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Abstract

Problems in computer vision and computational video often make certain assumptions
about the input data. For example, structure from motion algorithms assume a baseline of
minimal configuration and reconstruction problems often assume a known corresponding
feature set and calibration parameters. Often it is the case that these assumptions present
difficult problems in themselves.

This thesis examines problems that maintain a common thread of video data. Often
coined computational video, this emerging field presents a number of interesting prob-
lems that often fall into the assumptions of other research areas. Specifically, we address
suitable baseline selection for structure from motion as well as an automated system that
solves the correspondence problem in large number of cases. We also address a means
for automatically computing intrinsic camera parameters for long video sequences and
we examine a method for synchronizing multiple video streams. Furthermore, we ad-
dress the problem of accurate segmentation of commercial video streams for subsequent
use in video databases and search facilities.

Each of the problems addressed in this thesis are often assumed to be solved in the pres-
entation of other research problems such as 3D reconstruction, video abstracting and da-
tabase population. Each of the proposed solutions provides benefits to the research
community by providing tools and/or novel algorithms that address these often assumed
sub-problems.  Furthermore, the findings presented in this thesis remove a number of
constraints that are generally placed on these types of problems.
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Guideto Notation

Throughout the paper, we will use acommon convention for notation. In Table 1 below,
alist of common notation is provided

The optical center of the image plane in pinhole camera
The optical center of the focal plane in pinhole camera
The Euclidean transformation matrix, thisis a4x4 matrix
The essentia matrix, thisis a 3x3 matrix

The fundamental matrix, thisisa 3x3 matrix

Intrinsic camera parameter, focal length

The homography matrix, thisis a 3x3 matrix

The intrinsic camera parameters, thisis a 3x3 matrix

A line in homogeneous form, thisis an (N+1)D vector
A point in 3D space, thisisa 3D vector

A point in an image, thisisa 2D vector

The projection matrix (3D to 2D), thisis a 3x4 matrix
The Rotation matrix, thisis a 3x3 matrix

Scalar factor

The trangdlation vector, thisisa 3D vector

Trifocal Tensor, thisis a 3x3x3 cube operator

Intrinsic camera parameter, center of projection X
Intrinsic camera parameter, center of projection Y
Intrinsic camera parameter, aspect ratio

Intrinsic camera parameter, sensor skew

eSS~ D U3IZ—-—X"AI—-TTMUOO



Chapter 1

| ntroduction

1.1 From Computer Vision to Computational Video

Research into computer vision has been ongoing for many decades, with origins
dating back to the late 50's and early 60's. Due to limited computing power, a lack of
understanding, and experience with the complexity of three dimensions, most early work
in computer vision concentrated on what today are largely considered 2D problems such
as fingerprint processing [1], optical character recognition (OCR) [2], and satellite im-
agery [3]. Other recent areas of research include the use of computer vision techniquesin
practical problems like retrieval from image databases, content-based image and video
compression, and face recognition to name afew. However, alot of thiswork islargely a
matter of applying already well-established computer vision methods to new problems
but require some level preprocessing of the input data to allow the use of known methods.

A consequentia step of the early research was the application of computer vision
techniques for interpreting aerial photographs and satellite imagery. Here the images are
typically very large and much more complex in their contents and variety, but till are
mostly 2D in nature (aside from some small 3D effects like shadows cast by tall buildings
or bridges crossing rivers). Satellite imagery is still handled using mostly planar method-
ologies due to the distance between features being minute in comparison to the distance
of the camera to the earth’s surface [4]. Work on these types of images dominated com-
puter vision research throughout the seventies. However, some significant work was done
on images of simple 3D scenes of the so-called “Blocksworld", a domain of painted toy
blocks on a plain tabletop. Still today, many researchers use a blocksworld domain to
verify effectiveness and test algorithms.

In the eighties, and still today, the main challenge of computer vision research is
attempting to deal more fully with the 3D world, and with the movement of sensors. A lot



of work was supported and influenced by the Autonomous Land Vehicle (ALV)® Project
in the United States [5], but its origins appear earlier. The ALV was intended to be aro-
bot vehicle that could drive itself around the countryside, guided by computer vision al-
gorithms and other sensors. Within the past decade, the ALV project has added video

cameras as a standard sensor to be used on the vehicle [6].

As the video camera plays such an important role in our day to day lives, it is not
likely that we will see the video camera diminish as a data acquisition source for some
time to come. The volume of video data that has resulted since the advent of the video
camera far exceeds that of still image photography and creates a new set of unique and
interesting problems that need resolution. If there is any one thing that characterizes the
recent trends and direction of computer vision research today, it is the terms dynamic (ac-
tive) vision and computational video. Researchers are moving away from the implicit
view that avision system is merely a stationary recipient of passive images, reaizing that
as part of arobot, a vision system will actively move about and explore while interacting
with its (dynamic) environment. This new point of view has inspired research in the area
of dynamic vision recently, leading to robotics and computational video research labs

with an emphasis on video processing research becoming preval ent.

1.2 Motivation

There are a number of reasons for dynamic vision based video processing prob-
lems. Primarily (for the author) is that they are interesting practical problems with theo-
retical backgrounds that combine elements of computer vision; artificial intelligence, ef-

ficiency and optimization.

It has often been said that computer vision research is sometimes an exercise in
finding the right data set, however, as techniques mature and become standardized for
solving certain problems, the challenge always remains in ensuring that unconstrained
inputs can be made suitable for the mature algorithms. Until recently it was thought that
little work could be done without having the metrics of a calibrated stereo vision system.

1 A complete list of publications related to the ALV project since 1985 can be found athe ALV website at
Carnegie Méellon University (http://www.ri.cmu.edu/labs/lab_28 pubs.html)



Just over atwenty years ago, the Essential matrix was introduced [7], followed shortly by
the fundamental matrix [8][9] and not long after that, robust methods for determining the
fundamental matrix [10][11] were introduced offering the capability to take a ssimple, un-
calibrated vision system, and perform some machine vision tasks. This work progressed
to the introduction of 3 view geometry [12][18]. Since then, much research has been fo-
cused on autocalibration and metric reconstructions with uncalibrated stereo rigs. With
all these advances, there has been little concentration on video data and the unique prob-
lems associated that come with it.

Specifically, this thesis examines techniques that are used as a precursor to the
application of well-known photogrammetry and content based video retrieval algorithms.
Due to the volume of data contained in a video sequence it is impractical, if not impossi-
ble, to effectively apply a standard technique to each and every frame. Furthermore,
many algorithms are not well suited for the close proximity of adjacent images produced
by the high frame rates in video cameras. Currently, there is still some reliance on tech-
niques such as manual resolution of the correspondence problem or non-linear computa-
tional techniques that do not scale up to volume of images found in a typical video se-
guence. Therefore, this thesis provides some solutions to these types of problems faced
by al computer vision researchers who will use video data as an input. The main contri-

butions of thisthesis are outlined next.

1.3 ThesisOutline and Contributions

Hopefully the reader is now convinced that the problem of computational video
processing for computer vision tasks is both interesting and important. The remainder of

this section outlines the chapters and the research contributions of thisthesis.

Chapter 2 — Background

This chapter is used as a vehicle for covering certain background information that
is necessary for the remainder of the work presented. Theory of multiple view geometry
applied to computer vision is outlined in this chapter. Concepts such as homographies,

the Essential and Fundamental matrices, camera calibration and the trilinear tensor are



given. Finally we provide some coverage of feature tracking in video sequences as it

forms afundamental primary part in the solution of many computational video problems.

Chapter 3 — From Video Sequences to 3D Camera Positions

The correspondence of feature points between image pairs is an important first
step in many computer vision algorithms that is often assumed, or hand selected. This
chapter presents a modular system of robustly computing image pair correspondences
from a video sequence by utilizing geometric constraints to guide an iterative process
when computing the putative corresponding match set. The method alows for the solu-
tion of the correspondence problem in two or more views without human intervention.
This chapter makes contributions to the field of computer vision by providing a publicly
available robust and accurate method for solving the correspondence problem over 2 and
3 views. Furthermore, it presents a novel methodology to select frames based on the dis-
parity of corresponding features via feature tracking as a precursor to the correspondence
problem. Consequently, algorithms that rely on the correspondence problem to be solved
apriori can now be solved in an automated fashion. This allows long image sequences to
be handled where manual selection would no longer be possible and conditions the input
for photogrammetry algorithms which makes the solutions to these photogrammetry
problems more tractable. For example, by appropriately spacing the input images, the

bundle adjustment is more likely to converge.

Chapter 4 — Video Segmentation

This chapter is a dight departure from the others in that we steer away from mul-
tiple view geometry based computer vision and use feature-tracking techniques to seg-
ment commercial video clips for use in applications such as content-based video, image
indexing and retrieval, video index creation and video database population. There has
been much work concentrated on creating shot boundary detection algorithms in recent
years. However atruly accurate method of cut detection still eludes researchers in gen-
eral. Cut detection methods can al be classified based on the various inter-frame differ-
encing schemes that they employ. In this work we present a scheme based on stable fea-
ture tracking for inter frame differencing. Furthermore, we present a method to stabilize

the differences and automatically detect a global threshold to achieve a high detection



rate. We compare our scheme against other cut detection techniques on a variety of data
sources that have been specifically selected because of the difficulties they present for
other differencing techniques due to quick motion, many small shots and computer-
generated effects. In this study our goal is to improve the accuracy of cut detection, par-
ticularly for difficult image sequences. The method improves on both speed and accu-
racy over existing feature-based video segmentation methods. Our new method also im-
proves accuracy over previously established histogram-based methods. Finally, our new
method also allows for annotation of the video clips into categories based on feature mo-

tion vectors.

Chapter 5 — Autocalibrating Long Image Sequences

In order to get metric information from an image sequence it is required that we
compute the internal camera (intrinsic) parameters. Whilst this has been studied in the
past and complex methods exist that require a projective reconstruction to be computed,
we examine a simpler method that uses the fundamental matrix and genetic algorithms to
estimate the camera parameters with similar accuracy to the complex methods. Finaly,
in situations such as video processing, the complex methods are not well suited because
they do not scale up as the image sequences become large, whereas the method presented
isideally suited for long images sequences. This chapter makes contributions to the field
of computer vision and computational video processing by allowing very long image se-
guences used in an autocalibration step necessary for computer vision tasks such as 3D
reconstruction. The method presented improves speed while maintaining accuracy when
compared to other complex methods and therefore allows for the autocalibration of video

capable cameras.

Chapter 6 — Synchronizing Multiple Video Sequences

At this stage the thesis has examined techniques for performing computation on a
single video sequence. In this chapter, we increase the complexity by trying to utilize
multiple unsynchronized video streams. In order to make use of any known stereo vision
algorithm, we must first synchronize the video streams by identifying the frames that cor-
respond to the exact same moment in time. We contribute to the field by allowing a fast

and automated method for temporal synchronization, which is often assumed, of multiple



video cameras in 2D without the requirement of forcing extrinsic calibration, requiring
certain motion or scene constraints.

Chapter 7 — Conclusions and Open Problems

Finally, in this chapter we will summarize the work and future research opportu-
nities in this area. The main contribution of this chapter is a list of open and interesting
problems.



Chapter 2

Background

The goa of a machine vision system is to create a model of the real world from
static images [13]. Using these models, applications can perform some function such as
robot navigation or object tracking. Although early work in computer vision systems
mainly concerned itself with static scenes, the importance of dynamic scenes, object mo-
tion and video input can not be ignored. Research naturally broadened, and the projective

vision and computational video branches of the computer vision tree evolved.

2.1 Computational Video

A computational video system uses as input a series of consecutive images, where
each image is of a scene at a given point in time. Video data, which is typically any-
where from 10 fps (frames per second) to 30 fps, makes an ideal input source for dy-
namic vision applications. With the increasing availability of multimedia applications
and hardware for capturing video, it is easy to see how projective vison and computa-

tional video are complimentary technologies.

A sequence of frames offers a lot more information regarding a scene, but obvi-
oudly it requires a level of computation that is much higher as well. For example, one
such system's aim is to detect changes and subsequently determine the motion of the ob-
jects in the scene as well as the camera positions. The relationship between object mo-

tion and video camera motion falls into one of the following four models:

1. Stationary Cameras/ Stationary Objects

2. Stationary Cameras/ Moving Objects

3. Moving Camera/ Stationary Objects

4. Moving Cameras/ Moving Objects
Each of these categories requires dlightly different techniques, but some fundamental
concepts, mathematical background and practices are common to all four. A subset of

the frames from video sequences form an identical computer vision problem that would



be formed from single frame cameras located at the exact same position of the video

camera at the time the frames were taken.

Classical computer vision requires calibrated camera systems, but recent devel-
opments in the field have pushed the requirement of calibration out of the way for some
problems. Calibrated computations require a transformation matrix known as the essen-
tial matrix [7] that characterizes the transformation between two calibrated camera view
points. In uncalibrated projective vision, a transformation matrix can be estimated using
the two images [10][11]. This estimated matrix is known as the fundamental ma-
trix[8][9], and has the same basic conceptual uses that the essential matrix has. Therela-
tionship between the fundamental matrix and the essential matrix becomes clear when the
fundamental matrix is calculated for a calibrated system. As expected, the fundamental
matrix derived from a calibrated system correctly yeilds the essential matrix of the given
system. These ideas are covered in more detail later on in the chapter. In a computa-
tional video system, one core challenge is to determine the appropriate model and then

apply that correct techniques for that model.

2.2 CameraModes

If we consider the smplest model for a camera, we would be considering the pin-
hole camera, which is a'so known as the perspective camera. A pinhole camera consists
of two planes, with a minute hole punched in the focal plane to alow rays of light
through to fall upon the image plane. The rays of light pass through the pinhole on the
focal plane in such away as to produce an inverted image on the image plane. This sm-
ple camera has an optical centre located at C on the focal plane and the image plane is

located at distance f from the focal plane. Figure 1 shows the pinhole camera model.
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FIGURE 2.1: THE PINHOLE CAMERA MODEL.

Each point M in the object forms a straight line through the optical centre C with

its corresponding image point m. This type of projection of the 3D world to a 2D plane

is known as the perspective projection. From a geometric standpoint, it makes no differ-

ence if we replace the image plane with a virtual image plane in front the focal plane.

Figure 2 below shows a pinhole camera with avirtual image plane.

X /
: I :
‘\\\\\\ y/c "

FIGURE 2.2: THE PINHOLE CAMERA WITH A VIRTUAL IMAGE PLANE.

The relationship between 3D and 2D coordinates can be written linearly as[14]:

f 0
=|0 f
0 0

< X

X
00
Y
0O
Y4
10
1

(21)
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where f isthe focal length of the camera. The point lies on the image plane at [x/s, y/s]
if s> 0. If s<0, then the point lies behind the image plane and cannot be projected. For
the case where s is exactly 0, we have what is termed 'a point at infinity', and the pro-
jected points are not defined. The 3x4 matrix above is known as the perspective projec-

tion matrix and is usually denoted by P.

f 00O
P={0 f 0 O (2.2)
0 010

Digital cameras, scanners and other capture devices mimic this perspective cam-
era model due to much effort put forward to minimize and eliminate lens distortions.
This allows us to use projective geometry to characterize the geometric relationships be-
tween the images and the real world. We continue with a brief overview of projective

geometry.

2.4 Overview of Projective Geometry

When we think of the world and space around us, we think of Euclidean space; so
it would seem logical that machine vision would work with Euclidean geometry. Thisis
not the case, and a more generalized form of geometry is used. Euclidean geometry is a
specia case of projective geometry, and questions are often more easily answered in the
more general context of projective geometry [15]. Not only does this make our computa-
tions simpler, but it is also ideal as we are working with images that are merely projec-
tions of Euclidean coordinates to a plane. Any projection of a point (in the Euclidean co-
ordinate system) My = [Xw, Yw, Zw]' to the image plane m = [x,y,s]" can be described
using simple linear algebra.

m=PM (2.3)
where m is the projected homogeneous coordinates of the point M in the image.

