

was arranged so that the vertices of the cube projected to a unique pixel after each mo-

tion. This resulted in a trajectory image with a one-to-one pixel/frame number associa-

tion. The trifocal tensor was derived from the projection matrices and the fundamental

matrices were subsequently derived from the tensor. The trajectory images were gener-

ated using the projected positions of the 3D vertices of the cube. Due to the simplistic

motion, there were no inflection points in the trajectory image, thus application of the

consensus algorithm was all that was necessary. Under these ideal conditions, the syn-

chronization was computed exactly to be frame deltas 0, 5 and 10 respectively.

 132

In our next synthetic example, we configured the system to have the same con-

stant frame rates for each generated sequence. In this example, the sequences are not per-

fectly synchronized and frame deltas of 0, 5.25 and 10.75 were used to represent a system

similar to Figure 3. In this case, the motion of the cube was arranged so that the vertices

of the cube projected to a unique pixel after each motion and that for each full frame tick,

the points moved exactly 4 pixels. This resulted in a trajectory image with a one-to-one

pixel/frame number association and allowed us to easily determine the sub-frame offsets.

Under these conditions, the synchronization was computed exactly to be frame deltas 0,

5.25 and 10.75 respectively.

6.4.2 Real Data
In the following experiments, we used various digital cameras with video capture

capabilities. The cameras had different capture capabilities such as frame rates and reso-

lutions. In our first experiment, we used a system of 3 cameras that grabbed frames on a

synchronized basis, we then offset the video sequences by 5 and 10 frames for the second

and third cameras respectively to be used as our ground truth. This scenario represents a

system of cameras with identical frame rates that are full frame synchronized and the cap-

ture process was started simultaneously (as in Figure 1). As we can see in Table 1 the

computed full frame synchronization is correct, however due to minor errors in computed

geometry, the exact synchronization exhibits the minor errors. The error falls well within

the expected maximum error of ½ a frame.

Camera
Gross

Approxi-
mation

Exact
Sync

First
Primary

Sync
Point

Exact
Time
Ei (s)

Uni-
versal
Time
Shift
Si (s)

Exact
First
Full

Frame

Ground
Truth

1 141 141 0 0 1.994 0 0
2 146 146.05 5.05 1.010 0.984 5 5
3 151 150.97 9.97 1.994 0 10 10

Table 1: Synchronization Results

In Figure 12, we show the synchronized frames in rows and sequences in columns

for this example. As you can see the events (specifically the hand) are well matched in

time.

 133

In our next set of experiments, we utilize 3 off the shelf digital cameras with video cap-

ture capabilities. The cameras were of varying quality and frame rates. The camera limi-

tations for this set of experiments are presented in Table 2. This reflects the situation de-

picted in Figure 3. Given the frame rates, we can expect full frame synchronization to

fall within 0.033 seconds of the perfectly accurate synchronization.

FIGURE 6.12: 3 SYNCHRONIZED (ROWS), CONSECUTIVE FRAMES (COLUMNS)

Camera
Frame
Rate

Noise
level

Resolution
(Sharpness)

1 15 typical low
2 15 typical standard
3 10 high standard

Table 2: Camera Characteristics

C
am

era

Fram
e R

ate

G
ross

A
pprox -

im
ation

T
im

e (s)

U
niversal

T
im

e Shift
(s)

E
xact S

ync

E
xact T

im
e

(s)

U
niversal

T
im

e Shift
(s)

N
earest

Full Fram
e

T
im

e

1 1/15 127 8.467 7.533 126.75 8.45 7.45 127 8.467
2 1/15 228 15.2 0.80 229.33 15.289 0.611 229 15.267
3 1/10 160 16 0 159 15.9 0 159 15.9

Table 3: Synchronization Results

In the first two examples, we used a target as the moving object in order to assure

corresponding points would produce corresponding trajectories. In both of these exam-

ples, the target was moved such that an obvious change of direction (inflection points)

 134

occurred. These very sharp inflection points allow the gross approximation method to

achieve very close results to the synchronized frames with maximal consensus. We can

see in Table 3 that the gross approximation in the presence of inflection points are accu-

rate to within a few frames of the exact full frame synchronization. In Table 4, we con-

firm that the time difference falls within the expected values given the ground truth.

The targets, while helpful in ensuring the accuracy by allowing multiple corre-

sponding trajectories causes the algorithm to force many more consensus trials because of

the feature proximity. With fewer corresponding features being tracked, there are fewer

points in the candidate sets and thus fewer geometric consensus trials. However, in order

to ensure accurate synchronization, we need to ensure that at least one corresponding fea-

ture is sufficiently tracked in all 3 cameras sequences.

Ground Truth
(user selected)

Time
Difference
from com-
puted time

127 8.467 0.017
229 15.267 0.022
159 15.9 0

Table 4: Synchronization Results

FIGURE 6.13: SELECTED SYNCHRONIZED FRAMES

A second example using the same cameras outlined in Table 2 also bring us to the

same conclusion. The results, outlined in Table 5, support the previous experiments find-

ings that the gross approximation, in the presence of inflection points is accurate to

within a few frames.

In order for the exact computation of synchronization via geometric consensus to be

effective, there is the requirement of corresponding features being successfully tracked.

The targets, seen in Figure 13 help to ensure that corresponding features are indeed

tracked. As a result, the trajectory images are quite feature-rich. In contrast, without the

 135

use of targets, the trajectory images may be quite sparse due to the static background fea-

tures being selected automatically over the moving object features. In our final example,

we abandon the use of targets and look to automatically track features on dynamic ob-

jects.

Gross

Approxima-
tion

Exact
Syn-

chroniza-
tion

Full
Frame
Sync.

Full Frame-
Ground
Truth

Camera 1 frame 165 167 167 167
Camera 2 frame 212 213.66 214 214
Camera 3 frame 170 170.80 171 170

Total Frame
Error

4 1.13 1 N/A

Table 5: Synchronization Results

Unlike our target based approach, the gross approximation became more difficult

and required minor manual interventions. Because the features on the moving objects

lack the contrast of the target, it was often the case that features on the moving objects

would not be automatically selected into the tracked features list. A minor manual step to

force feature selection in selected areas helped to generate better trajectory images.

Background subtraction techniques would help to remove the need for this manual re-

quirement.

C
am

era

Fram
e R

ate

G
ross

A
pprox -

im
ation

T
im

e (s)

U
niversal

T
im

e Shift
(s)

E
xact S

ync

E
xact T

im
e

(s)

U
niversal

T
im

e Shift
(s)

N
earest

Full Fram
e

T
im

e

1 1/15 244 16.267 11.133 242.80 16.187 11.213 243 16.20
2 1/15 302 20.133 7.267 301.50 20.100 7.300 302 20.13
3 1/10 274 27.400 0 274 27.400 0 274 27.40

Table 6: Synchronization Results

FIGURE 6.14: SELECTED SYNCHRONIZED FRAMES

 136

Again, the results shown in Figure 14, listed in Table 6 and Table 7 fall within the

expected maximum error. However, in this specific case, the epipolar line fell exactly

halfway between the two points in sequence 2. Our decision to move up, rather than

down affected the accuracy and caused a single frame error in the computed full frame

synchronization, but does not change the accuracy of the exact computation. A minor

anomaly worth noting, is that in this example, the hand selected ground truth value for

sequence 2 (301) may be incorrect. All three methods, gross approximation, exact and

robust all agree with a value of 302. When selecting the ground truth, we had several

people examine the frames and come to a consensus of the frame numbers that they be-

lieved were synchronized.

Ground Truth
(user selected)

Time

Difference
from exact
computed

time
243 16.200 0
301 20.067 0.033
274 27.400 0

Table 7: Synchronization Results

E
xam

ple

C
am

era

E
xact w

ith
inaccurate
geom

etry

R
obust

G
round

T
ruth

N
earest full

fram
e, w

ith
accurate
geom

etry

1 125.33 127 127 127
2 227 229 229 229 1
3 159 159 159 159
1 166.25 167 167 167
2 211.5 213 214 214 2
3 170 170 170 171
1 240.66 243 243 243
2 304.25 302 301 302 3
3 274 274 274 274

Table 8: Comparison of methods in the face of geometric inaccuracy

In our final set of experiments, we artificially added error to the computed geome-

tries to simulate degenerate geometries. We then ran the examples again using the robust

strategy outlined in section 3.5 for dealing with erroneous geometries. As we can see in

 137

Table 8, the strategy of sliding up and down the trajectories and performing more consen-

sus trails on all the local combinations is helpful in the face of inexact geometries. How-

ever, it requires substantially many more consensus trials, and therefore requiring more

computing time.

By using the robust method, we are able to achieve results that are very close to

ground truth.