Any projection of a point (in the world coordinate system) My = [Xw, Yw, Zw]" to theim-

age planem =[x,y]" can be described using simple linear algebra.

sm=PM (2.4)
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2.4.1 Projective n-spaces
Any point p, of an n dimensional projective space P", is represented by a vector of

n+1 elements not al zero. The elements of this vector are commonly referred to as pro-
jective coordinates or homogeneous coordinates. Any two vectors X = [Xs,...Xns1]' and y
= [Y1,...Yns1] " are considered equal (representing the same point) if and only if there ex-

istsascalar A # 0 such that x; = Ay; for al elementsin the vector.

When we do use homogeneous coordinates, the algebra for projective geometry
becomes very simple. For example [16], the Cartesian coordinates of the point where
twolines ax + by +c=0and rx + sy +t =0 intersect is:

(bt-cs,cr-at)/as-br (2.5)

Whereas in homogeneous coordinates, the intersection of [a,b,c]” with [r,st] is
[bt - cs, cr - at, as- br]" (2.6)

which we easily recognize as the vector (cross) product. While this example isin projec-
tive 2 space, its truth exists throughout the dimensions. Notice that we not only made the

algebra simpler, but we removed the division operation, which is costly on a computer.

2.4.2 Collineations
Projective transformations (collineations) are linear transformations. In other

words, it maps features in one projective space to the same features in the same projective
gpace. These transformations are characterized by a (n+1)x(n+1) non-singular matrix A
so that Ap, = Ap;. The matrix A has the following mapping properties:

e Collinear features remain collinear

e Concurrent features remain concurrent

e Incidenceis preserved
It is rather easy to see that the set of collineations transforming P" onto itself form an al-

gebraic group. Thisgroup is known as the projective group.

Theorem: For any two linearly independent sets of points in projective n space that
forms a basis;, say B = {by,...,bn2} and C = {cy,...,Cn+2}, there exists a collineation A
such that dB; = Ac;.
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We borrow this proof from [15]:
We can choose a matrix P and a set of nonzero scalars o, ...,0n+2 such that:
Pe = Aib;
Where g isthe projective basis. Similarly, we chose Q and ..., U2
Qe = i
Then
PQ ™o = (wi/hi)c
Thuswe let § = wi/Ai and A = PQ™
QED

2.4.3 The Projective Plane (P?)
The projective plane is important to us, as it forms the basis of our work. Sensors

that produce 2 dimensional projections of the 3D world are common. In fact, the image
plane of atypical CCD camerais simply modeled as a 2D projective plane. There are 4
basic structures in the projective plane that we need to be concerned with; these are

points, lines, pencils, and conics.

2431 Points and Lines
From the previous discussion, we know that points in P? are represented by a vec-

tor with three elements (mj,m,,mg). Other than points, we have lines which are also de-
fined by three numbers, not all zero. The principle of duality states that lines and points
are represented the same way in two-dimensional projective geometry. That is, a projec-
tive point m is given as [my,m,,mg]' and a projective line | is given as [l1,l2,l5]". The
point p comes from the perspective projection of three-space down to two (see below),
and the line equation is simply:

Limg + lomsy + I3m3 =0. (27)

Due to this principle, we can use the terms point and line interchangeably. Thisis

when we discuss lines, we are implicitly discussing pointsin the exact same manner.

2.4.3.2 Lines at Infinity
Of al the possible lines in P? a special subset exists when the third element of the

line in homogeneous coordinates is equal to zero. These lines are known as lines at infin-

ity usually denoted by /... The important implication of al thisis that in projective ge-
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ometry, any two distinct lines (even if they are paralel) will always intersect. Paralléel

lines happen to intersect at the point at infinity!

2.4.3.3 Pencils of Lines
Pencils of lines have numerous applicationsin vision, especially in stereo and mo-

tion. Pencils are the set of all linesin P? that pass through a fixed point. The set of epi-
polar lines for a given fundamental/essential matrix are a pencil because they al pass

through the epipole.

2434 Conics
Conics are a set of points on the projective plane that satisfy the equation:

S(x) =x'"Ax=0 (2.8)

Where A is a 3x3 symmetric matrix. The equation defines the conic up to a scale factor,

and is dependent on 5 parameters.

2.4.4 The Projective Space P®
In projective 3 space, points are represented by a vector with four elements. Re-

calling the principle of duality, we see that the dual entity to a point P®is aplane. Simi-
larly to P apoint M = [M1, M2, M3,My] is contained in aplane IT if and only if:

II'M =0 (2.9)

Lines in P* are simply the intersection of two planes, and thus can also be expressed as a

linear combination of two points. i.e. L =AM+ ApMp

24.4.1 Quadrics
Quadrics are the 3-space equivilant of conics in 2-space are a set of points on the

projective plane that satisfy the equation:

I'QII=0 (2.10)
Where Q is a 4x4 symmetric matrix. The equation defines the conic up to a scale factor,
and is dependent on 9 parameters.
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2.4.5 Strata of Geometries
Our world is a 3D Euclidean space. When we are dealing with images, we are in

the ssimpler structure of projective geometry, between these two spaces lie two intermedi-
ate geometries, affine and metric. Thus the order of stratafrom simplest to most complex
is: projective, affine, metric, and Euclidean. The strata are defined by their group of col-
lineations and the features that are left unchanged (invariant). Each strata contains group
of transformations that maintain a set of invariant properties. Also, it should be noted
that each group is a subgroup of the simpler structure. This means that the metric group
is a subgroup of the affine group, and both are a subgroup of the projective group. The
invariant properties of a geometric strata are not changed during a transformation that
belongs to the same geometry. Knowing the invariant properties and being able to re-
cover them allow us to change strati. Often we wish to upgrade to a higher level in the
strata, in fact this is what we are doing when we go from a sequence of images to a 3D
Euclidean model. In the following sections, we detail each of the geometric stratain 3D
space, their group of transformations and invariants. 3D space is chosen as it is relevant
in going from an image sequence to a 3D model. We simply reconstruct the projection

matrix and change strata to metric or optimally Euclidean.

2451 Projective Strata
The least structured of all strata is the projective stratum. By this, we mean that

the projective stratum has the least number of invariants and the largest group of trans-

formations. In 3D space, the projective transformation matrix is a 4x4 invertible matrix.

The invariant property of the projective stratais crossratio. The cross ratio is de-
fined as follows: Given any four collinear points M1, M, M3, and My; and their respec-

tive projective parameters o, o, 03, and o, The crossratio is defined as:

051—053_ o2— O3
o1— s 02— o

{M1,M2; M3, Mg} = (2.11)

The cross ratio extends simply to higher dimensions. In the case of P in the figure
below, we see how the cross ratio of four lines is defined as the cross ratio of points that
intersect with another line. Obviously we can do a similar operation with planes.
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FIGURE 2.3: CROSSRATIO OF 4 LINES IN P?
2.45.2 Affine Strata
The next least structured of all stratais the affine stratum. In 3D space, the affine
transformation matrix is aso a 4x4 matrix. The affine strata adds paralelism , relative
distances, and the plane/line at infinity as invariants. See table 2 below for complete de-
tails on the form of the affine transformation matrix.

2.45.3 Metric Strata
The metric stratum is a'so commonly referred to as the group of similarity trans-

formations. This group corresponds to the Euclidean group, but only to a scale factor.
This is the highest level of geometry we can reach without knowing some measurement
of distance between points. Aswith all 3D transformations, we represent a metric trans-

formation with a 4x4 matrix when we use homogenous coordinates.

Due to its close relation to the Euclidean group of transformations, we know that
we have 3 degrees of freedom from the orthonormal rotation matrix and 3 degrees of
freedom for the trandationa aspectsin X, Y and Z. When we add one more degree of
freedom due to the scale, we end up with a total of seven degress of freedom. The two
new invariants are relative length and angles. Most importantly, at this strata, transfor-
mations leave the plane at infinity unchanged and transforms a conic to a conic of the ex-
act form. This fact is useful in autocalibration techniques, as it helps in estimating the

intrinsic camera parameters.
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2454 Euclidean Strata
The Euclidean stratum is the one most familiar to us. Having six degrees of free-

dom, 3 rotational and 3 trandlational; the invariants are identical to the metric strata with-

out having a scale invariant.

2.455 Strata Review
In table 2 below, the properties of the various strata are reviewed. In figure 6 be-

low, the visualization of a cube throughout the different stratais shown[17].

TRANSFORMAT

GEOMETRIC | DEGREESOF
STRATUM FREEDOM IONg/IP/XIC':F\l’EI)X(& INVARIANTS
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o
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o
=
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Table 2: Information regarding the different strata.
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Projective Transformation

Affine Transformation

v

Metric Transformation

v

Euclidean Transformation

FIGURE 2.4: SHAPE DISTORTIONS FOR EACH GROUP OF TRANSFORMATIONSIN 3D.
2.45.6 Changing Strata
When we are going to change strata, it is important to realize that we are in fact
upgrading our geometric representation to one that has a stronger structure. It is obvious
that starting with images, we are in the projective strata, and that if our goa is model
building, we would ideally like to progress through to the Euclidean strata. Thus our
ideal set of changes will take us from projective to affine, affine to metric, and metric to

Euclidean.

2.45.6.1 Projective to Affine
In order to upgrade to affine from the projective strata, one must first locate the

plane at infinity. This task can be done if some affine properties of the scene are known.
Parallel lines or planes intersect at infinity. For example, it the scene contains a building,
one can effectively consider the corners of the building simply as the corners of a cube.
The pairs of edges of this cube that are effectively parallel, will intersect at the plane at

infinity. Aslong as no three points are collinear, we have found the plane at infinity.
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With these three points, we can use the invariant property of cross ratio to com-
pute the point at infinity M... I.e. Mo,M1,M; are our points that define the plane, the cross
ratiois{Mo: M1; M2:M..}

Once the plane at infinity has been successfully identified, the upgrade to affine consists
only of bringing the plane at infinity to it canonical position [0,0,0,1]". The straight-

forward approach would be:

Tor = laxs O3 912
] 212)

Where the bottom row is actually the normalized plane at infinity.

2.4.5.6.2 Affine to Metric
Going from affine (or projective for that matter) to metric requires us to find the

absolute conic. Because we are aready in the affine space, we know the location of the
plane at infinity. This is important because we know that the conic is located in this

plane.

Once the conic has been identified, we only need to bring it to its canonical form

in the metric strata. On possible choice for the upgrade is[Pol99]:
Tz 213
wm=l 0, (213

Thus going form projective to metric is simply

TPM = TAM Tp/_\ (214)

2.4.5.6.3 Metric to Euclidean
In order to go from metric to Euclidean, we need to have some actual measure-

ments so that we can determine the scale factor that the metric stratais at. Once this sca-

lar is computed, it is simply amatter of applying that scale factor to the strata.
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2.5 CameraCalibration

In many applications a change in coordinate systemsis inevitable, and most likely
occurs quite often. The purpose of calibration is to determine the relationship between
coordinate systems. Camera calibration falls into two logical subsets, intrinsic and ex-
trinsic. Intrinsic calibration concerns itself with the internal geometry of a physical cam-
era, while extrinsic calibration deals with the external properties of the camera such as

position.

If we have knowledge of the intrinsic parameters, we are able to perform metric
measurements with the camera. If we do not have the intrinsic parameters we have what
is termed an uncalibrated camera, and cannot get exact metric measurements. We can
however do many things with uncalibrated cameras including reconstruction, motion de-

tection, and possibly autocalibrate the camera itself.

2.5.1 Intrinsic
Intrinsic parameters relate the change in coordinate systems from image coordi-

nates to pixel coordinates. The main goa of intrinsic calibration isto rectify errorsin the
manufacturing of the capture device. In practical applications that use physical cameras,
the intrinsic parameters are very important for several reasons:

e Typical cameras (such as CCD's) have varying pixel coordinate systems that
are not necessarily the same as the projection coordinate system.

e Manufacturing defects cause the axes of capture devices to be at angles other
than 90 degrees.

e The projection planes' origin may not coincide with the optical axis of the cap-
ture device due to lens distortion or other effects. i.e. The pixel grid is not or-
thogonal with the optical axis.

If we examine Figure 2.5 below, we see how non-orthogonal axes cause the need for a

trandation to a different but more accurate coordinate system.
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FIGURE 2.5: INTRINSIC PARAMETERS

The intrinsic parameters are the skewness (0) or how rectilinear the pixelsredlly are.
The optical centre (Uo,V0). The aspect ratio (), which describes the ratio of the width to
the height of apixel. The calibration matrix K is:

ox 6 Uo
K=l0 ay Vo (2.15)
0O 0 1

This transformation from image to pixel coordinatesis also linear and can be written as:

y|=[K]|v (2.16)
1 1

With an image being formed by a perspective projection, followed by intrinsic calibra-

tions gives us, our projective transformation matrix becomes:

2.5.2 Extrinsic Calibration
The main goal of extrinsic calibration is to take coordinates in the world coordi-

nate system and transform them to the camera coordinate system. Extrinsic parameters
are commonly used to change views and move through virtual cameraviews. To go from
one system of coordinates to another, we require a rotation R and a translation t as seen
in Figure 2.6. The relationship between the world and the camera coordinates are
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Mc = RMy, +t (2.18)

Where R is a 3x3 rotation matrix and t is the trandlation vector. Figure 2.6 below shows

the transformation between coordinate systems.

kg

Fi gure 2.6: EXTRINSIC PARAMETERS FOR A GENERIC CAMERA IN THE WORLD

For any given point M in the original coordinate system, the new point M* can be linearly
calculated using
M! =DM (2.19)

where

(Rt
D—{O J (2.20)

From equation 2.4, we ssimply add the transformation D
sm = PDM (2.21)
There are six extrinsic parameters which are the rotational angles between axes and the

tranglation along the 3 axes.

2.6 Planer Transformations

When we are dealing with co-planer points (i.e. All pointsM = [X,Y,Z,1]" where
Z is equal) in the world coordinate system, we simply have to compute planer transfor-
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mations. The planer transformations are a special case of the 3D transformations known
as homographies. If we choose a world coordinate system such that the plane of the
points has a zero Z value, the projection matrix P which is normally 3x4, reducesto a 3x3

matrix that defines a general plane to plane transformation [19].

(2.22)

Where H is simply P with the 3™ column zeroed out and can be effectively ignored yield-
ing

Pa Pe Pul X
H= P2 Pz P Y (2 23)
Pz Pz P 1

Where pjj isthe value from P in row i and columnj.

To illustrate how the homographies work in relation to regular 3D transforma-
tions, the example below [19] shows how homographies work only on co-planer points.

In Figure 2.7 below, we see the same scene taken from two different camera viewpoints.

Figure 2.7: TWO VIEWS OF THE SAME SCENE

If we use a homography to translate from one view point to the other viewpoint, and we

use the paper with the Chinese text as our planer points, we get the image in Figure 2.8.



24

Figure 2.8: TRANSFORMATION OF LEFT IMAGE TO THE VIEW POINT OF THE RIGHT IMAGE

The warped image in Figure 2.8 appears to be a complete image, but if we examine the
mug closely, we notice that is it not quite right. To show how planer objects were cor-
rectly transformed while other points not in the plane are warped, we superimpose the

real cameraview with the trandated camera view to get Figure 2.9 below.

Figure 2.9: RIGHT VIEW FROM FIG. 2.4 SUPERIMPOSED ONTO FIG 2.5

What use does such a transformation have when it is so evidently erroneous? Sim-
ply put, synthetic view points of co-planer points can be generated. The error from the
above example resulted from the points that were not co-planer, i.e. the mug. The co-
planer points on the sheet of paper were perfectly transformed. This allows us to easily
create mosaic images that can be viewed from different angles. Large scenes that contain
co-planer surfaces can be rendered as one single image that can be viewed from many

different angles. While multiple single images may be required to capture a scene, it may
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be viewed as a single image. Consequently, to render a large image we need only mini-

mally overlapping planar input images.