6.5 Practical Considerations

During the investigation, several practical issues were raised. Instrumental to the

success of the accurate computation of the synchronization is an accurate computation of

the camera geometries. The problem of computing an accurate set of camera geometries

is considered difficult; and inaccurate geometries, even within a few pixels, can result in

an incorrect selection of synchronized frames that are no better than the gross approxima-

tion stage. In practice, SIFT features [111] helped to generate accurate geometries in dif-

ficult circumstances.

The primary area of concern for the tracking aspect is the avoidance of multiple

frame associations to a single feature location and that corresponding features are tracked

for some period of time. In order to avoid multiple frame associations, the maximum

length of the trajectories should be less than the tracked features intra frame pixel dispar-

ity when generating the reduced trajectory images. It is difficult to ensure that corre-

sponding moving object features are tracked in all views, but in practice, targets ensured

that many corresponding trajectories existed. However, in situations where targets were

not used, simply selecting areas to automatically select features to track helped to im-

prove the situation at the cost of taking away from the hands off approach that the targets

allowed. Restricting the area for detection of features to track in an automated method

would help to make the algorithm more practical.

Open problems include automatic detection of corresponding inflection points and

the automatic detection of corresponding trajectories apriori. While these values are im-

plicitly computed by the method, thus known apostori, knowing them apriori would result

 138

in a reduction of the number of times the consensus step (the largest consumption of

time) is required.

6.6 Conclusions and Discussion

In this work we present a novel method for multiple video temporal synchroniza-

tion using feature tracking and geometric consensus. The proposed method allows for the

least constraints being placed on the camera setup and the scene being viewed. The

method provides two levels of accuracy by using a two step process of grossly approxi-

mating the frame synchronization followed by a refinement step that examines the se-

lected frames for their consensus with the camera geometry. The method has been suc-

cessfully used on both synthetic data and real data with substantial noise, differing frame

rates and varying levels of initial synchronization. Even in the presence of erroneous ge-

ometries, it is possible to get very close synchronization results at the cost of performing

more consensus trials to account for the geometric inaccuracies.

 139

Chapter 7

7 Conclusions and Open Problems

7.1 Summary

Video data presents a variety of problems for computing due to introduction of is-

sues not often found in classical computer vision. Primarily, the sheer volume of the data

itself is a primary concern that will often prevent the straight forward application of stan-

dard computer vision algorithms to each individual frame. As well, video data introduces

another dimension into the computation models: time. Temporal constraints also prevent

the application of standard algorithms as they are often presented as single image algo-

rithms. For example: content based image retrieval techniques cannot be simply applied

to video data. Furthermore, video data is often accompanied by audio data. While not

examined directly in this thesis, audio data is yet another dimension for consideration

when processing video data. For all of the above reason, the field of computation video

has started to emerge as an interesting and necessary field of computer science. As com-

putational video is an emerging research area, this thesis has presented practical algo-

rithms for a variety of problems commonly encountered by applications that utilize video

data.

Chapter 3 presented a method to select appropriate frames from a video sequence

for subsequent processing using computer vision algorithms. Furthermore, the chapter

presents a publicly available platform called the Projective Vision Toolkit that allows fu-

ture researchers to reduce the learning curve and accelerate research into the field.

Chapter 4 presented a computer vision based approach to the problem of segment-

ing commercial video. Shots detection forms the cornerstone of many content based

video/image retrieval systems. The quest for a perfect segmentation algorithm still re-

mains. However, this chapter presented an improved methodology that significantly out-

performs existing techniques.

Chapter 5 presented a Genetic Algorithm based system to perform autocalibration

of cameras. Current techniques are not scalable to the volume of data present in video

 140

sequences and thus are not a tractable solution. We presented an extremely fast and accu-

rate method for self calibration of video cameras.

Chapter 6 presented a theoretical look at the mathematical properties of the video

synchronization problem and shows the existence of two distinctly different flavors of the

synchronization problem. The chapter proceeds to present a solution to the synchroniza-

tion problem that, unlike existing solutions, considers both flavors of the problem and is

not constrained by the presence of large planar surfaces.

The solutions presented in this thesis represent the only the tip of the iceberg

when dealing with video data and ring true to the words of Anton Checkov: “Yet it was

clear … that the end was still far, far off, and that the hardest and most complicated part

was only just beginning”. We next examine a list of open problems and future work.

7.2 Future Work

Finally, areas where future work would be beneficial are plenty in emerging

fields. We present some areas related to the each of the chapters, but left unexplored by

this thesis.

First, corner features used in the Projective Vision Toolkit suffer under certain

camera motions when trying to compute corresponding features between views. The

same problems that exist for feature matching also exist for feature tracking. An exami-

nation into scale invariant features (SIFT) [111] has shown some initial promise within

the PVT and in a feature tracking context. More work is necessary to fully develop the

idea of Scale Invariant Feature Transform Tracking (SIFT2). This will allow more accu-

rate computation of geometries and more robust feature tracking.

A second area to examine is in video tracking as well. Independently moving ob-

jects will temporarily occlude different static areas of the scene as they move causing fea-

ture loss in tracking applications. Identifying such occlusions would help to enumerate

the independently moving objects and allow re-tracking once the occlusions a gone. Re-

search into detecting and combining occlusions as part of the annotation and tracking of

objects in video sequences would prove beneficial because independently moving objects

 141

often possess cohesive features such as color and texture, object segmentation and track-

ing may prove fruitful.

A third area where further effort is required is the adaptation of the methods in

Chapter 5 to allow the autocalibration of video cameras with varying intrinsic parameters.

Auto-focus features are becoming standard features on commercial video cameras and in

order to provide practical application to the more modern version of video cameras, it

will be necessary to adapt the cost functions presented in Chapter 5 to minimally allow

for differing focal lengths between views.

Finally, there are a variety of future problems that arise due simply to the solu-

tions of the problems presented in this thesis. Real-time constraints are always a consid-

eration for applications such as real-time television viewing by computer programs,

autonomous vehicle projects where real-time reaction is necessary and real-time envi-

ronment recreation for virtual reality applications. Adaptations to color information also

present an interesting set of problems. As this thesis performed the majority of its work

in the luminance domain, a detailed investigation into the use of color to perform tasks

may also prove fruitful.

 142

 Appendix A

A Exact Match counts for PVT Example Sets

Image pair and Location

C
orrelation
M

atches

F
iltered

M
atches

%
 difference

F
undam

ental
Support
M

atches

%
 difference

from
 filtered

%
 difference

from
 C

orre-
lation

ex1/bighouse/c-000101.pgm-c-000102.pgm.matches 417 389 6.71 363 6.68 12.95

ex1/bighouse/c-000102.pgm-c-000103.pgm.matches 349 321 8.02 313 2.49 10.32
ex1/bighouse/c-000103.pgm-c-000104.pgm.matches 470 447 4.89 420 6.04 10.64
ex1/bighouse/c-000104.pgm-c-000105.pgm.matches 487 479 1.64 455 5.01 6.57

ex1/bighouse/c-000105.pgm-c-000106.pgm.matches 393 373 5.09 366 1.88 6.87
ex1/bighouse/c-000106.pgm-c-000107.pgm.matches 531 530 0.19 518 2.26 2.45

ex1/bighouse/c-000107.pgm-c-000108.pgm.matches 422 405 4.03 393 2.96 6.87
ex1/bighouse/c-000108.pgm-c-000109.pgm.matches 509 506 0.59 494 2.37 2.95

ex1/bighouse/c-000109.pgm-c-000110.pgm.matches 505 504 0.20 487 3.37 3.56
ex1/bighouse/c-000110.pgm-c-000111.pgm.matches 433 411 5.08 398 3.16 8.08
ex1/chapel/p0000888.jpg-p0000889.jpg.matches 299 210 29.77 199 5.24 33.44

ex1/chapel/p0000889.jpg-p0000890.jpg.matches 299 196 34.45 165 15.82 44.82
ex1/chapel/p0000890.jpg-p0000891.jpg.matches 289 255 11.76 234 8.24 19.03

ex1/chapel/p0000891.jpg-p0000892.jpg.matches 299 219 26.76 200 8.68 33.11
ex1/chapel/p0000892.jpg-p0000893.jpg.matches 303 254 16.17 238 6.30 21.45
ex1/chapel/p0000893.jpg-p0000894.jpg.matches 265 179 32.45 164 8.38 38.11

ex1/chapel/p0000894.jpg-p0000895.jpg.matches 291 174 40.21 168 3.45 42.27
ex1/chapel/p0000895.jpg-p0000896.jpg.matches 321 251 21.81 228 9.16 28.97

ex1/chapel/p0000896.jpg-p0000897.jpg.matches 283 176 37.81 159 9.66 43.82
ex1/chapel/p0000897.jpg-p0000898.jpg.matches 296 254 14.19 189 25.59 36.15

ex1/chapel/p0000898.jpg-p0000899.jpg.matches 282 236 16.31 208 11.86 26.24
ex1/chapel/p0000899.jpg-p0000900.jpg.matches 293 162 44.71 149 8.02 49.15
ex1/climber/p0000361.jpg-p0000362.jpg.matches 243 132 45.68 73 4.70 9.96