2.7 StereoVision

The goal of stereo vision is to generate some depth information about a scene.
Using the disparity information from two or more images, it is possible to calculate depth
values for a calibrated system. Disparity is the distance between two points in an object
found in both images. It is easy to see how disparity is involved in depth calculations
with the following simple demonstration. Find an object in your field of view that is be-
tween 2 and 3 meters away, and look at it. Hold your index finger out at arms length and
look at the scene with your left eye, then with your right. Notice how the closer object
(your index finger) ‘moves more than the farther object. This separation of the object in
your left and right views is known as the disparity. Objects that are closer to the cameras,
in this case your eyes, have alarger disparity than do objects that are farther away. The
selected points used for calculation of the disparity are known as conjugate or corre-
sponding pairs. Automated selection and verification of conjugate pairs is known as the
correspondence problem. The geometry that relates conjugate pairs is known as the epi-

polar geometry and exists between any two camera systems [10].

2.7.1 Correspondence Problem
It has been implied that stereo vision requires the selection and searching for

points to be used as conjugate pairs. What we have failed to mention is that the detection
of conjugate pairs in two images is extremely challenging. This area of research is

known as the correspondence problem and is covered extensively in Chapter 3.

2.7.2 Epipolar Geometry
The simplest form of stereo vision involves a pair of cameras with a fixed x dis-

placement [13]. In Figure 2.10 below, we see that the point M in the scene is in both the
left and the right image planes as point m. The plane that passes through the point M and
both camera centres is the epipolar plane. The epipolar lines are defined as the intersec-
tion of the epipolar plane and image plane. The epipoles are defined as the point where
al epipolar linesintersect. Aswell, the epipole is defined as the intersection of the image
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plane with aline between the optical centres of two cameras. Figure 2.7 below illustrates

such an epipolar geometry.

Epipolar
i Flane

Ciptical
Axes

/m rn\: Epipolar Lines

FIGURE 2.10: EPIPOLAR GEOMETRY OF TWO CAMERASWITH FIXED X DISPARITY

Figure 2.11: EPIPOLAR GEOMETRY OF TWO CAMERAS IN AN ARBITRARY POSITION

The fundamental and essential matrices offer a great computational advantage in
matching a point in one image with the same point in another image. Since the corre-
sponding points must lie on the epipolar line, our search for corresponding points has
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been reduced from 2 dimensions down to 1. We now only have to search along the epi-

polar line to find the corresponding point. Thisis known asthe epipolar constraint [10].

The epipolar geometry of two stereo images is related by a simple transformation
characterized by the epipolar equation. First introduced by Longuet-Higgens[7] in 1981,
the epipolar equation produces the Essential Matrix. The Fundamental Matrix character-
izes the epipolar geometry between two uncalibrated cameras.

2.7.3 Essential Matrix
Calibrated stereo vision gives us the ability to calculate depth metrics of the

scene. These Z values allow applications such as robotic vision and navigation to be pos-
sible. In calibrated stereo vision we are working with the essential matrix E, which is
completely encompassed by the rotation and trandation between the two cameras. Be-
cause the cameras have a known calibration, we can work in the normalized image coor-

dinate system.

The relationship between two points in two separate images can be described mathemati-
caly as
m' Emy,=0 (2.24)
where
E=t xR. (2.25)

And thisisreferred to as the epipolar equation.

2.7.4 Fundamental Matrix
When we are given two uncalibrated cameras K, the calibration matrix, is un-

known to us and we therefore cannot use K to easily transform the pixel coordinates into
normalized image coordinates. Thisforces usto work in the pixel coordinate system, and

the epipolar geometry is still characterized by the epipolar equation.
mlT F my = 0 (226)

where points m; and m, are corresponding points in image 1 and image 2 respectively
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F can be characterized in terms of the essential matrix and the camera calibration matri-
ces
F=K;,EK;? (2.27)

Theorem 1([8] [9]) — For any two views I; and |, of an uncalibrated scene, there exists a
fundamental matrix of rank 2 that adheres to the following property: For all correspond-

ing homogeneous points (my, my) in 1 and I,
m' Fm=0 (2.28)

Pr oof
Let M represent areal point in 3D space. M = (x,y,z). Also, let m; and m, be the homo-
geneous coordinates of the image points in image 1 and 2 respectively. Assuming the
initial point m; isat 0 and the corresponding point my isat t. The unknown intrinsic cam-
era parameters K make the camera transformation matrices to be

[K]0] and [[K][R]|[K]t]
before and after the motion t respectively. Determining the epipolar line in the second
image for the point x, the camera centre and point at infinity become

[K]t and [K][R][K]*m respectively.

Asaresult, the epipolar line is given by

| = [K]t x [K][R][K]*m
Sincem’ lies on the epipolar linel

m TFm=0

thus

F=[K]t x [K][R][K]™
Whichis

F=[K]*[t x R][K]™
Where [K]* isthe adjoint of K, and from (2.25)
F=K;EK,?

Which is (2.27) and known to exist.
QED
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From the discussion above, it should be clear that epipolar geometry depends
upon the orientation and internal physical characteristics of two cameras. The geometry
does not depend on the structure of the scene. i.e. The 3D points externa to the cameras
have no bearing on the actual geometry.

2.8 Robust Methodsfor Computing the Epipolar Geometry

The above methods make the assumption that there is no noise present in the cor-
responding pairs, which in practical situations is simply unreasonable. In [20] it was
shown that mismatches and noise are unavoidable in practical situations and robust meth-
ods are required to estimate the epipolar geometry. The generation of the correspondence
pairs results in two potential types of errors, these are: incorrect location of a pair (inlier
error) match, and incorrect pairing (outlier error). Figure 2.12 below shows these two
types of errors.

Incorrect

. Eu:u_niugate
Pair Errar

* |ncomect
Localization
Error

Epipolar Line

Figure 2.12: THE TWO TYPES OF CONJUGATE PAIR ERRORS

Inlier error is assumed to exhibit a Gaussian distribution. This means that most error
will be small and within one or two pixels. However, afew points will be incorrectly lo-
calized with an error of more than 3 pixels. Error of more than 3 pixels will severely de-

grade the estimation of the fundamental matrix.

Incorrect correspondence (conjugate) pairing is a more serious problem that occurs
when two points that are not a valid correspondence are selected incorrectly as being a
valid pair. Because the epipolar constraint may not yet available, the search for conjugate

pairs must be conducted in 2D. Thus, the potential number of incorrect conjugate pairs
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could be quite high. These invalid conjugate pairs completely spoil the estimation of the

fundamental matrix and therefore F would be inaccurate.

The precision of the fundamental matrix is seriousy affected by errors of these
types, and robust methods need to be employed when calculating F. Robust methods try
to minimize the error caused by inliers, and remove the inaccuracy caused by outliers.
Since one outlier will make the estimated fundamental matrix F useless, we need to use
as many sets of valid pairs as we can to compute F. Several classes of robust techniques
exist to compute the fundamental matrix, these are highlighted very well in [11] and [21].
The algorithm that performed best was RANSAC (RANdom Sample Concensus).

2.8.1 RANSAC
RANSAC, performs an estimation by randomly selecting the minimum required

number of correspondences to compute F.  For each F computed, the set of inliersis cal-
culated. The F with the highest consensus of inliersis selected to be the fina computed
F i.e. the one with the most support. This computation is repeatedly completed until a

certain level acertainty is achieved.
The basic random sampling algorithm is as follows:

Repeat for M samples

e Select a random sample of the minimum required correspondences to
estimate a valid fundamental matrix F.

e Compute a putative matrix F
For all putative correspondences, compute the set of inliers

e Sdlect the F with the greatest number of inliers over all samples

2.9 ThreeView Geometry

The next natural step from epipolar geometry is to add a third camera view. The
trifocal tensor approach is one such extension and maintains its basis in projective ge-
ometry. This model has been proposed and developed by Hartley [18], Sashua[22], Torr
[23], and Faugeras [24] among others. Figure 2.13 represents the 3-view imaging sce-

nario.
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In the 3-view situation, the trifocal plane is formed by the three optic centers C', C'’ and
C'"’. The intersection of this plane with the three image planes produces three lines
called the trifocal lines (not shown in figure 8). One could use standard epipolar geome-
try and consider three fundamental matrices (one for each pair of optical centres) Fiz, Fz3
and F3;. Intersecting epipolar lines should show the position of the point (shown in fig-
ure 2.13). However, if apoint M isin thetrifocal plane, or the optical centresC'.C'’", and
C'" are collinear, the fundamental matrices cannot determine if its 3 images a point be-
long to asingle 3D point because the epipolar lines are collinear and therefore intersect at

more than one point.

® C2

FIGURE 2.13: TRIFOCAL GEOMETRY

In the case of two views, given a point in one image, it is possible to construct alinein
another using the fundamental matrix. However, given a point in the first image and a
point in the second image, one can directly compute the coordinates of the corresponding
third point using a structure called the trifocal tensor which is the analog of the funda-

mental matrix for 3 view situations.

2.9.1 The Trifocal Tensor
Thetrifocal tensor isintended to describe line correspondences. This has been a

well-known problem to those in the computer vision community dealing with structure
from motion [25] [26]. Severa years had passed before the tensor was formally identi-
fied and defined by Hartley and Shashua[18] [22]. In the projective sense, the tensor is

known as the trilinear tensor.
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The tensor can be considered as a 3 x 3 x 3 cube operator, defined by 27 parametersin
total. Typicaly, one uses this tensor (3) to map alineinimage 1 (I;) and aline in image
2 (Iy) toalineinimage 3 (I3). Thisis known as transfer. This mapping is alinear expres-
sion

I3 =3(l,12) (2.29)
which is more formally represented by:

|i:iz3:|j"|k"'3ijk (2.30)

The tensor can also map corresponding pointsin two views to their triple corresponding
point in the third view. Points are transferred via the following formula:

3 3
x'"'= Xi"ZXkSkjl—Xj"ZXkSkil (2.32)
k=1

k=1

The same tensor can be used to transfer lines and points due to the principle of duality.

2.9.2 Constraints on the Tensor
For every three views of a static scene, there existsa 3 x 3 x 3 tensor with the fol-

lowing properties given any three corresponding image points (m,m’,m’’). For every
linel’ throughm’ and I’ through m’’ in their appropriate views, the trifocal constraint is

described by one equation:

I'"[Sm]I” =0 (2.32)

where
[Sm]ij = Sujx + Iy + 33 (2.33)
It is important to realize that we are not restricted to using lines with the tensor. In fact,
the tensor constraints exist for points as well. If we assume we have a triple correspon-

dence (u, u’, u’’) thetrifocal constraints are defined using four equations:
U’ Siagli— U U’ Sizsli — U’ Sizrli - Sinaui =0
U’ SiggUi— U U’ Sizali — U’ SizaUi - Sinoli =0
U’ Sizgli — U U’ Sizali — U’ a1l - Siznli =0
U’ Sizgli — U U’ Sizali — U’ SizaUi - Sizoli = 0

Other combinations of image features also allow us to compute the tensor. The table be-
low shows the feature combinations and the number of equations that describe the trilin-

ear constraints.
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Image Features | # of equations
3 points 4

2 points, 1 line 2

1 point, 2 lines 1
3lines 2

Table 2.3: Overview of trifocal constraints and resulting number of equations

Since we are concerned mainly with points in images, further derivation of the constraints
is not necessary to understanding thisthesis. A complete set of derivations of the trilinear

constraints for points and lines can be found in [30].

2.9.3 Robust Computation of the Tensor
In amanner similar to robustly computing the fundamental matrix, we can use the

RANSAC paradigm to compute the tensor.
The basic random sampling algorithm is as follows:
Repeat for M samples

e Sdect arandom sample of the minimum required triple correspondences to
estimate a valid tensor.

e Compute a putative tensor T.

e For all putative correspondence triplets, compute the set of inliers

o Sdect the T with the greatest number of inliers over all samples

2.10 N-View Geometry

The next obvious question that comes to mind when considering multiple view
geometry is what new constraints if any are found in four views. Triggs [27] and Hartley
[28] have examined the concept of the quadrifocal tensor. Triggs claimed the existence
of only 3 types of geometric relationships, bilinear (epipolar), trilinear, and quadrilinear
linking two, three, and four views respectively. In [29], Faugeras showed that the quad-
rilinear constraint is a natural result due to the epipolar and trilinear constraints. In fact,
as the number of views increases, additional constraints can be expressed using epipolar
and trilinear constraints. A complete and formal review of multiple view geometric rela-

tionshipsisgivenin[30].



2.11 Feature Tracking

Shi and Tomas [50] present a feature tracking algorithm based on Kanade and
Lucas registration technique [49] that selects features which are optimal for tracking in
the sense that the tracking equations dictate what characterizes a good feature track. The
basic principle of the tracker is that a good feature is one that can be tracked well, so
tracking should not be separated from feature extraction. In other words, features are se-
lected because they are optimal for the feature tracking equations, rather then developing
atracking equation for certain features. A good feature is a textured patch with high in-
tensity variation in both x and y directions, such as acorner. We will re-examine the fea-
ture selection process after we present the tracking equations. Briefly, features are lo-
cated by examining the minimum eigenvalue of a 2x2 image gradient matrix. The fea
tures are tracked using a Newton-Raphson method of minimizing the difference between

the two windows around the feature points.

2.11.1 The Feature Tracking Equations
The tracking algorithm defines a measure of dissimilarity that quantifies the

change in appearance of a window around a feature in the first frame and the current
frame. The algorithm allows for affine distortion changes in the window. However, a
pure trans ation model of the motion is used to track the selected best features through the
sequence. For reliable and fast processing, the maximum displacement is limited, but lar-
ger than that of conventional optical flow approaches. Feature tracking is performed on
the luminance channel (grey map) for the video frames. The luminance channel is com-
puted as follows:

Luminance = Red*0.299 + Green*0.587 + Blue*0.114 (2.34)
Given apoint p in animage |, and its corresponding point g in an image J, the displace-
ment vector 6 between p and q is best described using an affine motion field:

0=Dp+t (2.35)
where

o _[dw ds
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is a deformation matrix and t is the tranglation vector of the centre point of the tracked
feature window. The trandation vector t is measured with respect to the feature in ques-
tion. Tracking feature p to feature g is smply the problem of determining the six parame-
ters that comprise the deformation matrix D and the translation vector t. In the case of
pure transglation, D will be the identity matrix and thus

d=p+t (2.37)
Because of this, the case of pure trandation is computationally smpler and thus prefer-
able due the higher frame rates typically found in video data. Since the motion between
adjacent frames of standard video is generally quite small, it turns out that setting the de-
formation matrix to identity is a safe computation [50], leaving us with the trandation
vector being exactly the displacement vector. The displacement vector is computed us-
ing a pyramid of resolutions because processing a high resolution image is computation-
aly intense. The multi-resolution pyramid within the feature tracker reduces the resolu-
tion of the entire image, say by afactor of 2. Tracking occurs by tracking a features gen-
eral areain the lowest resolution and upgrading the search for the exact location asit pro-
gresses up the pyramid to the highest resolution.

The displacement vector t is chosen as the offsets that minimize the difference
between the windows surrounding the features. The difference is referred to as the resi-
due (¢) and is formally defined by the following double integral over the windows in im-
ages| and J.

| NUCSHENE TR (2:39)

Where w is a weighting function that can be set to one in the smplest scenario, could be
Gaussian to allow more weight to the centre of the window or could be more complex to
de-emphasize regions of high curvature. When the tranglation vector t is small, the image
intensity function can be approximated by a Taylor expansion that is truncated to linear
terms:

[(x—t)=1(xX)—g-t (2.38)
and we can re-interpret the residue function (2.38) to be

e=[[ [109-g-t-3001Pwe=[[ (h-g-1)wax (238)
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Where h = [(x)-J(x), and g is the image gradients.
This makes the residue quadratic in t and the minimization occurs when the first

derivative of the residue is 0. Differentiating the residue and setting it equal to zero re-

sultsin
J[,(h-g-t)gwaa=0 239)
and since (g-t)g = (gg')t we have
( I[ eo" )WdA)t = [[ howda 239

Which is a system of two scalar equationsin two unknowns.
For ease of explanation in the next section, equation 2.39 is reconstructed as

Gt=e (2.40)
Where G and e are the from 2.39, and t is the displacement vector.
In plain English: ¢ is the sum of squared differences of the window gradients, and we
are looking to find the matching window (at displacement t) that minimizese.

2.11.2 Good Features to Track
The basic strategy of selecting features is to find areas with sufficient texture

changes in both the X and Y direction. Often these “interest” features are thought of as
texture regions or corners and their detectors usually will find good features to track.
However, the method looks to find optimal regions to track based on the tracking equa-
tion. By removing windows that are not optimal, the features selected are optimal by
construction. We are able to track features from frame to frame when equation 2.39 is
easily solved.

Effectively this means that the 2x2 coefficient matrix represented by G must be
greater than the noise level and well conditioned. Greater than the noise level means that
the two eigenvalues of G are large; and well conditioned means that the eigenvalues can-
not differ by severa orders of magnitude. When the eigenvalues are small, we have a
uniform (non-textured) area. A large and small eigenvalue correspond to a unidirectional
texture (i.e an edge) and two large eigenvalues represent a bi-directiona texture (i.e. ei-
ther a corner or salt-and-pepper like texture). Only when the two eigenvalues are large, is

the equation in 2.39 considered optimal, and therefore can we achieve reliable tracking.
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As aresult, the window for tracking is acceptable when both eigenvalues surpass
a given threshold. When we are selecting a certain number of features (N) to track, we
simply take the windows corresponding to the N largest eigenvalue pairs. Furthermore,
we can apply some level of non-maximal suppression to ensure that features we are track-

ing are at least some distance apart.
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Chapter 3

Computing Camera Positions from Uncali-
brated Video/l mage Sequences

3.1 Introduction

Recently, a great deal of research has been done in the field of projective vision [22,
27, 31, 32]. Furthermore, a number of systems have been implemented [33, 34, 35, 36]
that can, in theory, compute a 3D model automatically from an uncalibrated image se-
guence. The idea is to compute photogrammetric information from image sequences
without requiring a prior camera calibration process. We believe that there are four pri-
mary reasons for the recent rapid advances in the projective framework.

1. Basic theoretical work defining the fundamental matrix, the trilinear tensor

and their characteristics.

2. Simple and reliable linear algorithms for computing these quantities from

aset of 2D image correspondences.

3. Robust random sampling algorithms for filtering noisy and inaccurate cor-

respondences.

4. Advancement of algorithms for performing autocalibration using only the

projective camera positions.

This combination of advances has made it theoretically possible to create a 3D
VRML model of ascene from image sequences. Projective methods are normally used to
deal with uncalibrated image sequences; however, we believe that even when calibration
information is available it is often better to use the projective approach to automatically
compute image correspondences and sparse depth information. By computing the fun-
damental matrix and the trilinear tensor for image pairs and triplets, it is possible to pro-
duce a reliable and accurate set of correspondences. When calibration information is
available these correspondences can be used directly by a photogrammetric process to

compute the camera positions in Euclidean space.

Often it is the case that new research into the field will require the implementation of
many of these projective algorithms. These algorithms are often quite complicated to

implement and result in many months delay before new research can actually begin. In
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this chapter, we describe a system that is freely available for researchers to help facilitate
expedient research into the field of projective vision. By this, we hope to make it possi-
ble for others to explore and experiment within this paradigm, which we believe will
have a significant future influence on the field of computer vision.

Beyond merely describing our experience in re-implementing published core algo-
rithms, this chapter makes a number of other contributions that address some outstanding

issuesin thefield.

1. These programs are not generally available to the public in either source
or binary form. As of 2000, the only exception we know of is[36]. The
systems described in this work have been made publicly available to fa-
cilitate efficient future research and is, to our knowledge, the first publicly
available system that computes the trilinear tensor.

2. We show that, in practice, projective methods along with random sam-
pling agorithms solve the correspondence problem for many image se-
guences and that this is relatively simple, even in the presence of known
calibration parameters.

3. We present away to stabilize the corner selection process, and introduce a
simpler relaxation-like methodology based on the idea of disparity gradi-
ent.

4. We present a way of dealing with the problem of cumulative error in the
tensor computation and demonstrate that projective methods can handle
surprisingly large baselines, in certain cases over one third of the image
size.

5. We present a way of dealing with non convergence of the bundle adjust-
ment photogrammetric process that is due to minute baselines.

In most papers on projective vision, the goal is to compute a projective reconstruc-
tion, assuming that camera calibration information is not available [33, 34]. Thisis gen-
erally followed by an autocalibration process which enables the projective reconstruction
to be upgraded to metric (Euclidean) form [17]. The implication is that, if calibration in-
formation were available, one should use traditional structure-from motion-algorithms
(SFM) to process the image sequence. We claim that this is not necessarily the case. Sur-
prisingly, for most image sequences it is not necessarily easier to compute reliable corre-
spondences when calibration information is available. The reason is that the random
sampling algorithms, which are the key to dealing with bad correspondences, are much

easier to usein aprojective framework than in a calibrated framework [20].
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FIGURE 3.1: SYSTEM FOR GOING FROM VIDEO TO 3D CAMERA POSITIONS

Using projective methods in combination with algorithms from the field of robust
statistics [37, 38], one can automatically obtain very reliable correspondences for many
image sequences, even those with considerable camera motions (i.e. a wide baseline).
Producing such accurate correspondences is a multi-step process, where the final result is
the trilinear tensor and thus indirectly a projective reconstruction. We take a sequence of
images and show that the correspondences that support the trilinear tensors are correct
and accurate enough to be input directly to a photogrammetric package to compute a set
of 3D camera positions, assuming we have a prior camera calibration, or go through an
autocalibration process such as the one presented in Chapter 5. To improve the accuracy
of projective reconstruction across an image sequence it is usual to perform a projective
bundle adjustment. However, we believe, as do others [39], that the non-linear optimiza-
tion inherent in the bundle adjustment is better done in metric space than projective space
[40]. For this reason, we will not use the tensor for its projective reconstruction, but only
to produce a set of accurate image correspondences. In this way, the tensor need only be
accurate enough to identify individual matching features in adjacent images, a required
accuracy of only a single pixel. Effectively, this means that the cumulative error of the

tensor over an image sequence is not an issue.

The correspondences that support the tensor are used as input to a photogrammet-
ric bundle adjustment program to accurately compute camera positions [41]. Once we
have these camera positions, it is possible to rectify these images so that the Epipolar

lines are horizontal. Then one can compute dense depth maps using traditional stereo al-
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gorithms [33]. If the goal is to make 3D models, this is not necessarily the best approach
as stereo algorithms will not work in regions without natural texture. For this reason, we
believe that it is best to compute dense depth using active methods, since they will suc-
ceed even when there is no texture [42]. However, passive methods are sufficient for
computing camera positions since this requires sparse, not dense depth, which is much
easier to obtain. Furthermore, once these camera positions are known they could be used
to rectify 3D data acquired from active sensors that are attached to arig with the passive
cameras. The passive sensors would be used to find the position of the active sensors,
which in turn will be used to actually obtain the dense depth necessary to make a 3D
model. Therefore our goal is to go from an image sequence to a set of camera positions
using only passive technology because much work has gone into rectifying active scanner
data[42].

It is important to note that, in practice, this process is divided into two distinct
phases.
The first phase computes correspondences from the overlapping image sequence and re-
sultsin a series of fundamental matrices and trilinear tensors. We dub this stage the cor-

respondence stage, and consists of the following steps:

1. Select images are extracted from image sequences that maximize overlap,
with the constraint that baselines cannot be too minute. (§ 3.2.1)"

2. Corner like points are found in each image using a local interest point op-
erator [43, 44] (§ 3.2.2)".

3. A feature matcher finds a set of potential corner pair matches between two
adjacent images in the sequence [36] (§ 3.2.3).

4. These potential matches are pruned using some type of local consistency
filter (§3.2.4) .

5. A fundamental matrix is computed from the pruned matches using a ran-

dom sampling algorithm [14, 20, 34, 45] (§ 3.2.5).

Guided matching using the initially computed fundamental matrix (83.2.6)

A set of potential triple matches across three consecutive images are found

from the supporting matches from the fundamental matrix (8 3.2.7).

8. A trilinear tensor is computed from these potential triple matches, again
using arandom sampling algorithm [46] (§ 3.2.8).

~No

" These marked areas denote that improvements over what is commonly seen in the literature have been
made.
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Producing the trilinear tensor is equivalent to creating a projective reconstruction of
the camera position, along with a projective reconstruction of the matching corner points.
However, what is more useful in this work is that the final set of correspondences that
support the tensor are in practice, error free, for the vast majority of cases. There are a
number of reasons for this result. First, unlike the fundamenta matrix, the tensor encodes
the constraints among three image pairs. It can therefore produce correct correspondences
in the degenerate situation in which the epipolar lines of the two image pairs of the image
triple happen to be collinear. The other reason for the reliable results is the use of robust
methods to discard bad correspondences. The process begins with alarge number of pos-
sibly unreliable corner matches and continually prunes these to a smaller set of more reli-
able matches.

If the final goal is to produce a dense reconstruction of the scene, then once the trilin-
ear tensor is computed the next phase of the process is the reconstruction phase and typi-

cally consists of the following steps:

1. Optionally autocalibrate the image sequence (if calibration information is

unknown) to allow us move from a projective to a metric reconstruction

[17]. Alternative methods of auto calibrating are covered in Chapter 5.

Compute camera positions in Euclidean space [41].

Rectify the image pairs in the sequence so that the epipolar lines are hori-

zontal and coincident [33].

4. Run a stereo algorithm to compute dense depth from the rectified image
pairs[33].

wWn

The set of stepsin thislast phase makes a number of assumptions, and have been well
addressed over the years as calibrated stereo vision problems. The first assumption is that
the goal is actualy to create a dense 3D metric reconstruction of what has been viewed
by the image sequence. However, for some applications, the output of the first phase, a
set of projective camera positions, may be sufficient. An example occurs the field of
augmented reality in which the goal is to place synthetic objects in an image of a real
scene. In this case, the computed tensors can be used to place these synthetic objects in
appropriate positions without having either dense depth or metric camera positions. As
previously noted, we believe that for obtaining dense depth it is best to use active, not
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passive methods. However, for obtaining the position of an active sensor it is feasible to
use only an image sequence from a passive co-mounted sensor [47]. Also, in many model
building applications it is not difficult to obtain camera calibration, and we assume this
information is available either directly or from an autocalibration routine such as the one

presented in Chapter 5.

Our goal isto find the 3D camera positions from an image sequence using projective
methods to solve the correspondence problem and well known methods [41] to compute

the 3D reconstruction. The details of the procedure are described in the next section.

3.2 Processing Steps

We now describe the details of the process that takes a video image sequence and
computes a set of 3D camera positions. In doing so, we highlight the changes and addi-
tions that have been made over what is described in the literature.

3.2.1 Selecting Frames that are well suited
We have noticed that the photogrammetric bundle adjustment software [41] will

sometimes not converge if the spacing between the image pairs is too minute. Thisis of-
ten the case with video data. A good selection of frames from a video sequence can pro-
duce a much better set of input image data so that the bundle adjustment algorithms are
more likely to converge and therefore ensure a more reliable reconstruction. Due to the
wide availability and simplicity of use, video cameras are ideal image acquisition de-
vices. The high frame rate ensures that full coverage of the scene is possible; however
this advantage is surprisingly a disadvantage as well. The large volume of frame data is
not only impractical to process in a timely manner, but the minute baselines between
frames can also cause problems during the bundle adjustment phase of the structure from
motion (SfM) algorithms. The method described here is a novel approach to preprocess-
ing video image sequences to select a sub-sequence from larger sequence of video frame
data. Based on a proven tracking mechanism, the algorithm remains quite simple yet ef-
fective for identifying and extracting salient frame data for subsequent use in computing

camera positions.
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The obvious approach of regular frame sampling (effectively reducing the frame
rate) shows its inadequacies quickly. Due to banding and interlaced video, the regularly
selected frames may not be ideal for image processing. Another problem is that frames
selected in this manner have not been picked for their suitability to the structure from mo-
tion problem, but rather on a frame rate assumed to be good. The structure from motion
algorithms work best on images with large overlap to alow for good feature matching yet
significantly large baseline to ensure paralax large to enough to keep the problem well
conditioned. By simply changing the frame rate it is clear that the images produced by
this method may cause the structure from motion algorithms to be ill conditioned. High
frame rates increase the chance that parallax will not be sufficient and low frame rates
reduce the amount of overlap required to adequately match features. Clearly selecting a
fixed frame rate is not an effective approach to salient frame extraction for the structure
from motion problem. In fact, the ideal frame rate turns out to be variable, depending on
the two factors that make the structure from motion problem well conditioned: overlap

and parallax.

3.2.1.1 Motion Estimation and Feature Tracking

The feature tracker we use is based on the early work of Lucas and Kanade [48]
that was developed fully by Tomas and Kanade [49], Shi and Tomasi provide a complete
description [50] that is readily available. Recently, Tomasi proposed a slight modifica-
tion, which makes the computation symmetric with respect to the two images; the result-
ing equation isfully derived in [51]. Briefly, features are located by examining the mini-
mum eigenvalue of a 2x2 image gradient matrix that is noticeably very similar to the Har-
ris corner detector [44]. The features are tracked using a Newton-Raphson method of

minimizing the difference between the two windows.

We continue by presenting a very brief outline of the work by Tomas etal
[48,49,50,51]. Given apoint pinanimage |, and its corresponding point g in an image J,
the displacement vector 6 between p and q is best described using an affine motion field:

d5=Dp+t (3.1

where
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O Oy
- {dyx dyj (32

is a deformation matrix is a Hessian matrix, and t is the translation vector of center point
of the tracked feature window. The trandation vector t is measured with respect to the
feature in question. Tracking feature p to feature q is simply determining the six parame-

ters that comprise the deformation matrix D and the translation vector t.

Clearly in the case of pure trandation, D will be the identity and thus

S=p+t (3.3)
Because of this, the case of pure trandation is computationally ssmpler and thus prefer-
able. Since the motion between adjacent frames of standard video is generally quite
small, it turns out that setting the deformation matrix to identity is the safest computation
[50], leaving us with the trandation vector being exactly the displacement vector. A

complete explanation of the tracking equationsis given in Chapter 2, Section 2.11

In the preprocessing system described in Section 3.2.1, our goal is to monitor the
parallax and overlap between frames in order to ensure the stability and well conditioning
of the structure from motion algorithms. Monitoring the motion through lost features and
feature parallax via feature tracking alows us to decide when there is suitable parallax
and overlap between frames for the structure from motion algorithms. The exact criterion
for extracting two frames to be fed into the structure from motion algorithms is described

in the next section.

3.2.1.2 Salient Frame Extraction
Once the input video sequence has been segmented into itsindividual shots, and a

complete description of once such method is presented in Chapter 4, each shot can then
be independently processed to extract salient frames and then further processed using the
correspondence and reconstruction phases of the system. Since the salient frame extrac-
tion the structure from motion parts of the system are independent, this processing is dis-
tributable and easily made paraldl.
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Briefly, the extraction is done by selecting a set of features smaller than the set
used by the structure from motion algorithms and tracking them across adjacent frames.
A sdlient frame is signaled when enough features have surpassed a certain user specified
parallax and/or enough features have disappeared and can no longer be tracked. This cri-
terion is exactly what is required to ensure the success of the structure from motion algo-

rithms.

In algorithmic form, salient frame extraction

1. Select good features for frame 1 place in feature list FL
2. For each frame x in the wvideo
Track features from FL in current frame x
Count number of lost features
Count number of features that have passed the parallax threshold
If detecting boundaries (cuts)
i. If (features lost > boundary threshold)
1. Signal boundary and extract boundary frame
2. Refresh the feature list FL using boundary frame
ii. Endif (1)
e. Endif (4d)
f. If (features lost + features over parallax threshold) > threshold
i. Signal & extract frame
ii. Refresh feature list FL using current frame x
g. Endif (f)
3. Endfor (2)

Q0 oW

The number of features to track the parallax threshold will vary depending on
video dimensions, however a good rule of thumb is the following: 25 features for every
10000 pixels, the parallax threshold should be 1/8 of the smallest dimension, and a sensi-
tivity threshold of 75 percent. For example, avideo that is 320x240 would have 192 fea-
tures to track, a parallax threshold of 30 pixels (240/8), and a sensitivity threshold of 75
percent. This will supply images with significant overlap and sufficient parallax. When

detecting images, a boundary threshold of 95% or greater is sufficient.