ex1/climber/p0000362.jpg-p0000363.jpg.matches 229 131 42.79 74 4.51 6.69
ex1/climber/p0000363.jpg-p0000364.jpg.matches 242 139 42.56 94 3237 6116

ex1/climber/p0000364.jpg-p0000365.jpg.matches 247 128 48.18 88 31.5 64.7
ex1/climber/p0000365.jpg-p0000366.jpg.matches 225 113 49.78 79 30.0 64.8
ex1/climber/p0000366.jpg-p0000367.jpg.matches 239 101 57.74 63 37.62 73.64

ex1/climber/p0000367.jpg-p0000368.jpg.matches 230 115 50.00 79 31.30 65.65
ex1/climber/p0000368.jpg-p0000369.jpg.matches 245 119 51.43 89 25.21 63.67

ex1/climber/p0000369.jpg-p0000370.jpg.matches 238 143 39.92 85 40.56 64.29
ex1/climber/p0000370.jpg-p0000371.jpg.matches 251 107 57.37 76 28.97 69.72

ex1/climber/p0000371.jpg-p0000372.jpg.matches 240 126 47.50 87 30.95 63.75
ex1/climber/p0000372.jpg-p0000373.jpg.matches 243 126 48.15 88 30.16 63.79
ex1/equiproom/p0001989.jpg-p0001990.jpg.matches 106 103 2.83 20 80.58 81.13

ex1/equiproom/p0001990.jpg-p0001991.jpg.matches 209 182 12.92 107 41.21 48.80
ex1/equiproom/p0001991.jpg-p0001992.jpg.matches 207 168 18.84 119 29.17 42.51

ex1/equiproom/p0001992.jpg-p0001993.jpg.matches 284 254 10.56 205 19.29 27.82
ex1/equiproom/p0001993.jpg-p0001994.jpg.matches 259 231 10.81 157 32.03 39.38
ex1/equiproom/p0001994.jpg-p0001995.jpg.matches 279 207 25.81 183 11.59 34.41

 143

ex1/equiproom/p0001995.jpg-p0001996.jpg.matches 259 219 15.44 168 23.29 35.14
ex1/equiproom/p0001996.jpg-p0001997.jpg.matches 286 266 6.99 221 16.92 22.73

ex2/castle/kasteel101.ppm-kasteel102.ppm.matches 122 121 0.82 42 65.29 65.57
ex2/castle/kasteel102.ppm-kasteel103.ppm.matches 433 425 1.85 400 5.88 7.62

ex2/castle/kasteel103.ppm-kasteel104.ppm.matches 128 91 28.91 91 0.00 28.91
ex2/castle/kasteel104.ppm-kasteel105.ppm.matches 74 52 29.73 40 23.08 45.95

ex2/castle/kasteel105.ppm-kasteel106.ppm.matches 166 139 16.27 132 5.04 20.48
ex2/etlueshiba/etl101.pgm-etl102.pgm.matches 184 183 0.54 115 37.16 37.50
ex2/etlueshiba/etl102.pgm-etl103.pgm.matches 151 149 1.32 95 36.24 37.09

ex2/etlueshiba/etl103.pgm-etl104.pgm.matches 148 147 0.68 87 40.82 41.22
ex2/etlueshiba/etl104.pgm-etl105.pgm.matches 75 74 1.33 47 36.49 37.33

ex2/lab4thfloor/p0000748.jpg-p0000749.jpg.matches 302 241 20.20 143 40.66 52.65
ex2/lab4thfloor/p0000749.jpg-p0000750.jpg.matches 260 201 22.69 106 47.26 59.23
ex2/lab4thfloor/p0000750.jpg-p0000751.jpg.matches 305 269 11.80 171 36.43 43.93

ex2/lab4thfloor/p0000751.jpg-p0000752.jpg.matches 320 292 8.75 182 37.67 43.13
ex2/lab4thfloor/p0000752.jpg-p0000753.jpg.matches 262 184 29.77 101 45.11 61.45

ex2/lab4thfloor/p0000753.jpg-p0000754.jpg.matches 250 187 25.20 79 57.75 68.40
ex2/lab4thfloor/p0000754.jpg-p0000755.jpg.matches 314 282 10.19 139 50.71 55.73

ex2/lab4thfloor/p0000755.jpg-p0000756.jpg.matches 259 197 23.94 71 63.96 72.59
ex2/lab4thfloor/p0000756.jpg-p0000757.jpg.matches 254 223 12.20 94 57.85 62.99
ex2/lab4thfloor/p0000757.jpg-p0000758.jpg.matches 238 223 6.30 65 70.85 72.69

ex3/csroom/p0000827.jpg-p0000828.jpg.matches 210 172 18.10 85 50.58 59.52
ex3/csroom/p0000828.jpg-p0000829.jpg.matches 217 166 23.50 84 49.40 61.29

ex3/csroom/p0000829.jpg-p0000830.jpg.matches 145 131 9.66 34 74.05 76.55
ex3/csroom/p0000830.jpg-p0000831.jpg.matches 234 142 39.32 96 32.39 58.97
ex3/csroom/p0000831.jpg-p0000832.jpg.matches 264 225 14.77 120 46.67 54.55

ex3/csroom/p0000832.jpg-p0000833.jpg.matches 241 149 38.17 97 34.90 59.75
ex3/csroom/p0000833.jpg-p0000834.jpg.matches 286 201 29.72 145 27.86 49.30

ex3/csroom/p0000834.jpg-p0000835.jpg.matches 267 182 31.84 90 50.55 66.29
ex3/readingroom/p0000842.jpg-p0000843.jpg.matches 176 137 22.16 81 40.88 53.98

ex3/readingroom/p0000843.jpg-p0000844.jpg.matches 219 171 21.92 129 24.56 41.10
ex3/readingroom/p0000844.jpg-p0000845.jpg.matches 249 211 15.26 163 22.75 34.54
ex3/reidsculpt/p0001070.jpg-p0001071.jpg.matches 345 287 16.81 157 45.30 54.49

ex3/reidsculpt/p0001071.jpg-p0001072.jpg.matches 465 423 9.03 216 48.94 53.55
ex3/reidsculpt/p0001072.jpg-p0001073.jpg.matches 329 259 21.28 121 53.28 63.22

ex3/reidsculpt/p0001073.jpg-p0001074.jpg.matches 378 331 12.43 145 56.19 61.64
ex3/reidsculpt/p0001074.jpg-p0001075.jpg.matches 320 251 21.56 119 52.59 62.81
ex3/reidsculpt/p0001075.jpg-p0001076.jpg.matches 405 375 7.41 184 50.93 54.57

ex3/reidsculpt/p0001076.jpg-p0001077.jpg.matches 384 346 9.90 156 54.91 59.38
ex3/totem1/p0001062.jpg-p0001063.jpg.matches 358 269 24.86 233 13.38 34.92

ex3/totem1/p0001063.jpg-p0001064.jpg.matches 327 241 26.30 186 22.82 43.12
ex3/totem1/p0001064.jpg-p0001065.jpg.matches 334 256 23.35 218 14.84 34.73

ex3/totem1/p0001065.jpg-p0001066.jpg.matches 363 281 22.59 246 12.46 32.23
ex3/totem1/p0001066.jpg-p0001067.jpg.matches 372 297 20.16 252 15.15 32.26
ex3/totem1/p0001067.jpg-p0001068.jpg.matches 307 235 23.45 202 14.04 34.20

ex3/totem1/p0001068.jpg-p0001069.jpg.matches 341 266 21.99 215 19.17 36.95
ex4/workshop1/p0001669.jpg-p0001670.jpg.matches 202 122 39.60 87 28.69 56.93

ex4/workshop1/p0001670.jpg-p0001671.jpg.matches 217 140 35.48 97 30.71 55.30

 144

ex4/workshop1/p0001671.jpg-p0001672.jpg.matches 232 179 22.84 97 45.81 58.19
ex4/workshop1/p0001672.jpg-p0001673.jpg.matches 282 242 14.18 157 35.12 44.33

ex4/workshop1/p0001673.jpg-p0001674.jpg.matches 353 336 4.82 239 28.87 32.29
ex4/workshop1/p0001674.jpg-p0001675.jpg.matches 312 272 12.82 190 30.15 39.10

ex4/workshop1/p0001675.jpg-p0001676.jpg.matches 290 237 18.28 166 29.96 42.76
ex4/workshop2/p0001677.jpg-p0001678.jpg.matches 175 169 3.43 42 75.15 76.00

ex4/workshop2/p0001678.jpg-p0001679.jpg.matches 229 182 20.52 108 40.66 52.84
ex4/workshop2/p0001679.jpg-p0001680.jpg.matches 201 158 21.39 63 60.13 68.66
ex4/workshop2/p0001680.jpg-p0001681.jpg.matches 210 163 22.38 95 41.72 54.76