3.2.1.3 Salient Frame Extraction Results
A series of small video clips was created to test the accuracy and capabilities of

the algorithm. These master clips consist of three smaller subsequences that are cut to-
gether. These sequences were created using a standard analog video camera commonly
found in many stores and digitized using a video capture card and converted to an MPEG

sequence.
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Reduction
ge?qsutgnce Sub-Sequence (Ij(r)irrr]}e ﬁdar(ra]cie'tsed rounded to

nearest %
1 Medical Centre 350 13 96
1 Warehouse 336 13 96
1 Body Shop 153 6 96
2 KFC 207 6 97
2 Caisse Populaire 252 10 96
2 Doctors Office 319 5 98
3 House 1 333 16 95
3 House 2 542 15 97
3 House 3 369 12 97
4 Play structure 653 25 96
4 Little House 662 20 97
4 Slide 375 12 97
5 Barn~ 374 26 93
5 Temple 1 481 7 99
5 Temple2™ 429 36 92

Table 3.1: Frame reduction for image sequences

The cut detection capabilities proved flawless and correctly identified all se-
guence start and end points. Surprisingly, this was more accurate than a pixel level cut
detection mechanism used to initially verify the sequence start and end points. The pixel
level cut detection missed one of the sequence starting points. We explore these capabili-

tiesin detail in Chapter 4.

" the sequence was taken from amoving vehicle, the higher camera speed results in more
frames being selected as an overall percentage.
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FIGURE 3.2;: EVERY 2"° EXTRACTED FRAME FROM EXAMPLE SEQUENCE

As one can see from Figures 3.2 and 3.3, the spacing of the extracted framesis very con-
sistent and regular. These baselines also make the structure from motion agorithms well
conditioned and hence the images taken from the sequences are well suited by construc-

tion..

e 11005 A - T\ 10: B
: MAY. 16,2001 THAY 16, 200E =

FIGURE 3.3: ALL FRAMES FROM EXAMPLE SEQUENCE

3.2.2 Finding corners/interest points
The next step isto find a set of corners or interest points in each extracted image.

These are the points where there is a significant change in image gradient in both the x
and y direction. We offer the use of Smallest Univalue Segment Assimilating Nucleus
(SUSAN) corner detector [43] or the more commonly used Harris corner detector [44].

Studies have shown the Harris detector to be the more stable of the two [52].

Both methods typically require a user selected threshold to determine whether or
not a pixel and its surrounding area represents a corner. Instead of setting a corner
threshold, we return a fixed number of corners from each method by sorting the appropri-
ate gradient values, that have had a non-maximal suppression operator applied, and return
the top N strongest corners. This relatively simple addition to the standard corner detec-
tors tend to stabilize the results when the images have differening contrast and brightness
because the proper threshold is selected automatically and only the strongest corners are
returned. Furthermore, the running time of the sorting algorithm represents the upper

bound on this addition to the corner finding. The final results are not particularly sensi-
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tive to the number of corners that the user finds, and typically we use in the order of 800
corners selected from an image. This stage returns a set of corners C; for image i in the

sequence.

3.2.3 Matching Corners
The next step is to match corners between adjacent images. A local window

around each corner is correlated (using normalized cross correlation at a sub-pixel level)
against all other corner windows in the adjacent image that are within a certain distance
that represents the upper bound on the image disparities. We generally set this upper
bound to approximately 1/3 the length of the longest dimension. Any corner pair within
the specified image disparity that passes a minimum correlation threshold is flagged as a
potential match. This gives us a one-to-many relationship in the putative match set which
iscomplicated. We reduce the complexity by enforcing a simple symmetry test.

The symmetry test is effectively reducing the one-to-many relationship to a one-
to-one relationship where corners strongly match one another. For example, consider a
corner p in the left image, and a corner q in the right image of an image pair. Assume that
the strongest match for p in the opposite image, the right image, is labeled Right(p). Simi-
larly for q the strongest match in the left image, is labeled Left(q). The symmetry test re-
quires the correlation be maximal in both directions. In other words a match (p; q) is ac-

ceptable if and only if p = Left(q), and g = Right(p).

The symmetry test reduces the number of possible matches significantly and
forces the remaining matches to be one-to-one. The total number of possible matches be-
tween images is therefore less than or equal to the total number of corner points. Without
the symmetry test constraint there are far more matches; but these matches are much less
reliable. For wider baseline images, it is useful to relax the symmetry test and to accept
the n best matches (usually in the order of 4). In this case we still require that the results
be symmetric, that is that each of these matches actually be one of the n best in a sym-
metric fashion.
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3.2.4 Local consistency filtering
The next step is to perform some type of local filter on these matches. Theideais

that just by looking at the local consistency of a match relative to its neighbours it is pos-
sible to prune many obvious false matches. Thisis not always done in the literature, but is
a sensible step, since the computational cost of using a loca filter is low. One possible
approach to prune matches is to use relaxation [14]. We use a simpler relaxation-like
process to prune false matches, one based on the concept of disparity gradient [53]. The
disparity gradient is a measure of the compatibility of two correspondences between an
image pair. Assume the first correspondence maps a corner point p; (XLiet; Ydiet) in the
left image to another corner point pr (XLigh; Ylrignt), in the right image. Similarly, a sec-
ond correspondence Maps Corners (X2est; Y2ieit) INt0 (X2right; Y2rignt). The disparity of these
two correspondences are the vectors di = (XLieit — XLright; YLieit — Ydright) @nd do= (X2est —
X2ight; Y2ieit — Y2iight).  The cyclopean separation of the vectors d; and d, (cs(dy,dy))is de-
fined as the vector that joins the midpoints of d; and d,. The disparity gradient is the ra-
tio of the magnitude of the difference of the two disparity vectors d; and d, and the mag-
nitude of the cyclopean separation

|d1—d2|

|es(da, d2)| (34)

disp.grad =

Corner points that are close together in the left image should have similar disparities, and
the disparity gradient is a measure of this similarity. Thus, the smaller the disparity gradi-
ent, the more the two correspondences are in agreement and vice-versa. The disparity
gradient measure has been used in some calibrated stereo agorithms to prune invalid cor-
respondences. Typically, these algorithms reject any correspondence with a disparity gra-
dient greater than 1.5. In our case, we compute the disparity gradient of each correspon-
dence with respect to every other correspondence. The sum of all these disparity gradi-

ents is ameasure of how much this particular correspondence agrees with its neighbours.

We iteratively remove correspondences until they all satisfy the condition that the
correspondence with maximum disparity gradient sum is within a small factor (usually
2.0) of the correspondence with minimum disparity gradient sum. Using this simple dis-
parity gradient heuristic we are able to remove significant numbers of bad correspon-
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dences at a very low computational cost. Typically, at least 40% of the total number of
incorrect correlation matches is removed by this process. There is an additional benefit
derived by performing this localized filtering: Efficiency in the next step. By reducing
the number of false matches in the set the random sampling process requires fewer sam-
ples to converge to correct answer. This is because the numbers of correct matches ap-
pear in a higher proportion and random selection of a subset of these matches will result
in a higher proportion of the selected matches being correct. The number of iterations (n)

required to get a good fundamental matrix is given by the following equation:
N log(1- Pr(Fgood))
log(2- p°)
where Pr(Fgood) is the probability of computing a good fundamental matrix F, and p is

(35)

the proportion of good matches in the putative match set. This step resultsin a set of pu-
tative matches DM;; for image pair i and j.

3.2.5 Computing the fundamental matrix
The original matches between image i and j produced by the correlation process

are labeled as the set M;; , and the filtered matches that pass the disparity gradient test as
the set DM;;. The next step is to use these filtered matches to compute the fundamental
matrix which is the uncalibrated version of the essential matrix. This process must be ro-
bust, since it can not be assumed that all of the correspondences in DM;; are correct. Ro-
bustness is achieved by using concepts from the field of robust statistics, in particular,
random sampling [10, 11, 12, 21, 23] as outlined in Chapter 2. A fundamental matrix, F;;,
is then computed from this minimal set. The set of all corners that support this fundamen-
tal matrix is called the support set SF;;. The fundamental matrix F;;, with the largest sup-
port set S is returned by the random sampling process.

While this fundamental matrix has a high probability of being correct, it is not necessarily
the case that every correspondence that supports the matrix is valid. This is because the
fundamental matrix encodes only the epipolar geometry between two images. A pair of
corners may support the correct epipolar geometry by accident (this is known as degener-

acy []). This can occur, for example, with a checkerboard pattern when the epipolar lines
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are aligned with the checkerboard squares. In this case, the correctly matching corners
can not be found using only epipolar lines (i.e. computing only the fundamental matrix).

This specific type of ambiguity can be dealt with by computing the trilinear tensor.

The PVT supports the computation of the fundamental matrix from a variety of
different agorithms, including Affine, Hartley’ s 8 point algorithm, Phil Torr’s algorithm,
and Kanatani’s renormalization procedure. Furthermore the toolkit allows the computa-
tion of homographies for planar warps and rotations.

3.2.6 Guided matching
Once a putative fundamental matrix has been computed we revert back to match-

ing corners phase as outlined in section 3.2.3. Again we use normalized cross correlation
but we restrict our matching criteria even further by only looking for putative matches
that fall near the epipolar lines defined by the previously computed fundamental matrix.
This back step allows us to generate a new set of correspondences have a higher probabil-
ity of being a proper corresponding pair. One the new putative guided match set GM;; has
be computed, we again perform a disparity gradient filter followed by afinal computation
of the fundamental matrix (Fij) that in practice gives us a larger support set (S5;) than

was computed by the previous stage.

3.2.7 Computing putative triple correspondences
This stage is a simple matching using the transitive property of equality. In prac-

tice, 10 to 25 percent of these putative triplets are not exact matches and are often mis-
matched by severa pixels. These putative triple correspondences are then used to com-
pute the trilinear tensor in a random sampling process. We compute the trilinear tensor
from the correspondences that form the support set of two adjacent fundamental matrices
in the image sequence. Consider three adjacent images, i, ] and k and their associated
fundamental matrices Fj; and Fj.. Each of these matrices has a set of supporting corre-
spondences, which we call SFjj and SFj«. Say a particular element of SFij is (X i ; X ;)
and similarly an element of SFjkis (X} Y} ; Xk Yi). Now if these two supporting correspon-

dences overlap, that isif (X; y;) equals (X y) then the triple created by transitivity then is
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amember of PTjj, the putative triplet set. The set of al such possible supporting triplesis

the input to the random sampling process that computes the tensor.

3.2.8 Computing the trifocal tensor
The trilinear tensor relates the image coordinates of matching corners in three im-

ages instead of two images. It is therefore inherently a more stable, and a more discrimi-
nating quantity that the fundamental matrix [31]. We use the putative triple matches,
PTij«, over three views to robustly computer the trifocal tensor using techniques outlined
in Chapter 2. The result is the trifocal tensor Tjji, for three viewsi,j,k, computed using a
random sampling method [21]. Furthermore a set of triples (corner in the three images)
that actually support the computed tensor is output, which we call STj. The toolkit al-
lows the computation of an affine tensor, and projective tensors using methods outlined
by Hartley [18] or by Torr [23].

3.2.9 Computing the 3D information
We have gone from a set of corner points C;; C; , and Cy; to a set of matches M;; ,

and Mji; to a set of filtered matches DM;; , and DMj; to a pair of fundamental matrices
Fij; Fjx and support SF; and SFi; to a set of putative triplets PTjjy, to a tensor Tijc with
support STijx. The cardinality of each of the supporting match sets aways decreases, but
the confidence that each match is correct increases. The entire process begins with many
putative matches, and refines these to a few high confidence matches. The fina matches
STij« that support the tensor Tijx range in cardinality from 20 to 100, and in practice, have a
very high probability of being correct. As we stated in the introduction, the goa is to
compute the 3D camera positions from the image sequence, not to compute dense depth.
We therefore do not perform the steps in the second phase; rectification and stereo. In-
stead, we take the correspondences that support the overlapping tensors and send them to
a photogrammetric bundle adjustment program [41]. Assume that we have a sequence of
images numbered from 1 to n, and have computed a set tensors Tioz, T2z, ... Tn2)n-1)n) -
Consider the tensors Tij and Tjq which have supporting correspondences (Xi Vi , Xj Y , Xk
yi) in STij and (X Y, X'k Yk » X1 Y1) in STj. Those correspondences for which (X; ; y; ;
Xi; Yi) equals (X5 ; ¥ X'k ; Y'k ) represent the same corner inimagesi, j, kand |. This cor-

responding corner list is then sent directly to the commercia bundle adjustment program
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Photomodeler [41] which, as a commercia product, uses established algorithms. Since
we know the camera calibration, either aproiori or via an autocalibration method such as
the one as outlined in Chapter 5, we use these correspondences, the calibration informa-
tion and Photomodeler to compute the 3D camera positions, aong with the 3D co-

ordinates of the matching features.

3.3 Experiments

Over 20 experiments have been conducted under a variety of lighting conditions
and camera motions. Some of these experimental data samples come from the computer
vision literature, while others have created using modern digital cameras. All of the ex-
perimental results can be found as a part of the Projective Vision Toolkit example sets’.
Due to limitations in space, only a few are presented in this thesis, particularly those ex-
amples that are found in the previous literature because the capture process was not under

our control.

In our first example we begin with a complete video sequence taken of an indoor
scene. The camera operator is performing some “sky writing” motions. The video se-
guence, which has 1400 frames, has the frame extraction process described in section
3.2.1 executed to reduce the frames in the sequence down to only 81. In figure 3.4 we
see a selection of 9 frames from the reduced original video sequence. We proceed to run
the 81 selected frames through the modular process described above to automatically
solve the correspondence problem for the selected subsequence. The correspondences
and the camera calibration parameters are fed into the structure from motion software and
the 3D reconstruction of the 2355 correspondence points and the 80 camera positions are
computed. Aswe can see in Figure 3.5, the “sky writing” experiment is effectively cap-
tured when the camera positions and points are reconstructed in a virtual rendering of the

3D points and cameras and spell out the letters N, R, and C.

2 The Projective Vision Toolkit webpages can be found here: http://cg.scs.carleton.ca/~awhitehe/PV T/
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FIGURE 3.5 RECONSTRUCTED CAMERA POSITIONS AND POINTS FROM A VIDEO CAMERA

Attempts to run the entire 1,400 frames through the process and then into the struc-
ture from motion algorithms would be computationally intense and the bundle adjustment
phase would have problems converging due to the minute baselines present that are

caused by the high video frame rate.
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In our next example, we present results using the well-known Carnegie Mellon House
sequences. In this sequence, the camera was moved with deliberate fixed motions that
offer us a known ground truth. In the tables below, we see how the number of matches

decreases as we step through each of the previously described phases of computation.

FIGURE 3.6 3 SAMPLES FROM THE CM U-BIGHOUSE SEQUENCE, FRAMES 1,6 & 11.

For two views, we have an approximate 10 percent drop in matches for each stage, and a
50 percent drop when we generate putative triples and finally another 20 percent drop for

those triples that support the computed tensor.

. Correlation Locally filtered Fundamental
Image Pair M atches M ei;ches M atches
1-2 417 389 363
2-3 349 321 313
3-4 470 447 420
4-5 487 479 455
5-6 393 373 366
6-7 531 530 518
7-8 422 405 393
8-9 509 506 494
9-10 505 504 487
10-11 433 411 398

Table 3.2 Match counts for pair wise phases

Image Triplet Putative M atches Ten'\s/(l);tﬁggort
1-2-3 185 156
2-3-4 209 196
3-4-5 279 236
4-5-6 269 236
5-6-7 278 168
6-7-8 311 243
7-8-9 310 238

8-9-10 378 353
9-10-11 287 225

Table 3.3 Match counts for triplet phases
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Once we have computed these high confidence correspondences, we proceed by
passing the correspondence information and camera calibration information (obtained
either via a calibration process or autocalibration) into the photogrammetry software to
compute the camera positions and sparse depth information for the corresponding points.
As we can see in Figure 3.7, the major structures of the scene such as the peaks in the
roof are quite evident. Furthermore, the camera positions show the deliberate well con-

ceived motions.
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FIGURE 3.7 RECONSTRUCTED CAMERA POSITIONS AND FEATURE POINTS

For those not familiar with the CM U-Bighouse sequence, the cameras were deliberately
moved forward and backward in certain cases and the cameras are not visible in the re-
construction as shown in Figure 3.7. However as we can seein Figure 3.8, aclose up
view of the cameras shows the backs of the camerasin their original positions. However
the rendering of the cameras in their new positions effectively overwrites the front of the

camerasin the original position.