ex4/workshop2/p0001681.jpg-p0001682.jpg.matches 245 216 11.84 102 52.78 58.37
ex4/workshop2/p0001682.jpg-p0001683.jpg.matches 214 135 36.92 70 48.15 67.29

ex4/workshop2/p0001683.jpg-p0001684.jpg.matches 211 156 26.07 81 48.08 61.61
ex4/workshop2/p0001684.jpg-p0001685.jpg.matches 292 271 7.19 157 42.07 46.23
ex4/workshop3/p0001686.jpg-p0001687.jpg.matches 198 192 3.03 66 65.63 66.67

ex4/workshop3/p0001687.jpg-p0001688.jpg.matches 179 167 6.70 43 74.25 75.98
ex4/workshop3/p0001688.jpg-p0001689.jpg.matches 157 148 5.73 39 73.65 75.16

ex4/workshop3/p0001689.jpg-p0001690.jpg.matches 154 152 1.30 39 74.34 74.68
ex4/workshop3/p0001690.jpg-p0001691.jpg.matches 159 158 0.63 28 82.28 82.39

ex4/workshop3/p0001691.jpg-p0001692.jpg.matches 173 166 4.05 37 77.7 78.61
ex4/workshop3/p0001692.jpg-p0001693.jpg.matches 202 182 9.90 61 66.48 69.80
ex5/bsmnt/bsmnt100.pgm-bsmnt101.pgm.matches 281 280 0.36 241 13.93 14.23

ex5/bsmnt/bsmnt101.pgm-bsmnt102.pgm.matches 288 286 0.69 263 8.04 8.68
ex5/bsmnt/bsmnt102.pgm-bsmnt103.pgm.matches 291 289 0.69 236 18.34 18.90

ex5/bsmnt/bsmnt103.pgm-bsmnt104.pgm.matches 273 272 0.37 233 14.34 14.65
ex5/bsmnt/bsmnt104.pgm-bsmnt105.pgm.matches 277 276 0.36 240 13.04 13.36
ex5/bsmnt/bsmnt105.pgm-bsmnt106.pgm.matches 254 252 0.79 219 13.10 13.78

ex5/bsmnt/bsmnt106.pgm-bsmnt107.pgm.matches 279 275 1.43 242 12.00 13.26
ex5/bsmnt/bsmnt107.pgm-bsmnt108.pgm.matches 238 232 2.52 145 37.50 39.08

ex5/bsmnt/bsmnt108.pgm-bsmnt109.pgm.matches 229 226 1.31 148 34.51 35.37
ex5/bsmnt/bsmnt109.pgm-bsmnt110.pgm.matches 256 252 1.56 212 15.87 17.19

ex5/montrealstatue/p001756.jpg-p001757.jpg.matches 299 182 39.13 163 10.44 45.48
ex5/montrealstatue/p001757.jpg-p001758.jpg.matches 323 211 34.67 184 12.80 43.03
ex5/montrealstatue/p001758.jpg-p001759.jpg.matches 337 293 13.06 242 17.41 28.19

ex5/montrealstatue/p001759.jpg-p001760.jpg.matches 330 267 19.09 207 22.47 37.27
ex5/vehicle/image109.jpg-image110.jpg.matches 257 141 45.14 136 3.55 47.08

ex5/vehicle/image110.jpg-image111.jpg.matches 209 184 11.96 177 3.80 15.31
ex5/vehicle/image111.jpg-image112.jpg.matches 232 193 16.81 181 6.22 21.98
ex5/vehicle/image112.jpg-image113.jpg.matches 219 189 13.70 173 8.47 21.00

ex5/vehicle/image113.jpg-image114.jpg.matches 143 110 23.08 95 13.64 33.57
ex5/vehicle/image114.jpg-image115.jpg.matches 163 133 18.40 103 22.56 36.81

ex5/vehicle/image115.jpg-image116.jpg.matches 186 162 12.90 127 21.60 31.72
ex5/vehicle/image116.jpg-image117.jpg.matches 136 108 20.59 88 18.52 35.29

 145

Example and location

P
utative

T
riplets

T
ensor

Support
M

atches

%
 differ-
ence
ex1/bighouse/c-000101.pgm-c-000102.pgm-c-000103.pgm.matches 185 156 15.68
ex1/bighouse/c-000102.pgm-c-000103.pgm-c-000104.pgm.matches 209 196 6.22
ex1/bighouse/c-000103.pgm-c-000104.pgm-c-000105.pgm.matches 279 236 15.41
ex1/bighouse/c-000104.pgm-c-000105.pgm-c-000106.pgm.matches 269 236 12.27
ex1/bighouse/c-000105.pgm-c-000106.pgm-c-000107.pgm.matches 278 168 39.57
ex1/bighouse/c-000106.pgm-c-000107.pgm-c-000108.pgm.matches 311 243 21.86
ex1/bighouse/c-000107.pgm-c-000108.pgm-c-000109.pgm.matches 310 238 23.23
ex1/bighouse/c-000108.pgm-c-000109.pgm-c-000110.pgm.matches 378 353 6.61
ex1/bighouse/c-000109.pgm-c-000110.pgm-c-000111.pgm.matches 287 225 21.60
ex1/chapel/p0000888.jpg-p0000889.jpg-p0000890.jpg.matches 52 43 17.31
ex1/chapel/p0000889.jpg-p0000890.jpg-p0000891.jpg.matches 61 61 0.00
ex1/chapel/p0000890.jpg-p0000891.jpg-p0000892.jpg.matches 79 52 34.18
ex1/chapel/p0000891.jpg-p0000892.jpg-p0000893.jpg.matches 83 60 27.71
ex1/chapel/p0000892.jpg-p0000893.jpg-p0000894.jpg.matches 61 47 22.95
ex1/chapel/p0000893.jpg-p0000894.jpg-p0000895.jpg.matches 47 33 29.79
ex1/chapel/p0000894.jpg-p0000895.jpg-p0000896.jpg.matches 66 52 21.21
ex1/chapel/p0000895.jpg-p0000896.jpg-p0000897.jpg.matches 58 46 20.69
ex1/chapel/p0000896.jpg-p0000897.jpg-p0000898.jpg.matches 49 34 30.61
ex1/chapel/p0000897.jpg-p0000898.jpg-p0000899.jpg.matches 67 53 20.90
ex1/chapel/p0000898.jpg-p0000899.jpg-p0000900.jpg.matches 44 35 20.45
ex1/climber/p0000361.jpg-p0000362.jpg-p0000363.jpg.matches 21 15 28.57
ex1/climber/p0000362.jpg-p0000363.jpg-p0000364.jpg.matches 26 25 3.85
ex1/climber/p0000363.jpg-p0000364.jpg-p0000365.jpg.matches 25 20 20.00
ex1/climber/p0000364.jpg-p0000365.jpg-p0000366.jpg.matches 20 20 0.00
ex1/climber/p0000365.jpg-p0000366.jpg-p0000367.jpg.matches 18 12 33.33
ex1/climber/p0000366.jpg-p0000367.jpg-p0000368.jpg.matches 20 15 25.00
ex1/climber/p0000367.jpg-p0000368.jpg-p0000369.jpg.matches 23 15 34.78
ex1/climber/p0000368.jpg-p0000369.jpg-p0000370.jpg.matches 20 17 15.00
ex1/climber/p0000369.jpg-p0000370.jpg-p0000371.jpg.matches 21 22 -4.7%
ex1/climber/p0000370.jpg-p0000371.jpg-p0000372.jpg.matches 22 21 4.55
ex1/climber/p0000371.jpg-p0000372.jpg-p0000373.jpg.matches 31 19 38.71
ex1/equiproom/p0001989.jpg-p0001990.jpg-p0001991.jpg.matches 3 2 33.33
ex1/equiproom/p0001990.jpg-p0001991.jpg-p0001992.jpg.matches 18 12 33.33
ex1/equiproom/p0001991.jpg-p0001992.jpg-p0001993.jpg.matches 48 24 50.00
ex1/equiproom/p0001992.jpg-p0001993.jpg-p0001994.jpg.matches 55 33 40.00
ex1/equiproom/p0001993.jpg-p0001994.jpg-p0001995.jpg.matches 58 34 41.38
ex1/equiproom/p0001994.jpg-p0001995.jpg-p0001996.jpg.matches 57 36 36.84
ex1/equiproom/p0001995.jpg-p0001996.jpg-p0001997.jpg.matches 68 38 44.12
ex2/castle/kasteel101.ppm-kasteel102.ppm-kasteel103.ppm.matches 27 19 29.63
ex2/castle/kasteel102.ppm-kasteel103.ppm-kasteel104.ppm.matches 59 47 20.34
ex2/castle/kasteel103.ppm-kasteel104.ppm-kasteel105.ppm.matches 13 12 7.69
ex2/castle/kasteel104.ppm-kasteel105.ppm-kasteel106.ppm.matches 23 22 4.35
ex2/etlueshiba/etl101.pgm-etl102.pgm-etl103.pgm.matches 10 10 0.00
ex2/etlueshiba/etl102.pgm-etl103.pgm-etl104.pgm.matches 17 17 0.00
ex2/etlueshiba/etl103.pgm-etl104.pgm-etl105.pgm.matches 9 9 0.00
ex2/lab4thfloor/p0000748.jpg-p0000749.jpg-p0000750.jpg.matches 38 24 36.84