Finally, in Figure 3.9 we present an image taken from the sequence with the re-

constructed points in black re-projected and overlaid onto the image. The camera posi-
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tions are al so re-projected back onto the image plane, and we can see that the points are

quite accurately projected to their original locations.

e

FIGURE 3.8 RECONSTRUCTED CAMERA POSITIONS WITH OVERLAPS HIGHLIGHTED

CF F—E—TF—J’F :

FIGURE 3.9 ORIGINAL IMAGE WITH FEATURES AND CAMERAS OVERLAID

In our final example, we have another well known sequence, the Oxford basement.
This exampleis particularly difficult because the camerais moving in aforward motion
that similar to that of achangein focal length along the Z-axis. An interesting effect to
note hereis that because the focus of expansion falls within the image plane, the localized
filtering does not appear to be useful way to prune false matches. Upon reflection of dis-
parity gradient, this result makes sense because the magnitude of the individual corre-



59

spondence vectors decrease in size as they near the location of the focus of expansion.
Thiswill result in the cyclopean separation generally being much larger than the magni-

tude of the difference of the two vectors. Thiswill result in very small disparity gradient

values and therefore prevent pruning of correspondences.

.t

FIGURE 3.10 EXAMPLE IMAGE WITH OVERLAID CAMERA POSITIONS AND POINTS

| mage Pair Correlation Locally filtered Fundamental
M atches M atches M atches
01 281 280 241
1-2 288 286 263
2-3 291 289 236
34 273 272 233
4-5 277 276 240
5-6 254 252 219
6-7 279 275 242
7-8 238 232 145
8-9 229 226 148
9-10 256 252 212

Table 3.4 Match counts for pair wise phases

Tensor Support

Image Triplet Putative M atches M atches
0-1-2 198 167
1-2-3 184 134
2-3-4 171 140
3-4-5 180 135
4-5-6 170 144
5-6-7 168 132
6-7-8 114 66
7-8-9 79 46

8-9-10 103 54

Table 3.5 Match counts for triplet phases
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Aswe can see from Table 3.4 the disparity gradient filtering resultsin very little change
in the number of correspondence, while the support sets for both the fundamental matrix

and the tensor reduce the correspondence count by approximately 10-20% each.

Finally, we conclude the experiments section with atabular review of all the ex-
periments conducted and presented as part of the Projective vision toolkit. The exact

match counts for each image pair and triplet can be found in Appendix A.

Average | Average Average Avergge Average
Sequence | Correlation | Filtered Fund. P“t?‘“"e Tensor
Matches Matches Support Triple Support
Matches | Matches | Matches
Exla 452 437 421 278 228
Ex1b 293 214 192 57 44
Exlc 239 123 81 22 18
Ex1d 236 204 148 44 26
Ex2a 185 166 141 31 25
Ex2b 140 138 86 12 12
Ex2c 276 230 115 32 23
Ex3a 233 171 94 24 20
Ex3b 215 173 124 44 35
Ex3c 375 325 157 54 29
Ex3d 343 264 222 104 71
Ex4a 270 218 148 48 36
Ex4b 222 181 90 18 14
Ex4c 175 166 45 7 6
Ex5a 267 264 218 152 113
Ex5b 322 238 199 108 73
Ex5¢ 193 153 135 61 45

Table 3.6 Reduction in feature correspondence for PVT example sets.

3.4 Conclusionsand Discussions

We have presented a modular system for computing a reconstruction of the cam-
era positions from an image sequence. Since our goal is to find the metric camera posi-
tions we do not need to create a dense 3D reconstruction. We assume that we have cam-
era calibration information available, but we do not use this calibration information when
computing the correspondences. Instead reliable correspondences are computed using the
uncalibrated projective method. However, the calibration information is used for comput-
ing the 3D camera positions from these correspondences. The final correspondences,

those that support the trifocal tensor, are error free in the vast mgjority of cases. The re-
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sults are demonstrated experimentally on a number of examples. There is no doubt that

reliable results can be obtained for awide variety of images, both indoor and outdoor.

In performing our experiments we have drawn some conclusions about the best
approaches for each step of the projective reconstruction process. We have described a
novel method for extracting a manageable subset of frames from a video sequence and
we have also described a way to locally filter invalid correspondences based on the dis-
parity gradient. We believe that projective methods in combination with random sam-
pling solve the correspondence problem for many image sequences. The support set of
the fundamental matrix and trifocal tensor are correct correspondences in the vast major-
ity of cases. If the goal is to compute the metric camera positions and the camera calibra-
tion is known, we believe that it is best to send the supporting correspondences of the
tensor directly to photogrammetry software. Our justification is that a bundle adjustment
process is necessary to compute the camera positions accurately and we believe that this

is better done in metric space, rather than projective space.

The software used in these experiments has been made publicly available to facili-
tate expedient future research into the field. To our knowledge, this is the first publicly
available software that allows the computation of the trifocal tensor. The toolkit runs on
most Unix systems, along with Windows NT/2000/XP/98. The input is a sequence of
overlapping images, and the output is a series of fundamental matrices and trifocal ten-
sors, pair wise and triplet correspondences. A more complete description of the toolkit is

givenin Appendix C.
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Chapter 4

Segmenting Video Sequences
4.1 Introduction

Recently, investigation into shot boundary detection schemes has gathered much
momentum [54-63]. Cut detection is seemingly easily solved by an elementary statistical
examination of inter-frame characteristics; however a truly accurate and generalized cut
detection algorithm still eludes researchers. Reliable shot boundary detection forms the
cornerstone for video segmentation applications as shots are considered to be the elemen-
tary building blocks that form complete video sequences. Applications such as video ab-
straction, video retrieval and higher contextual segmentation all presuppose an accurate
solution to the shot boundary detection problem [60, 64, 65, 66]. Automatic recovery of

these shot boundaries is an imperative primary step, and accuracy is essential.

Shot transitions can be classified into four classes based on the 2D image transforma-

tions applied during transition production [54].

e |dentity class: Neither of the two shots involved are modified, and no
additional edit frames are added. Only hard cuts qualify for this class.

e Spatial Class: Some spatial transformations are applied to the two
shots involved. Examples are wipe, page turn, dlide, and iris effects.

e Chromatic Class. Some color space transformations are applied to the
two shotsinvolved. Examples are fades and dissolve effects.

e Spatio-Chromatic Class: Some spatial aswell as some color space
transformations are applied to the two shotsinvolved. All morphing
effects fall into this category.

In this work, we concentrate only on the identity class, as our goal isto improve the accu-
racy of cut detection by introducing a new differencing metric based on stable feature

tracking from frame to frame. The basic idea behind the technique has been shown to

detect fades [62], but we concentrate solely on cuts in this work.



63

4.2 Additional Background

In 1965, Seyler developed a frame difference encoding technique for television
signals [67]. The technique is based on the fact that only a few elements of any picture
change in amplitude in consecutive frames. Since then much research has been devoted to
video segmentation techniques based on the ideas of Seyler. Much work has been com-
pleted in the area of scene detection, shot detection and annotation and as a result, the
methods and algorithms are quite mature. However, a truly accurate cut detection algo-
rithm has yet to be introduced. Any improvements in cut detection will ultimately im-

prove the applications that rely on it.

Hard cuts are the most common transition between shots. A hard cut is the direct
concatenation of two shots without the presence of transitional frames. Formally, the re-
sulting sequence S(x,y,t)is composed by joining two shots S(x,y,t) and S(xy,t) and is
characterized by the following:

Sy, 1) = [[1- ua(t - trcau)] - Sa(X, y, O] + [[Ua(t - tharae)] - S2(X, ¥, )] (4.2)

where thadeur denotes the time stamp of the first frame after the hard cut and u, (t) is the
unit step function (1 for t > 0, 0 otherwise). [56]

FIGURE 4.1: HARD CUT BETWEEN FRAMES 206 AND 207 OF A VIDEO SEQUENCE.

A hard cut produces avisual discontinuity in the video stream aswe seein Figure 1. Ex-
isting hard cut detection algorithms differ in the feature(s) used to measure the inter-
frame differences and in the classification technique used to determine whether or not a
discontinuity has occurred. However, they almost all define hard cuts as isolated peaksin
the features time series. In [56] a complete survey is given on techniques to compute in-
ter-frame difference and classify the type of transition. A variety of metrics have been

suggested to work on either raw video or compressed data and we briefly outline methods
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that have been used in the past, or are currently in use, forming the basis of our compari-

sons. We will briefly outline the techniques next.

4.2.1 Quantifying Inter-frame Differences
The basic idea behind shot/scene detection is to evaluate the similarity of adjacent

frames using some metric. When the similarity measures cross a certain threshold, a
scene change or shot boundary will be classified as occurring. By selecting a better
method to quantify the inter-frame differences results in the classification algorithm be-
coming more accurate and easier to implement. In this section we outline several known

inter-frame difference quantification techniques.

42.1.1 Individual Pixel Differences
Equations (2) and (3) describe a pixel level change metric and a cut classifier respec-
tively.
Dli(x,y) = Lif li(x.y)-1.a(x.y)| > t
0 otherwise (4.2)
S T (43)

In (4.2), we compute the difference between pixel values between images i and i+1 to
create a difference image DI, wheret is athreshold signifying individual pixel difference.
We then compute the overall image difference using (4.3). If the percentage of image
change is greater than a threshold T, we declare a shot boundary. The pixel level detec-
tion metric displayed in (4.2) and (4.3) is the most basic form for raw, uncompressed

video.

Unfortunately, this ssmple metric measure is very susceptible to object and cam-
era motion. Even if camera motion is compensated and pixels are transformed before be-
ing compared, object motion still poses significant difficulties. More sophisticated meth-
ods use optical flow, the number and distribution of motion vectors and the strength of
the residual derived by block matching as features [57, 58]. In addition, performance of
the segmentations relies directly on the adequate selection of two threshold values.
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4.2.1.2 Intensity/color histograms
Histogram change metrics utilize histogrammed values of the pixel data rather

than the pixel values themselves. This makes the entire system more robust to noise and
small object motion. There exist many different histogram possibilities that could be
used as there exist many different color spaces. Color spaces such as RGB, YUV, HSV,
HIS, Y1Q, Lab, Luv, Munsell and opponency colors can all be easily converted from one
to another. As such they can be considered equivalent. In practice, simple histogram dif-
ferencing has shown to be capable and quite efficient. Performance capabilities have
been outlined in [56, 57]. Specific examples of histogram techniques are presented in
[67, 68, 69]. Note that in general, for histogram techniques, greater improvements in cut
detection performance can be attained by making a proper choice for the categorization
algorithm than can be attained by using alternate color spaces or by fine tuning the histo-
gram difference functions [55].

4.2.1.3 Edge based features
The edges of objects between two adjacent frames in a cut cannot usually be

found and appropriately put in correspondence. An edge based feature approach was pre-
sented in [70] that used the so-called Edge Change Ratio (ECR) and was further refined
in[71]. The ECR is defined as number of dilated edge pixelsin two adjacent frames that
do not conform. Edges are detected using a Canny [72] edge detector, and in order to
handle object motions a dilated edge is compared in a windowed area around the pixels
rather than a single pixel. Such a method is prone to failure in the presence very fast
camera or object motion, multiple moving objects, moving cameras with moving objects,
and occlusions. A comparison of histogram techniques against the edge change ratio
technique has shown that the histogram techniques provide similar results without the
added complexities [55].

While the ECR methods provide advances in capabilities, especialy for fades and
dissolves, they suffer greatly increased runtimes due to the added complexities. A recent
review [73] managed to get real time capabilities of the edge feature-based method pre-

sented in [71] but only on micro-frames of 88x72 pixels. When the frame sizes were in-
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creased to 352x288 (a more standard resolution) the frame-processing rate dropped to

approximately 2 frames per second.

4.2.2 Classifying Differences as cuts and non-cuts
Once a metric that quantifies the inter-frame differences has been defined, a clas-

sifier isrequired to separate the differences into cuts and non-cuts. Two basic classifica-
tion techniques that revolve around thresholding techniques as linear discriminators have

been proposed; they are global and adaptive thresholding.

4221 Global threshold
The input to a global thresholding technique is al of the difference values for a

given video, which in the ideal case is supposed to show a single large peak at hard cut
locations. A hard cut is declared each time the feature difference value surpasses a glob-
aly fixed threshold. A common problem of global thresholding is that in practice it is
impossible to find a single global threshold that works with all kinds of video material
[55].

4.2.2.2 Adaptive threshold
The input to an adaptive thresholding technique is a windowed subset of differ-

ence values for a given video, which in the ideal case is supposed to show a single large
peak at cut locations. A hard cut is detected based on the difference of the current feature
values with respect to its local neighborhood. Usually a temporal dliding window of size
w centered on the current frame is chosen to represent the local neighborhood [55]. A cut
is classified when the ratio between the largest and the second largest value in the win-

dow surpasses a second threshold [59].

In Figure 4.2, shots are easily seen to be length 2 (664-665) and length 4 (666-
669). Both adaptive thresholding techniques in combination with color histogram differ-
ences between frames have been shown to lead to higher performance [59, 60]. However
this type of adaptive thresholding is prone to false negatives in highly edited sequences.
We have found that in commercial video sequences, shots of length two, three and four

frames are more common than one would expect. Figure 2 shows a sequence with sev-
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eral cuts that may be missed when the window in an adaptive thresholding technique is

too large.

FIGURE 4.2: SEQUENCE FROM THE MOVIE PSYCHOs.

4.3 Feature Tracking for Quantifying Dissimilarity

We propose in this paper a new approach that uses feature tracking as a metric for
dissmilarity. Furthermore we propose a methodology to automatically determine a
threshold value by performing density estimation on the squared normalized per-frame
lost feature count. It has been reported that the core problem with al motion-based fea-
tures is due to the fact that reliable motion estimation is far more difficult than detecting
visual discontinuity, and thus less reliable [55]. Effectively, a smple differencing tech-
nique is replaced with a more complex one. Experimentally we have found that the pro-
posed feature tracking method performs flawlessly on all simple* examples where pixel
and histogram based methods did not achieve such perfect results.

Track Fea Prune false Compute
QUANTIFYING For tures from tracking with and storethe
INTER-FRAME Framel to the Minimum square of %
DIFFERENCES Each 1+1 Spanning Tree feature loss
Framel,
Compute
YES Obvious
Histogram Compute the Discriminator
COMPUTING the squared PDF and Obvious
LINEAR % feature [T| first derive- Discriminator?
lossinto 101 tive of the
Compute Can-
NO didate Set
Thresholds

FIGURE 4.3: DIAGRAM OF SYSTEM TO COMPUTE CUTS

We continue by outlining the feature tracking method, an outlier pruning algorithm and a

signal separation methodology. We follow up in the next section with a method to dy-

% All copyrights © belong to their respective owners. Psycho isan Alfred Hitchcock movie, produced by
Shamley Productions and distributed in North America by Universal Pictures.
* Here we define simple to be cases of clearly obvious cuts, which were well separated over time and space.
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namically select a global threshold. In Figure 4.3 we see the entire flow chart for com-
puting the positions of cuts in a video sequence. Each block within the diagram is de-

tailed in this section and the next.

4.3.1 Feature Tracking
Previous feature based algorithms [70, 71] rely on course-grained features such as

edges and do not track edge locations from frame to frame. Rather they rely on sufficient
overlap of adilated edge map and search avery small local area around the original edge
locations. In contrast, the proposed method of tracking fine-grained features (corners) on
a frame-by-frame basis in less constrained by the original location due to the pyramidal
tracking approach. This alows the proposed method to be more robust to object and
camera motions. Cuts are detected by examining the number of features successfully
tracked (and lost) in adjacent frames, refreshing the feature list for each comparison.