 146

ex2/lab4thfloor/p0000749.jpg-p0000750.jpg-p0000751.jpg.matches 36 36 0.00
ex2/lab4thfloor/p0000750.jpg-p0000751.jpg-p0000752.jpg.matches 72 35 51.39
ex2/lab4thfloor/p0000751.jpg-p0000752.jpg-p0000753.jpg.matches 47 25 46.81
ex2/lab4thfloor/p0000752.jpg-p0000753.jpg-p0000754.jpg.matches 30 25 16.67
ex2/lab4thfloor/p0000753.jpg-p0000754.jpg-p0000755.jpg.matches 23 23 0.00
ex2/lab4thfloor/p0000754.jpg-p0000755.jpg-p0000756.jpg.matches 20 10 50.00
ex2/lab4thfloor/p0000755.jpg-p0000756.jpg-p0000757.jpg.matches 12 12 0.00
ex2/lab4thfloor/p0000756.jpg-p0000757.jpg-p0000758.jpg.matches 13 13 0.00
ex3/csroom/p0000827.jpg-p0000828.jpg-p0000829.jpg.matches 17 17 0.00
ex3/csroom/p0000828.jpg-p0000829.jpg-p0000830.jpg.matches 7 7 0.00
ex3/csroom/p0000829.jpg-p0000830.jpg-p0000831.jpg.matches 10 10 0.00
ex3/csroom/p0000830.jpg-p0000831.jpg-p0000832.jpg.matches 32 32 0.00
ex3/csroom/p0000831.jpg-p0000832.jpg-p0000833.jpg.matches 27 15 44.44
ex3/csroom/p0000832.jpg-p0000833.jpg-p0000834.jpg.matches 40 24 40.00
ex3/csroom/p0000833.jpg-p0000834.jpg-p0000835.jpg.matches 34 34 0.00
ex3/readingroom/p0000842.jpg-p0000843.jpg-p0000844.jpg.matches 23 22 4.35
ex3/readingroom/p0000843.jpg-p0000844.jpg-p0000845.jpg.matches 65 48 26.15
ex3/reidsculpt/p0001070.jpg-p0001071.jpg-p0001072.jpg.matches 79 38 51.90
ex3/reidsculpt/p0001071.jpg-p0001072.jpg-p0001073.jpg.matches 48 28 41.67
ex3/reidsculpt/p0001072.jpg-p0001073.jpg-p0001074.jpg.matches 47 27 42.55
ex3/reidsculpt/p0001073.jpg-p0001074.jpg-p0001075.jpg.matches 50 31 38.00
ex3/reidsculpt/p0001074.jpg-p0001075.jpg-p0001076.jpg.matches 49 24 51.02
ex3/reidsculpt/p0001075.jpg-p0001076.jpg-p0001077.jpg.matches 52 24 53.85
ex3/totem1/p0001062.jpg-p0001063.jpg-p0001064.jpg.matches 96 64 33.33
ex3/totem1/p0001063.jpg-p0001064.jpg-p0001065.jpg.matches 89 57 35.96
ex3/totem1/p0001064.jpg-p0001065.jpg-p0001066.jpg.matches 120 79 34.17
ex3/totem1/p0001065.jpg-p0001066.jpg-p0001067.jpg.matches 132 78 40.91
ex3/totem1/p0001066.jpg-p0001067.jpg-p0001068.jpg.matches 98 59 39.80
ex3/totem1/p0001067.jpg-p0001068.jpg-p0001069.jpg.matches 86 86 0.00
ex4/workshop1/p0001669.jpg-p0001670.jpg-p0001671.jpg.matches 21 16 23.81
ex4/workshop1/p0001670.jpg-p0001671.jpg-p0001672.jpg.matches 21 14 33.33
ex4/workshop1/p0001671.jpg-p0001672.jpg-p0001673.jpg.matches 29 29 0.00
ex4/workshop1/p0001672.jpg-p0001673.jpg-p0001674.jpg.matches 65 30 53.85
ex4/workshop1/p0001673.jpg-p0001674.jpg-p0001675.jpg.matches 86 86 0.00
ex4/workshop1/p0001674.jpg-p0001675.jpg-p0001676.jpg.matches 67 38 43.28
ex4/workshop2/p0001677.jpg-p0001678.jpg-p0001679.jpg.matches 18 12 33.33
ex4/workshop2/p0001678.jpg-p0001679.jpg-p0001680.jpg.matches 20 15 25.00
ex4/workshop2/p0001679.jpg-p0001680.jpg-p0001681.jpg.matches 14 11 21.43
ex4/workshop2/p0001680.jpg-p0001681.jpg-p0001682.jpg.matches 11 8 27.27
ex4/workshop2/p0001681.jpg-p0001682.jpg-p0001683.jpg.matches 20 16 20.00
ex4/workshop2/p0001682.jpg-p0001683.jpg-p0001684.jpg.matches 11 9 18.18
ex4/workshop2/p0001683.jpg-p0001684.jpg-p0001685.jpg.matches 34 25 26.47
ex4/workshop3/p0001686.jpg-p0001687.jpg-p0001688.jpg.matches 14 14 0.00
ex4/workshop3/p0001687.jpg-p0001688.jpg-p0001689.jpg.matches 5 5 0.00
ex4/workshop3/p0001688.jpg-p0001689.jpg-p0001690.jpg.matches 6 6 0.00
ex4/workshop3/p0001689.jpg-p0001690.jpg-p0001691.jpg.matches 4 2 50.00
ex4/workshop3/p0001690.jpg-p0001691.jpg-p0001692.jpg.matches 1 1 0.00
ex4/workshop3/p0001691.jpg-p0001692.jpg-p0001693.jpg.matches 11 8 27.27
ex5/bsmnt/bsmnt100.pgm-bsmnt101.pgm-bsmnt102.pgm.matches 198 167 15.66
ex5/bsmnt/bsmnt101.pgm-bsmnt102.pgm-bsmnt103.pgm.matches 184 134 27.17

 147

ex5/bsmnt/bsmnt102.pgm-bsmnt103.pgm-bsmnt104.pgm.matches 171 140 18.13
ex5/bsmnt/bsmnt103.pgm-bsmnt104.pgm-bsmnt105.pgm.matches 180 135 25.00
ex5/bsmnt/bsmnt104.pgm-bsmnt105.pgm-bsmnt106.pgm.matches 170 144 15.29
ex5/bsmnt/bsmnt105.pgm-bsmnt106.pgm-bsmnt107.pgm.matches 168 132 21.43
ex5/bsmnt/bsmnt106.pgm-bsmnt107.pgm-bsmnt108.pgm.matches 114 66 42.11
ex5/bsmnt/bsmnt107.pgm-bsmnt108.pgm-bsmnt109.pgm.matches 79 46 41.77
ex5/bsmnt/bsmnt108.pgm-bsmnt109.pgm-bsmnt110.pgm.matches 103 54 47.57
ex5/montrealstatue/p001756.jpg-p001757.jpg-p001758.jpg.matches 90 63 30.00
ex5/montrealstatue/p001757.jpg-p001758.jpg-p001759.jpg.matches 116 84 27.59
ex5/montrealstatue/p001758.jpg-p001759.jpg-p001760.jpg.matches 117 72 38.46
ex5/vehicle/image109.jpg-image110.jpg-image111.jpg.matches 63 45 28.57
ex5/vehicle/image110.jpg-image111.jpg-image112.jpg.matches 96 72 25.00
ex5/vehicle/image111.jpg-image112.jpg-image113.jpg.matches 82 63 23.17
ex5/vehicle/image112.jpg-image113.jpg-image114.jpg.matches 51 41 19.61
ex5/vehicle/image113.jpg-image114.jpg-image115.jpg.matches 37 26 29.73
ex5/vehicle/image114.jpg-image115.jpg-image116.jpg.matches 57 39 31.58
ex5/vehicle/image115.jpg-image116.jpg-image117.jpg.matches 41 27 34.15

 148

Appendix B

B The Portable Image Library (PIL)

One of the fallouts from this thesis was the creation of a library to handle a variety

of different image and video formats. The Portable Image Library (PIL) provides a con-

sistent interface and allows the accessing and manipulation of still image and video for-

mats for the three most popular computing platforms today: SUN-Solaris, Linux and Mi-

crosoft Windows. PIL is a C API (Application Programming Interface) that makes use of

its own canonical image format, and allows a programmer to load various image formats

such as GIF, JPG, PNG, TIFF, BMP, PGM, PPM, DICOM and PCT. Furthermore, the

library supports the frame-by-frame loading of video formats such as MPEG across all

platforms and AVI, WMV formats on Windows platforms.