We utilize a corner-based feature tracking mechanism to indicate the characteris-
tics of the video frames over time. As we track corner features over time, we detect pro-
duction features within the video and can annotate the sequence depending on the fea-
tures that are successfully tracked over time versus those that are lost. Feature tracking is
performed on the luminance channel (grey map) for the video frames. The luminance
channel is computed as follows:

Luminance = Red*0.299 + Green*0.587 + Blue*0.114 (4.9

The feature tracker we use is based on the work of Lucas and Kanade in [48]. Thiswork
was further developed by Tomasi and Kanade in [49] of which Shi and Tomasi provide a

complete description in [50].

Briefly, features are located by examining the minimum eigenvalue of a 2x2 im-
age gradient matrix that is noticeably similar to the Harris corner detector [44]. The fea-
tures are tracked using a Newton-Raphson method of minimizing the difference between
the two windows around the feature points. We continue by presenting a very brief out-
line of the work by Tomasi et a [48, 49, 50].
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Given a point p in an image |, and its corresponding point q in an image J, the displace-
ment vector o between p and g is best described using an affine motion field:
d=Dp+t (4.5)
where
D= B: gﬂ (4.6)
is a deformation matrix and t is the translation vector of the centre point of the tracked
feature window. The trandlation vector t is measured with respect to the feature in ques-
tion. Tracking feature p to feature g is simply the problem of determining the six parame-
ters that comprise the deformation matrix D and the trandlation vector t. In the case of
pure tranglation, D will be the identity matrix and thus
d=p+t 4.7
Because of this, the case of pure tranglation is computationally simpler and thus
preferable. Since the motion between adjacent frames of standard video is generally quite
small, it turns out that setting the deformation matrix to identity is a safe computation
[50], leaving us with the trandation vector being exactly the displacement vector. Com-

plete details for the tracking equations and feature selection can be found in Chapter 2,
Section 11.

FIGURE 4.4: END RESULT FOR FEATURE TRACKING OVER SEVERAL FRAMES.
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In Figure 4.4, stationary objects in the foreground and a quickly moving object (noted by
the long motion vectors) in the background. Gray squares are lost features; white squares

represent the tracked feature and its original position.

The displacement vector is computed using a pyramid of resolutions because
processing a high resolution image is computationally intensive. The multi-resolution
pyramid within the feature tracker reduces the resolution of the entire image, say by a
factor of 2. Tracking occurs by tracking a features general areain the lowest resolution
and upgrading the search for the exact location as it progresses back up the pyramid to
the highest resolution. An example of tracked feature and displacement vectors is given

inFigure 4.4.

While tracking features it is possible that an extremely large object motion be-
tween frames does occur. It has been noticed that in such cases the tracking mechanism
begins to fail because the disparity between adjacent frames is too large. The result, fea-
tures are lost and cannot be tracked any further. This fact indicates that some large shift
in the adjacent frames has occurred and can be handled at the cost of substantially higher
processing time by increasing the pyramid dimensions or by removing the identity con-
straints of the matrix D.

4.3.2 Pruning False Tracking
In the case of acut at frame i, all features being tracked should be lost from frame

i toi+1l. However, there are often cases where the pixe areas in the new frame coinci-
dentally match features that are being tracked. In order to prune these coincidental
matches, we examine the minimum spanning tree of the tracked and lost feature sets.
We can see from Figure 4.5 a, in the case of a cut, that there is avery small percentage of
features that are tracked. Thisis clearly an erroneous situation because the two consecu-
tive frames are so obvioudly different. We can remove some of these erroneous matches
by examining properties of the minimum spanning tree of the tracked and lost feature
sets. By severing edges that link tracked features to lost features we end up with severa
disconnected components within the graph. Any node (feature) in the graph that be-

comes a singleton (not connected to any other feature) has its status changed from tracked
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to lost, and is subsequently included in the lost feature count. The property we are ex-
ploiting here is the fact that erroneously tracked features will be minimal and surrounded

by lost features. Clusters of tracked (or lost) features have localized support that we use
to lend weight to our assessment of erroneous tracking

©

FIGURE 4.5. THREE CONSECUTIVE FRAMES FROM A SEQUENCE.
(a) shows a very high proportion of successfully tracked features from the previous frame to current frame
(b) shows successfully tracked features from (@) (previous) to (b) (current) (c) shows those features cannot
be found in very high proportion indicating a cut. Above each frame is the minimum spanning tree for each
of the feature sets, (+) are tracked features, (X) are lost features.
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FIGURE 4.6: THE RESULTS OF SQUARING.
Top isthe original signal, bottom is the squared signal. The separation between the cuts
and the non-cuts has been greatly increased.

Our inter-frame difference metric is the percentage of lost features from frames |
to i+1. This corresponds to changes in the minimum spanning tree, but is computation-
aly efficient. Because we are looking to automatically define a linear discriminator be-
tween the cut set and the non-cut set, it is advantageous to separate these point sets as
much as possible. In order to further separate the cut set from the non-cut set, we square
the percent feature loss which fallsin the range [0..1]. This has a beneficial property of
ensuring the densities of the cut set and the non-cut set are further separated and thus ease
the computation of adiscriminating threshold. Theidea hereisthat in the case of optimal
feature tracking, non-cut frame pairs score 1 (al features tracked) and cut frame pairs
score 0, no features tracked. Squaring, in the optimal case, has no effect as we are al-

ready maximally separated. However, in practice, squaring forces the normalized values
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for non-cut frame pairs closer to zero. Figure 4.6 shows the effect of stretching on the

inter-frame differences.

4.4 Automatically Determining a Linear Discriminator

Having a difference metric and a method to further separate the cut set from the
non-cut set, we can now compute the linear discriminator for the two sets. There is no
common threshold® that works for all types of video. Next we present an agorithm to
auto-select a global threshold. There are two classes of frame differences, cuts and non-
cuts; and our goal isto find the best linear discriminator that maximizes the overall accu-
racy of the system. The cut set and the non-cut set can be considered to be two separate
distributions that should not overlap, however in practice they often do, as illustrated in
Figure 7b. When the two distributions overlap a single threshold results in false positives
and false negatives. An optimal differencing metric would ensure that these two distribu-
tions do not overlap; in such a case the discriminating function is obvious and accuracy is
perfect. The quality of the difference metric directly affects the degree to which the two
distributions overlap, if any. Until an optimal difference metric is proposed, the problem

of optimal determination of the discriminator must be considered.

To avoid the problems illustrated in Figure 2 that may occur with a windowed adaptive
threshold, we have opted to examine the density of the recorded inter-frame difference
values for an entire sequence. The idea here is that there should be two distinct high-
density areas, those where tracking succeeded (Low feature loss) and those where track-
ing failed (high feature loss). In practice, this situation appeared about 50% of thetimein
our data set. We will introduce the idea of a candidate set in section 4.4, which is the set
of features that can be discriminated by zero crossings of the probability density function
that characterizes the densities of the inter-frame differences. It needs to be noted here
that while we examine the density for the entire sequence to determine a global threshold,
it is possible to apply the method outlined next in a windowed manner to determine local-
ized thresholds.

® Note that a threshold is a linear discriminator with the function y = some_value.
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FIGURE 4.7: (A) NON-OVERLAPPING DISTRIBUTIONS, (B) OVERLAPPING DISTRIBUTIONS
(a) the discriminator is obvious. (b) the cut set on the right and the non-cut set on the left.
Theideal discriminator lies within the overlap region.

4.4.1 Density Estimation
In order to auto-select athreshold, we examine the frequency of high and low fea-

tureloss. We are looking to exploit the fact that the ratio of non-cuts to cuts will be high,
and therefore the ratio of low feature loss frame pairs to high feature loss frame pairs will
also be high. Asthe frame to frame tracking of features is independent of all other video
frames, we have n independent observations from an n+1 frame video sequence. The ex-
trema of the probability density function can be used to determine the threshold to use.
We can use the statistical foundations of density estimation to estimate this function.

The intention of density estimation is to approximate the probability density function f(e)
of arandom variable X. Given that we have n independent observations X, ..., X, (our
tracked feature percentage squared) from the random variable X (our video sequence).
The kernél density estimator for the estimation of the density value f(x) at point X is de-
fined as

A~ 1 n (R
f=% K(X' - Xj 4.8)

Where K(e) is the so-called kernel function, h is the bandwidth (window size), and n is

the number of samples (number of frames-1). There have been variety of kernel func-
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tions presented in the past and we performed an empirical evaluation of the 9 kernel func-
tions listed in Table 1 to determine which kernel is the most appropriate for our problem.

Table 1: Density Estimation Kernel functions.

Kernel Name | Kernel Function K(a)
Uniform Yaa
Rectangle o
Epanechnikov ¥(1l—a)
Biweight 15/16 (1 —a°)?
Triweight 35/32 (1-a°)°
GaLss 1 o
aussian —
Jor
Triangular la|)
. T T
Cosine Trace Zcos[E a]
Laplacian %é“

We want a kernel estimator that will facilitate the identification of extrema in the
probability density function. In Figure 8 we examine each of the kernels in detail to
evaluate the effects the smoothing kernel has on each. It is important to select a kernel
that does not over smooth, resulting in aloss of discrimination capabilities. Aswell, we
must not select a kernel that under-smoothes, resulting in aragged signal and thus a mis-
representation of the position of extrema. In the case where the distributions overlap, we
determined that the triangular kernel provided the best smoothing properties.

Generaly speaking, we found that the Laplacian, Uniform and Rectangular ker-
nels under smoothed the signal, leaving too many extrema for reliable subsequent analy-
ss. We adso found that the Gaussian, Triweight, and Epanechnikov kernels over
smoothed the signal, making accurate determination of extrema difficult. The remaining
3 kernels, Biweight, Cosine Trace and Triangular appeared to have a very similar effect
on the original signals. The triangular kernel was selected from the remaining three be-
cause it did not over-smooth locally, making the determination of extrema easiest of the
three. In Figure 4.8 we see an analysis of the all kernels for a single data source with
non-overlapping distributions. The results presented were consistent across many differ-
ent samples from our data set. From Figure 8 we draw the conclusion that in the case that
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the two distributions do not overlap, a smoothing of the function will not destroy the ob-

vious discriminating threshold.
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FIGURE 4.8: DETAILED EXAMINATION OF KERNEL FUNCTIONS.
(a) Examination of all 9 kernels for the same video sequence.  (b) all nine kernels at
the high feature loss areas. (c) Biweight, Cosine Trace, and Triangular kernels

Now that the triangular kernel has been selected to smooth our function, we need
to determine the bandwidth (window size) for the kernel. We performed a analysis with
kernel widths 3,5,7,9,11,13,and 15. In Figure 9 we show atriangular kernel for window
sizes 3,7,11 and 15. Widths 9 through 15 represented almost identical curves and thus
any kernel width over 7 provided no further information and likely is over smoothing.
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The apparent extrema that appeared in widths 3 and 5 indicated under smoothing. By
elimination, we were left with a kernel width of 7, which has provided good resultsin our

experiments.
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FIGURE 4.9: TRIANGULAR KERNEL AT VARIOUS BANDWIDTHS (WINDOW SIZES)

4.4.2 Computational Considerations
In the case of an exact computation of the density estimates, the kernel function

must be evaluated O(hn?) times. This increases the computation time as the number of
frames becomes large (keep in mind that a 2 hour movie contains 216,000 frames). An
aternative, and faster, way is to approximate the kernel density estimate is to use the
WARPiIng (Weighted Average of Rounded Points) method [15] The core concept behind
WARPINg is to effectively histogram the data into bins of length d. The bin centre of its
corresponding bin then replaces each observation point for subsequent computation. A
typical choicefor d isto use h/5 or (Xmax-Xmin)/100. In the latter case, the effective sample
sizei can be at most 101. This property nicely reflects our situation, where we are keep-
ing track of the percentage of features tracked per frame pair, which isin the range of 0 to
100 percent, or 101 hins.

For the WARPing method, the kernel function needs to be evaluated only at O(h-r/d) plus
the initial pass to histogram the data being O(n). In total, the number of stepsis O(n) +
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O(h-r/d) where h is our window width (7), therange | is 101 and the bin length is 1. This
reduces the number of steps to O(n) + O(hr). Since n greatly exceeds h-r (707 in our
experiments), we are have an upper bound of O(n). This is considerably faster than the

exact computation, when the sample sizeislarge.

4.4.3 Non-Overlapping Distributions
Non-overlapping sets of distributions are very easily determined by looking for a

large plateau of zero density. The first appearance (traveling the curve from 0 to 100) of
a large plateau indicates the range of the separation point. Selecting the extreme end
point (closest to the non-cut set) for the threshold has yielded the correct result on all

cases of non-overlapping distributions in our test suite.

4.4.4 The Candidate Sets (Overlapping Distributions)
We now introduce the ideas around what we term the candidate sets. We define 3

candidate sets, where each set contains the frames that maximize the precision, F1 and
recall rates. Precision is the portion of the declared cuts that were correct. Recal is the
portion of the cuts that were declared correctly. F1 is acombination of precision and re-
call. A complete description of these terms and their formulae are given in the experi-
ments section. Depending on user need, precision, recall or best overal performance,
these candidate set thresholds are now able to be determined.

The candidate sets are 3 sets that for convenience we will call the precision set (P),
the F1 set (F) and therecall set I. These sets have the following property:

e RcFcP
In the case of non overlapping sets, precision, recall and F1 scores are al 1.0 and the
frames in each set are the same. In the case of overlapping sets, the frames in the preci-
sion set appear in the F1 set, and those in the F1 set appear in the recall set.

The candidate sets are determined by examining zero crossings of the first deriva-
tive of the computed probability density function (PDF). There are often many consecu-

tive zero crossings of the function over time, so we use a modified function G(x) to make
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the large changes in density more apparent. The first derivative of the PDF f(x), is modi-
fied to afunction G(x) using the following rules:
G(x) =Ag(x) +g(x+1):
if f'(X)<0theng(x)=0 (4.9
if f'(x)>0theng(x)=1

In Figure 10, we see the original first derivative function and the modified function.
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FIGURE 4.10: (A) ORIGINAL PDF (B) MODIFIED FIRST DERIVATIVE (G(X))

The zero crossings, starting from 1.0 and following G(x) as x decreases are used to
determine the thresholds for each of these sets using the criterialisted here:
e (P)isThefirst zero crossing

e (F) The position of the minimum of PDF corresponding to the plateau of G(x)
given:
If the next zero crossing has opposing direction as the first (i.e. is not u or
n shaped) and is part of the plateau of first zero crossing use this plateau,
otherwise use the next plateau.
e The next subsequent zero crossing
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The arrows in Figure 4.10(b) point to the zero crossings used. The first zero crossing is
at 0.98 (P) and because the next zero crossing at 0.93 is also an upwards direction (u
shaped), we skip to the next plateau to determine F. The next zero crossing (not on the
plateau) is used for R.

45 Experiments

In this section we perform a variety of experiments on data sources that were
deemed to be difficult®. We outline our metric for comparing the proposed method
against other methods followed by the experimental results. We conclude this section
with some information on running time and how feature count and selection will affect

the system.

4.5.1 Comparison Metrics
Contingency tables are often used in the quantification of the results categoriza-

tion systems. Considering the system to be a 2-category classifier (cuts and non-cuts) we
can do the evaluation of the effectiveness using a contingency table and its associated sta-
tistics. Commonly, precision and recall are used, however we will also address accuracy,
error and the so-called F1 score as means of evaluating the effectiveness of the cut detec-

tion.