Because PIL allows students to be able to open image and video data of a variety

of different formats with only a few lines of C code, students can immediately begin im-

plementing image and video processing algorithms without consideration of the com-

plexities that surround image file formats and byte ordering on different computer proc-

essors. As such PIL is an ideal platform to base computer vision and image processing

courses on. PIL is freely available to all.

 149

Appendix C

C The Projective Vision Toolkit (PVT)

Based on the PIL Libraries, the Projective Vision Toolkit (PVT) is a series of utilities

available in binary form that allow you to take an image sequence and compute the fun-

damental matrix and trifocal tensor. The current version only goes as far as computing

these two quantities, along with the correspondences that support them. It does so com-

pletely automatically, using only natural features. The most important assumption is that

the maximum motion of a single feature is limited (usually to 1/3 of the image size). We

are able to process images that are more widely separated than those from a video cam-

era, but can not handle ultra wide separations. If one wishes to perform a reconstruction

of the camera positions it is necessary to autocalibrate (or to a-priori have the calibration)

which is also provided as part of the PVT. In each of our current examples (outlined in

Appendix A) we have a VRML file (.wrl extension) which shows the reconstruction of

the camera positions along with the features that were detected. In this case the recon-

struction was obtained by sending the correspondences and calibration information to the

Photomodeler package.

The PVT comes with a number of utilities that are also useful in the context of research

and/or teaching. Geometry and sequence viewers help to solidify the ideas behind epipo-

lar geometry by allowing visual examination of tensor and epipolar transfer.

 150

 Bibliography

“If I have seen farther than others, it is because I was standing on the shoulders
of giants.” - Isaac Newton

[1] Anthony Whitehead. Biometrics and Automated Authentication: A presentation
of a Minimal Space Template Authentication Algorithm and in Improved
Classification Methodology. Honours Project, 1995

[2] Kuhl, F., “Classification and Recognition of Hand-Printed Characters”, IEE Na-
tional Convention, pp. 75-93, March 1963.

[3] R. Bajcsy, “Computer recognition of roads from satellite pictures”.IEEE Trans-
actions on System, Man and Cybernetics, 6(9), 1976

[4] S. Peleg, B. Rousso, A. Rav-Acha, and A. Zomet, “Mosaicing on Adaptive
Manifolds”, IEEE Transactions. On PAMI, pp. 1144-1154, October 2000.

[5] C. Thorpe and T. Kanade, “Vision and Navigation for the Carnegie Mellon Nav-
lab”, Proceedings of the 1985 DARPA Image Understanding Workshop, pp. 143-
52, 1985.

[6] R. Sukthankar, “RACCOON: A Real-time Autonomous Car Chaser Operating
Optimally at Night,” Proceedings of the IEEE IV’93, 1993.

[7] H.C. Longuet-Higgens. “A computer algorithm for reconstructing a scene from
two projections”. Nature, vol.293:133-135, 1981.

[8] O.D. Faugeras. What can be seen in three dimensions with an uncalibrated ste-
reo rig?. Proc. 2nd European Conference on Computer Vision,1992, pp. 563-578

[9] R. I. Hartley. Estimation of relative camera positions for uncalibrated cameras.
Proc. 2nd European Conference on Computer Vision,1992, pp. 579-587

[10] Z. Zhang. “Determining the Epipolar Geometry and Its Uncertainty: A Review”
Technical Report RR-2927, INRIA, 1996.

[11] P.H.S. Torr and D.W. Murray, “The Development and Comparison of Robust
Methods for Estimating the Fundamental Matrix”, International Journal of
Computer Vision, vol 24 pp 271-300, 1997

[12] A. Shashua and M. Werman. On the trilinear tensor of three perspective views
and its underlying geometry. International Conference on Computer Vision,
1995

[13] R. Jain, R. Kasturi, and B. Schunck. Machine Vision. McGraw-Hill and MIT
Press, second edition. 1995.

[14] G. Xu, and Z. Zhang. Epipolar Geometry in Stereo, Motion and Object Recogni-
tion. Kluwer Academic Publishers. 1996.

[15] O.D. Faugeras. Three Dimensional Computer Vision – A Geometric Viewpoint.
MIT Press. 1993

[16] J. Stolfi. Oriented Projective Geometry. Academic Press, San Diego, CA / Lon-
don, UK, 1991.

[17] Marc Polleyfeys, Self Calibration and Metric 3D Reconstruction from Uncali-
brated Image Sequences. Ph.D Thesis, Katholieke Universiteit Leuven. 1999.

[18] R. I. Hartley. Lines and points in three views – an integrated approach. In Pro-
ceedings of the ARPA IU Workshop. DARPA, 1994.

 151

[19] Andrew Zisserman. Geometric Framework for Vision I: Single View and Two-
View Geometry. 1998

[20] P.H.S. Torr. Motion Segmentation and Outlier Detection. Ph. D. Thesis, Uni-
versity of Oxford, 1995.

[21] P. Rousseeuw and A. Leroy. Robust Regression and Outlier Detection. John
Wiley & Sons, New York. 1987

[22] A. Shashua and M. Werman. On the trilinear tensor of three perspective views
and its underlying geometry. International Conference on Computer Vision,
1995.

[23] P.H.S. Torr and A. Zisserman. Robust Parameterization and Computation of the
Trifocal Tensor. Proc. British Machine Vision Conference. Pp 655-664. 1996.

[24] O. Faugeras and T. Papadopoulo. A nonlinear method for estimating the Pro-
jecttive geometry of 3 views. Sixth International Conference on Computer Vi-
sion, 1998 pp 477-484.

[25] M. E. Spetsakis and J. Aloimonos. Structure from Motion Using Line Corre-
spondences. The International Journal of Computer Vision, 4:171–183, 1990.

[26] M. E. Spetsakis and .J. Aloimonos. A unified theory of structure from motion.
Proc. DARPA IU Workshop, pages 271–283, 1990.

[27] B. Triggs. The geometry of projective reconstruction: Matching constraints and
the joint image. In Proc ICCV, 1995

[28] R. I. Hartley. Computation of the Quadrifocal Tensor. Computer Vision,
ECCV'98, Springer Verlag 1998 pp. 20-35.

[29] O.D. Faugeras and B. Mourrain. On the geometry and algebra of the point and
line correspondences between N images. Proc. 5th International Conference on
Computer Vision (ICCV 95), Cambridge, MA, IEEE Computer Society Press,
Los Alamitos, CA, 1995, pp.951-956

[30] Theo Moons, A Guided Tour Through Multiview Relations. In SMILE. 1998,
pp 304-346

[31] A. Shashua, “Algebraic functions for recognition," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 17, no. 8, pp. 779-789, 1995.

[32] R. Hartley, “A linear method for reconstruction from lines and points," in Pro-
ceedings of the International Conference on Computer Vision, pp. 882{887,
Cambridge, Mass., June 1995.

[33] R. Koch, M. Pollefeys, and L. VanGool, “Multi view-point stereo from uncali-
brated video sequences," in ECCV'98, pp. 55-71, 1998.

[34] M. Pollefeys, R. Koch, M. Vergauwen, and L. VanGool, \Automatic generation
of 3d models from photographs," in Proceedings Virtual Systems and MultiMe-
dia, 1998.

[35] A. Fitzgibbon and A. Zisserman, “Automatic camera recovery for closed or open
image sequences,” 5th European Conference on Computer Vision, (Freiburg,
Germany), pp. 311-326, Springer Verlag, June 1998.

[36] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong, A robust technique for
matching two uncalibrated images through the recovery of the unkown epipolar
geometry," Artificial Intelligence Journal, vol. 78, pp. 87{119, October 1995.

[37] P. J. Rousseeuw, “Least median of squares regression,” Journal of American

 152

Statistical Association, vol. 79, pp. 871-880, Dec. 1984.

[38] R. C. Bolles and M. A. Fischler, “A ransac-based approach to model fitting and
its application to finding cylinders in range data,” in Seventh International Joint
Conference on Artificial Intelligence, (Vancouver, British Colombia, Canada),
pp. 637-643, 1981.

[39] H. Sawhney, Y. Guo, J. Asmuth, and R. Kumar, “Multi-view 3d estimation and
applications to match move,” in 1999 IEEE Workshop on MuliView Modelling
and Analysis of Visual Scenes, pp. 21-28, 1999.

[40] P. McLaughlin, “Gauge invariance in projective 3d reconstruction,” in IEEE
Workshop on Multi-View Modelling and Analysis of Visual Scenes, pp. 37-44,
IEEE Computer Society, 1999.

[41] Photomodeler by EOS Systems Inc. http:/www.photomodeler.com/.
[42] P. Besl, “Active, optical range imaging sensors," Machine Vision and Applica-

tions, vol. 1, no. 1, pp. 127-152, 1988.
[43] S. Smith and J. Brady, “Susan - a new approach to low level image processing,"

International Journal of Computer Vision, pp. 45-78, May 1997.
[44] C. Harris and M. Stephens, “A combined corner and edge detector," in Proceed-

ings of the 4th lvey Vision Conference, pp. 147{151, 1988.
[45] R. Hartley, “In defense of the 8 point algorithm,” in IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 19, 1997.
[46] P. Torr and A. Zisserman, “Robust parameterization and computation of the tri-

focal tensor,” Image and Vision Computing, vol. 15, no. 591-605, 1997.
[47] P. Jasiobedski, “Fusing and guiding range measurements with colour video im-

ages,” in Proceedinsg International Conference on Recent Advances in 3-D
Digital Imaging and Modelling, (Ottawa, Ontario), pp. 339-347, IEEE Computer
Society Press, 1997.

[48] Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique
with an Application to Stereo Vision. International Joint Conference on Artifi-
cial Intelligence, pages 674-679, 1981.

[49] Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features.
Carnegie Mellon University Technical Report CMU-CS-91-132, 1991.

[50] Jianbo Shi and Carlo Tomasi. Good Features to Track. IEEE Conference on
Computer Vision and Pattern Recognition, pages 593-600, 1994.

[51] Stan Birchfield. Derivation of Kanade-Lucas-Tomasi Tracking Equation. Un-
published, May 1996.

[52] Étienne Vincent and Robert Laganière, Matching Feature Points in Stereo Pairs:
A Comparative Study of Some Matching Strategies, in Machine Graphics & Vi-
sion , vol. 10, no. 3, pp. 237-259, 2001

[53] R. Klette, K. Schluns, and A. Koschan, Computer Vision: three-dimensional
data from images. Springer, 1996.

[54] A. Hampapur, R. Jain, and T. E. Weymouth. Production Model Based Digital
Video Segmentation. Multimedia Tools and Applications, Vol.1, pp. 9-45, 1995.

[55] R. Lienhart. Reliable Transition Detection In Videos: A Survey and Practitio-
ner's Guide. International Journal of Image and Graphics (IJIG), Vol. 1, No. 3,

 153

pp. 469-486, 2001.
[56] U. Gargi, R. Kasturi, S. H. Strayer. Performance Characterization of Video-

Shot-Change Detection Methods. IEEE Transaction on Circuits and Systems for
Video Technology,Vol.10,No.1,Feb. 2000.

[57] G. Lupatini, C. Saraceno, and R. Leonardi. Scene Break Detection: A Compari-
son. Research Issues in Data Engineering, Workshop on Continuous Media Da-
tabases and Applications, pp. 34-41.1998.

[58] B. Shahraray. Scene Change Detection and Content-Based Sampling of Video
Sequences. SPIE Digital Video Compression, Algorithm and Technologies, Vol.
2419, pp. 2-13, 1995

[59] B.-L.Yeo and B. Liu. Rapid Scene Analysis on Compressed Video. IEEE Trans-
actions on Circuit and Systems for Video Technology,Vol.5,No.6,Dec.1993.

[60] M. M. Yeung and B.-L. Yeo. Video Visualization for Compact Presentation and
Fast Browsing of Pictorial Content. IEEE Transactions on Circuits and Systems
for Video Technology,Vol.7, No. 5, pp. 771-785, Oct. 1997.

[61] J. Mateer, J. Robinson, Semi-Automated Logging for Professional Media Appli-
cations. Video, Vision and Graphics (VVG) 2003, Bath, UK, July, 2003.

[62] A Whitehead. Fast Feature Based Video Segmentation and Annotation. Proc. 7th
International Symposium on Signal Processing and its Applications (ISSPA),
Paris, 2003.

[63] S. Pfeiffer, R.Lienhart, G. Kühne, W. Effelsberg. The MoCA Project - Movie
Content Analysis Research at the University of Mannheim. Informatik '98, pp.
329-338, 1998.

[64] J. Lee and B. Dickinson, “Multiresolution video indexing for subband coded
video databases”, in Proceedings of IS&T/SPIE, Conference on Storage and Re-
trieval for Image and Video Databases,San Jose, CA, 1994.

[65] R. Lienhart. Dynamic Video Summarization of Home Video. SPIE Storage and
Retrieval forMedia Dat bases 2000, Vol. 3972, pp. 378-389, Jan. 2000.

[66] R. Lienhart, S. Pfeiffer, and W. Effelsberg. Video Abstracting. Communications
of the ACM, Vol. 40, No. 12, pp. 55-62, Dec. 1997.

[67] A. Seyler, “Probability distribution of television frame difference”, Proc. Insti-
tute of Radio Electronic Engineers of Australia 26(11), pp 355-366, 1965

[68] A. Nagasaka and Y. Tanaka, “Automatic video indexing and full-video search
for object appearances”, in Visual Database Systems II, pp 113-127, 1992

[69] H. Zhang, A. Kankanhalli, S. Smoliar, “Automatic partitioning of full-motion
video”, ACM/Springer Multimedia Systems. 1(1), pp 10-28,1993

[70] R Zabih, J. Miller, and K. Mai, "A Feature-Based Algorithm for Detecting and
Classifying Scene Breaks", Proc. ACM Multimedia, pp. 189-200, 1995

[71] R Zabih, J. Miller, and K. Mai,. “A Feature Based Algorithm for detecting and
Classifying Production Effects”, Multimedia Systems, Vol 7, p 119-128, 1999.

[72] J. Canny A Computational Approach to Edge Detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol 8, No. 6, Nov 1986.

[73] A Smeaton et al., “An Evaluation of Alternative Techniques for Automatic De-
tection of Shot Boundaries in Digital Video” in Irish Machine Vision and Image
Processing Conference, 1999

 154

[74] W. Hardle and D. Scott. “Smoothing in by weighted averaging using rounded
points”, Computational Statistics Vol. 7: 97-128, 1992.

[75] R. Hartley, “Kruppa's equations derived from the fundamental matrix," IEEE
Trans. On Pattern Analysis and Machine Intelligence, vol. 19, pp. 133-135, Feb-
ruary 1997.

[76] Q.-T. Luong and O.D.Faugeras, “Self-calibration of a moving camera from point
correspondences and fundamental matrices," International Journal of Computer
Vision, vol. 22, no. 3, pp. 261-289, 1997.

[77] L. Lourakis and R. Deriche, “Camera self-calibration using the svd of the fun-
damental matrix," Tech. Rep. 3748, INRIA, Aug. 1999.

[78] P. Mendonca and R. Cipolla, “A simple technique for self-calibration," in Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition,
(Fort Collins, Colorado), pp. 112-116, June 1999.

[79] C. Zeller and O. Faugeras, “Camera self-calibration from video sequences: the
kruppa equations revisited,” Tech. Rep. 2793, INRIA, Feb. 1996.

[80] M. Pollefeys and L. Van Gool, “Stratified Self-Calibration with the Modulus
Constraint”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol 21, No.8, pp.707-724, 1999.

[81] M. Pollefeys, R. Koch, and L. V. Gool, “Self-calibration and metric reconstruc-
tion in spite of varying and unknown intrinsic camera parameters," International
Journal of Computer Vision, vol. 32, no. 1, pp. 7-25, 1999.

[82] W. Triggs. Autocalibration from planar scenes. In Proc. ECCV, 1998.
[83] P. Sturm and S. Maybank. On plane-based camera calibration: A general algo-

rithm, singularities, applications. In IEEE Conf. CVPR 1999.
[84] B. Triggs. Autocalibration from Planar Scenes. ECCV, pp. 89-105, 1998.
[85] Z. Zhang, “A flexible new technique for camera calibration”. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.
[86] O. Faugeras and Q.T. Luong, The Geometry of Multiple Images. The MIT Press,

2001.
[87] P. Sturm, A case against kruppa’s equations for camera self-calibration,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 1199-
1204, Oct. 2000

[88] S. Bougnoux, “From projective to Euclidean space under any practical situation,
a criticism of self-calibration,” in Proc. 6th Int. Conf. on Computer Vision,
(Bombay, India), pp. 790-796, 1998.

[89] A. Morgan, Solving polynomial systems using continuation for science and en-
gineering. Prentice Hall, Englewoord Clifis, 1987

[90] A. Fusiello, Uncalibrated Euclidean reconstruction: a review,” Image and Vision
Computing, vol. 18, pp. 555-563, 2000.

[91] W. H. Press and B. P. Flannery, Numerical recipes in C. Cambridge University
press, 1988.

[92] M. Maza and D. Yuret, “Dynamic hill climbing,” AI Expert, pp. 26{31, 1994.
[93] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cam-

bridge University Press, 2000.
[94] Nicholson, Linear Algebra with Applications (3rd. ed). PWS Publishing Com-

 155

pany, 1995.
[95] J. Holland, “Adaptation in Natural and Artificial Systems”, University of

Michigan Press, 1995
[96] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive sys-

tems,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, 1975.
[97] D. Laurendeau, G. Roth, and L. Borgeat, “Optimization algorithms for range

image registration” Vision Interface 96, pages 141-151, Toronto, Canada.
[98] P. Torr, A.Zisserman, S Maybank, “Robust detection of Degenerate Configura-

tions for the fundamental matrix” In Proc. 5th Int’l Conf. on Computer Vision,
Boston, pages 1037—1042, 1995

[99] G. Roth and A. Whitehead, “Using projective vision to find camera positions in
an image sequence,” in VI 2000, Montreal Canada, pp. 87-94f, May 2000.

[100] A. Whitehead and G. Roth, “The Projective Vision Toolkit”, in Proceedings
Modeling and Simulation, (Pittsburgh, Pennsylvania), May 2000.

[101] T. Ueshiba and F. Tomita, “A factorization method for projective and Euclidean
reconstruction," in ECCV'98, 5th European Conference on Computer Vision,
(Freiburg, Germany), pp. 290-310, Springer Verlag, June 1998.

[102] ISPRS Working Group 2, Scene Modeling and VR.
http://www.vit.iit.nrc.ca/elhakim/WGV2-data.html.

[103] P.Gurdjos and P.Sturm. “Methods and Geometry for Plane-Based Self-
Calibration.” In Proc. of the International Conference on Computer Vision and
Pattern Recognition, 2003

[104] H. Huang, C. Kao, Y. Lin, Y. Hung, Yi-Ping, “Disparity-based view interpola-
tion for multiple-perspective stereoscopic displays”, Proceedings of SPIE Vol.
3957, Stereoscopic Displays and Virtual Reality Systems VII, p. 102-113, 2000

[105] Lily Lee, Raquel Romano, Gideon Stein, “Monitoring Activities from Multiple
Video Streams: Establishing a Common Coordinate Frame”, IEEE Transactions
on Pattern Recognition and Machine Intelligence, Special Section on Video
Surveillance and Monitoring, 22(8), 2000

[106] J. Kang, I. Cohen, G. Medioni. “Continuous multi-views tracking using tensor
voting”, Proceedings of Workshop on Motion and Video Computing, 2002. pp
181- 186

[107] Y. Caspi and M. Irani. “Alignment of non-overlapping sequences”. Proceedings
of International Conference on Computer Vision, Vancouver, BC, pp 76-83,
2001.

[108] S. Kuthirumal, C.V. Jawahar, and P.J. Narayanan. “Video frame alignment in
multiple views”. Proceedings of International Conference on Image Processing,
Rochester, NY, 2002.

[109] C. Rao, A.Gritai, M. Shah. “View-invariant Alignment and Matching of Video
Sequences”, In Proceedings of International Conference on Computer Vision, pp
939-945, 2003.

[110] P. Tresadern and I. Reid. “Synchronizing Image Sequences of Non-Rigid Ob-
jects”, In Proceedings of British Machine Vision Conference, 2003

[111] David G. Lowe, “Distinctive image features from scale-invariant keypoints”,
International Journal of Computer Vision, 2004. to appear

 156

Index

A
aspect ratio, x, 21, 90, 93, 97, 101, 106, 107, 108, 110
autocalibrate, 20, 42, 90, 94, 96, 104, 106, 108, 109,

149
autocalibrated, 106, 107
autocalibrating, 106
Autocalibration, 90

B
blocksworld, 2
boundary detection, 5, 62

C
calibrated, 3, 9, 25, 27, 39, 42, 50, 94, 115
calibration, iii, 4, 7, 9, 20, 21, 27, 28, 38, 39, 40, 42,

43, 54, 57, 60, 61, 90, 91, 92, 93, 94, 97, 99, 101,
103, 104, 105, 110, 140, 149, 154

camera sequence, 121, 122, 123
candidate set, 73, 78, 84, 85, 89, 128, 129, 130, 131,

134
Class A, 91, 93, 105, 110
Class B, 90, 91, 92, 93, 104, 105, 110
Class C, 90, 91, 92
collineation, 12
computational video, ii, iii, 3, 4, 5, 6, 8, 9, 139
conic, 14, 16, 19, 93, 95, 96
correspondence, ii, iii, 4, 5, 25, 29, 32, 33, 39, 41, 43,

45, 50, 51, 54, 57, 60, 61, 65, 90, 115, 126, 127
cross camera subset, 113, 121
cut, viii, 5, 46, 47, 62, 63, 64, 65, 66, 70, 71, 72, 73,

74, 78, 80, 81, 82, 83, 85, 86, 87, 88, 89
cut detection, 5, 47, 62, 63, 65, 80, 82, 83, 87, 89

D
density, 67, 73, 74, 77, 78, 79, 83
disparity, viii, 5, 25, 26, 39, 49, 50, 51, 52, 58, 60, 61,

70, 137
dissolve, 62, 88
distribution, 29, 64, 82, 87, 100, 153
dynamic-CSS, 122

E
epipolar geometry, 25, 26, 27, 29, 30, 31, 51, 90, 95,

115, 149, 151
essential matrix, x, 9, 14, 27, 28, 51, 93, 94
exact synchronization, 114, 115, 116, 117, 132
extrinsic, 7, 20, 21, 22, 115

F
F1, 78, 80, 81, 82, 83, 84, 85, 86, 89
fade, 88
feature tracking, viii, 5, 34, 45, 62, 67, 68, 69, 72, 83,

85, 87, 89, 124, 125, 138, 140
focal length, x, 11, 58, 90, 93, 101, 105, 106, 107, 108,

109, 110, 111, 112, 141
frame rate, 4, 35, 43, 44, 55, 114, 115, 116, 117, 118,

119, 122, 125, 126, 130, 131, 132, 133, 138
frequency, 74, 116
full frame synchronization, 114, 115, 116, 117, 118,

126, 132, 133, 134, 136
fundamental matrix, v, x, 4, 6, 9, 28, 29, 30, 31, 33,

38, 41, 42, 51, 52, 53, 60, 61, 90, 91, 92, 93, 94,
95, 96, 97, 102, 103, 104, 106, 110, 111, 149, 154,
155

G
gradient, 34, 39, 44, 48, 50, 51, 52, 58, 60, 61, 68, 87,

93, 97, 100, 101, 102, 107, 124

H
homographies, 23
homography, x, 23, 90, 114

I
inflection point, 116, 123, 126, 127, 130, 131, 133,

134, 137
intrinsic, iii, x, 6, 16, 20, 21, 28, 90, 94, 102, 104, 105,

106, 108, 110, 112, 114, 141, 154
invariant, 15, 17, 19, 91, 108, 140, 155

M
minimum spanning tree, 70, 71, 72

O
optical center, x

P
PDF, viii, 78, 79
period, 116, 119, 137
phase shift, 120
photogrammetry, 4, 5, 57, 61, 113
planar, 2, 25, 52, 90, 114, 115, 140, 154
precision, 30, 78, 80, 81, 82, 84, 89, 115
primary synchronization period, 118

 2

primary synchronization point, 116, 117, 118, 121,
122, 130

principle point, 104
probability density function, 73, 74, 75, 78

R
recall, 78, 80, 81, 82, 84, 89
reconstruction, iii, 6, 20, 39, 40, 42, 43, 45, 54, 57, 60,

61, 90, 92, 104, 105, 106, 110, 111, 149, 151, 152,
154, 155

S
salient frame, 43, 44, 45, 46
secondary synchronization point, 117, 118
segmentation, iii, 6, 62, 63, 89, 139, 141
skew, x, 90, 97, 104
static-CCS, 121, 122, 123, 124, 130
stereo vision, 3, 6, 25, 27, 42
support set, 51, 52, 60, 61

T
trajectory image, vi, viii, ix, 123, 124, 125, 126, 127,

128, 129, 130, 131, 132, 134, 135, 137
trifocal tensor, v, 30, 31, 53, 60, 61, 122, 131, 149,

152
trilinear tensor, 4, 31, 38, 39, 40, 41, 42, 52, 53, 124,

150, 151

U
uncalibrated, 4, 9, 20, 27, 28, 38, 51, 60, 90, 108, 150,

151

V
video sequence, iii, viii, 4, 5, 6, 8, 43, 45, 54, 55, 61,

62, 63, 66, 68, 74, 76, 113, 114, 115, 116, 117,
118, 119, 120, 121, 124, 126, 127, 132, 139, 140,
151, 154

W
wipe, 62