We continue by defining each statistic available for use in our evaluation. All of
the statistics are calculated based on a so-called contingency table, where our classifier
(cut detector) detects cuts (positives) or non-cuts (negatives). The cut detector can prop-
erly detect a cut (true positive), improperly detect a cut (false positive), properly detect a
non-cut (true negative), or improperly detect a non-cut (false negative). The elementsin
the set of cuts and non-cuts will never intersect because a frame cannot be double classi-
fied as both a cut and anon-cut. Our contingency tables have this form:

True Cut True Non-Cut
Classified Cut True Positive (T™) False Positive (F")
Classified Non-Cut | False Negative (F) True Negative (T")

® By difficult we mean frames with quick motion, both camera and object, many cuts in short succession.
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T', F', F, and T are the counts that reflect how the classified categories matched the cor-

rect categories. From the contingency table we can compute the following statistics:

Accuracy — This measures the percentage of all decisions that were correct decisions.
Range: 0to 1, with 1 being the best score. It is defined as:

T+T

= (4.10)
T+T+F+F

Accuracy =

Error — This measures the percentage of all decisions that were incorrect decisions.
Range: 0 to 1, with 1 being the best score. It is defined as:

Error = % or: 1-Accuracy (4.11)
Precision — This measures the percentage of the classified categories that were correct.
Range: 0to 1, with 1 being the best score. It is defined as:

+

Precision=———
T+F

(4.12)
Recall — This measures the percentage of the correct categories that were classified.
Range: 0to 1, with 1 being the best score. It is defined as:

Recall = — (4.13)
T'+F
F1-score — This measures a combination of precision and recall. Range: 0to 1, with 1
being the best score. It isdefined as:

_ 2xPrecisionx Recall

F1 — (4.14)
Precision + Recall
Intermsof TV, F', and F:
F1-— 2T (4.15)
2x T "+ FT +F~

The F1 scoreis the only statistic that is worth trying to maximize on its own. Per-
fect precision can be achieved by never detecting a cut and perfect Recall by always de-
tecting acut. A truly accurate system will assign the correct categories and only the cor-
rect categories, maximizing precision and recall at the same time, and therefore maximiz-

ing the F1 score.
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Attempting to maximize the accuracy score, thus minimizing error, is an inappropriate
measure in the case because the size of the non-cut set is so large in comparison to the cut
set. Simply declaring all frames as non-cuts will result in a high accuracy. Any metric
for cut detection that uses the True negative number in its evaluation is not a good indica-
tor of quality because of the distribution of cuts to non-cuts in video data. This is casu-

ally confirmed if we consider the redundancy that video data contains.

In [28], the authors suggest an alternate computation for accuracy as.

FF
T"+F T"+F*

Accuracy = 1- (4.17)

With some algebraic manipulation, we can see their definition of accuracy issimply
Accuracy = Precision + Recall — 1 (4.18)

As Matter and Robinson’s metric is afunction of precision and recall, we will omit using
it and rely on the more standard metrics of precision, recall and the F1 score.

4.5.2 Experimental Results
To start, we perform a set of experiments to compare the proposed method agai nst

a histogram-based method, specifically ‘cutdet’ from the MOCA project [27]. We used
the precompiled version of cutdet and treated the internals as a black box. We ran a se-
guence through cutdet with various threshold settings to determine its characteristics. We
examined the precision, recall, and F1 score. The sequence isfrom atelevision show and
the quality of the capture is quite high. The action and motion is not extreme, and the
colours are vibrant and distinct. It was assumed, based on the ideas behind histogram
comparisons, that this sample would highlight the capabilities of the cutdet system. In
Figure 11 we see that the F1 score has platitude at threshold 0.45 which indicates the best
threshold for cutdet on this particular sequence. The exact values of precision, recall and
F1 score are: 1, 0.941, and 0.969 respectively. In the case of perfect detection, precision,
recall and the F1 score will all be 1. As the F1 score hit a platitude at 0.969, the cutdet
method would be unable to achieve a perfect score in this example.
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FIGURE 4.11: GRAPH OF PRECISION, RECALL AND F1 SCORESFOR A SEQUENCE RUN THROUGH THE CUTDET

SYSTEM.

When the proposed method was run against the same sequence, it received a perfect de-
tection rate. The clear selection of threshold can be seen in Figure 12 as the feature track-
ing was clearly working very well and the separation between the cut set the non-cut set

is obvious due the large space of zero density between the cut and non-cut sets.
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FIGURE 4.12: DENSITY ESTIMATION GRAPH.

In the experiment that follows, a selection of video clips that represent a variety of
different video genres are used for cut detection. In Table 2, we present the data set with
explanation why it is being used in the experiments. We compare the results of the pro-
posed method against a pixel-based method with localization information and a histo-
gram based method (specifically cutdet, from the MOCA project [27]). The localization
information in the pixel based method relies on the statistical improbability that the posi-
tions of pixel values will remain the same over a cut frame pair. In this experiment, we

are attempting to maximize the F1 score. For the proposed method, we ran each sample
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through the system once and computed the F1 candidate set threshold. For cutdet, and
the pixel based method we ran 13 different thresholds and computed the precision, recall
and F1 scores for each of the runs. The best F1 score was selected for comparison. This
effectively required the two methods to be executed 13 times in comparison to the 1 time
for the proposed method.

Table 2: Experimental data set

Sour ce

L abel Characteristics of video data Genre
A Cartoon clip. Substantial object motion. Cartoon
Substantial object motion. Thisclip istaken from a
B film where a blue filter was used to simulate low Action

lighting conditions.
Black and white movie. Substantial action and mo-

C tion. Many close proximity cuts. Thisclipisthe Horror
murder scene from the movie psycho.

D High quality [Ipipolar(ictl’ of atelevision show. Drama

E Low quality [Ipipolarict’] of atelevision show. Sci-Fi
Commercial, no cuts, quick motion, many produc-

F tion effects. Meant to show that dissolves are not Commercial
mistakenly classified as cuts.

G Commercial sequence from the MOCA Project Commercial

Q Video abstract from the MOCA Project Comedy/Drama

I News Sequence from the MOCA Project News/Documentary

Trailer for afilm. Thisclip has many computer gen-
J erated features, many close proximity cuts. Trailer
for the movie Lawnmower Man.

Trailer/Sci
Fi/Action

In Table 3, we present the results of running the 3 methods on the dataset. The
proposed method outperforms both the histogram-based method and the pixel based
methods. In most cases (8 of 10) the proposed method provides the maximal F1 score. A
simple statistical analysis of the overall capabilities is given at the end of Table 3. The
average, variance and standard deviation for the 10 samples were computed. On average,
the proposed method significantly outperforms the other two methods. The variance and
the standard deviation show that the results offered by the proposed method are also more

stable across a variety of different video genre.
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Table 3: Results on data set.

Proposed feature Pixd Ba}%d Histogram
tracking method methqd vv_|th lo- | MethodCut Det
calization (MOCA)
Y Y 9
2 S | 8 g;g n | 8 E n | 8 E m
S o V. Q@ o . Q- = v, Q. o
® S | © S | — S | T
A 1 1 1 1 1 1 1 1 1
B 1 1 1 [.825|.825|.825| 1 |.375| .545
C 595 | .870 | .707 | .764 | .778 | .771 | .936 | .536 | .682
D 1 1 1 1 1 1 1 941 | .969
E 938 | 1 |.968 | .867 | .867 | .867 | .955 | .700 | .808
F 1 1 1 0 0 0 1 1 1
G 810 | .944 | 872 | .708 | .994 | 809 | 1 | .667 | .800
H 895 |.895|.895|.927| 1 |.962| .971 | .895 | .932
| 1 1 1 1 1 1 1 .500 | .667
J 497 | .897 | .637 | .623 | .540 | .591 | .850 | .395 | .540
AVG | .874 | 961 | .908 | .774 | .800 | .783 | .971 | .701 | .794
VAR |.034 | .003 | .018 | .090 | .101 | .093 | .002 | .060 | .036
?)-II-EE\)/ 185 | .054 | .134 | .301 | .318 | .304 | .048 | .246 | .190

It is not surprising that ‘cutdet’ out performs the proposed system in H, because
the abstract was created by the MOCA project from which cutdet originates. However, it
is surprising that the pixel based method outperformed both. In examples C and J, the F1
score was not maximized as the heuristic to determine the F1 candidate set threshold did
not achieve the best value, rather a good value. Within the range of the F1 candidate set

threshold plateau, maximum F1 was achievable.

4.5.3 Processing Speed
For al the experiments given in Table 3, we tracked 100 features with a minimum

inter-feature distance of five pixels. The processing time for a frame pair is approxi-
mately 70 milliseconds on a 2.2 GHz Intel processor on frames sized 320x240. Thisis
significantly faster than [28] without alossin granularity. Unlike the pixel and histogram
based methods, the running time of the tracker is not a function of the size of the video
frames and remains constant regardless of the video size. Tracking over an n-frame in-
terval can cut thistime by afactor of n. By skipping every other frame, we still maintain
the 70ms processing time per frame pair, but have reduced the number of frames by a
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factor of 2. By increasing the number of frames skipped, we decrease the frame accuracy
to which we can report, and risk losing tracking context in the presences of large object
and cameramotions. We ran severa data samples through the system set to skip one and
two frames between tracking. As expected the running times reduced to approximately
half and a third respectively. However, we experienced a reduction in the F1 scores in
half the samples and all the samples for skipping one and two frames respectively. Play-
ing with the tracking parameters may reduce the error, but is beyond the scope of this

work.

45.4 The Effect of Feature Selection
We have chosen the number of features to track to be 100. However it should be

noted that the optimal number of features to track has yet to be determined, if at al possi-
ble. Logicaly, there must be enough features to track and ensure a certain amount of
coverage of the frame, however selecting too many features will result in features that are
less than ideal being selected for tracking and therefore increase the likelihood that those
features will not be reliably tracked from frame to frame. We have performed some ru-
dimentary experiments that show as the number of features selected to be tracked de-
creases, and thus the overall quality of those features (for tracking purposes) increases,
the percentage of lost features in a cut situation increases overall. Specifically, when the
number of features tracked decreases, the threshold that is automatically selected ap-
proaches 100 on simple sequences. However, when the number of features tracked de-
creases, the system becomes more susceptible to object motion, occlusions and very
quick camera motion because we lack spatial coverage of the frame, therefore reducing

the accuracy on more difficult sequences.

Another selection option that needs consideration is how wide the non-maxima
suppression window should be. This option is effectively selecting the best corner fea-
ture within a given radius. By selecting a radius that is too large will result in features
being selected that are less optimal for tracking while a radius that is too small resultsin
feature clustering that is prone to loss due to object motion and occlusions. We have
found empirically that a radius of five pixels provides good results; a radius of fifteen

pixels provides worse results.
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4.5.5 Known Problem Areas
There are some very clear restrictions on this feature-based method for detecting

cuts. Primarily, the quality of the digital video plays a fundamental role because we are
tracking fine-grained features (corners) rather than coarse-grained features such as edges,
color blobs, and histograms. Overly noisy digitization will result in the feature tracking
having a difficult time properly tracking selected features and will result in a higher over-
all percentage loss of tracked features. This will result in an overlapping of the cut set
distribution and the non-cut set distribution and therefore result in an overall lower accu-
racy. Aswell, dropped frames in the digitization process may result in unnatural spaces
between frames. This will aso cause the feature tracker to potentially lose features and
categorize a cut. To complicate the matter, it is not clearly defined whether or not these
situations should be classified as cuts. Other anomalous glitches in the digitization proc-
ess will result in feature loss as well. The figure below illustrates digitization artifacts
that can cause problems for our fine-grained feature tracker because of the high gradient

changes on the digitization scan lines.

(@ (b)
FIGURE 4.14: DIGITIZATION ARTIFACTS
(a) origina frame (b) exemplary amplification of artifact errors. Notice the lines around
the explosion.

Each of the examples in Figure 15 represents problems that the proposed cut de-
tection method faces. Because we are tracking features in the luminance space, we are
subject to feature loss when large changes in brightness occur. The system is robust to
gradual dissolves, however high speed dissolves (over a small number of frames) cause
problems because of the large the number of pixels that change greatly. This results in
the tracking windows being very different and the correlation computations result in re-

siduals that are simply too large. Finally, we have noticed in several cases that problems
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occur with computer-generated video data. Thisis usually due to the fact that the objects
in computer generated video move at rates that are unusually quick. Take for example
the 3 consecutive frames from Figure 15, part e The motion exceeds what a normal ob-
ject videotaped at 30 frames per seconds (often because animation is at 10 frames per

second), and failure occurs.

a) Sudden flash, causing
an abrupt changein lu-
minance, improperly
declared a cuit.

b) A longer sequence of
changed illumination,
returning to original il-
[umination.

c) A quick dissolve.
Changesin luminance
declared as cuts, or fade
to black because the
large change in pixel
values caused the track-
ing systems correlation
checksto fail.

d) A quick dissolve
over two frames. Often
declared as two consecu-
tive cuts because the
pixel changes cause the
tracking systemsresid-
ua checksto fail.

€) Computer generated
graphics that move
sharply. Thereisaso
little texture alowing
inferior selection of fea-
tures for tracking.
FIGURE 4.15: EXAMPLES' OF PROBLEM SITUATIONS.

" All copyrights © belong to their respective owners. Lawnmower Man is a Brett Leonard movie, produced
and by distributed in North America by New Line Cinemas.
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4.6 Conclusionsand Discussion

We have presented a fine-grained feature-based method for video segmentation,
specifically cut detection. By utilizing feature tracking and an automatic threshold com-
putation technique, we were able to achieve F1, recall and precision rates that generally
match or exceed current methods for detecting cuts. The method provides significant im-
provement in speed over other feature-based methods and significant improvement in
classification capabilities over other methods. The application of feature tracking to

video segmentation is a novel approach to detecting cuts.

Due to problems associated with a window based adaptive thresholding, we have
introduced the concept of candidate sets that allow the user to prejudice the system to-
wards results that are suitable to individual needs. This kind of thresholding is a novel
approach to handling the overlapping region of two distributions, namely the cut set and

the non-cut set in video segmentation.
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Chapter 5

Autocalibration from the Fundamental M atrix

5.1 Introduction

Calibration is the process of computing internal physical quantities of a camera’s
geometry. Parameters such as focal length, center of projection, and CCD sensor array
dimensions are required in order to get 3D information from a series of images. Auto-
calibration has become popular recently because of the desire to create 3D reconstruc-
tions from a sequence of uncalibrated images without having to rely on a formal calibra-
tion process. The standard calibration model for a pinhole camera has five unknown in-
trinsic parameters defined in a 3x3 calibration matrix (K). These parameters are the focal
length, aspect ratio, sensor skew and the center of projection x and y (the principal point).
The accurate estimation of these 5 parameters directly from an image sequence without

having aformal calibration processis the ultimate goal of autocalibration.

Autocalibration works by computing aforementioned quantities directly from 2D
image correspondences, and then using invariants of these quantities to find the camera
calibration. The fundamental matrix, and the full projective reconstruction are two quan-
tities that can be computed from a set of 2D image correspondences, and they are the ba-
sis of most autocalibration algorithms. As such autocalibration algorithms can be divided
into three classes that we will refer to as classes A, B and C. In class A agorithms, we
compute the calibration matrix K from the fundamental matrix (the recovered epipolar
geometry) [75, 76, 77, 78, 79]. In Class B algorithms (K) is computed from a projective
reconstruction [17, 80, 81] of the scene. Class C algorithms autocalibrate from homo-

graphies and planar features within an image sequence [82, 83].

While Class C agorithms can compute intrinsic camera parameters from a set of
inter-image homographies [84], we loosely consider them autocalibration routines. Be-
cause a homography is a planar transformation, Class C algorithms require the use of

planar targets [85, 103] or the automatic detection and correspondence of planar regions
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within an image sequence. While it has been shown that planar regions may be robustly
detected in images [52], it is highly probable that an image sequence will exist where
there are no planar objects, or the existing planar objects are not suitable for robust detec-
tion. The aforementioned requirements must be known apriori to the computing the cali-
bration parameters and therefore Class C algorithms are not generalized, rather they rely
on specific features that may not be present. Due to these facts, it is questionable whether
or not a Class C algorithm istruly an autocalibration routine in the sense that it requires a
target (therefore not autocalibration), or is presupposed by the planer region detec-
tion/correspondence problem (therefore not generalized). Because of these problems,

Class C agorithms are not considered in this work.

In this work we compare against class B algorithms with are thought to be nu-
merically superior to other calibration methods. Since the projectively reconstructed
frames must all be warped to a consistent relative base, Class B agorithms are computa-
tionally difficult in comparison to simply finding the fundamental matrix between image
pairs. It is often claimed that Class B autocalibration algorithms are superior to Class A
and Class C algorithms because those agorithms do not enforce the constraint that the
plane at infinity (an invariant between projective and Euclidean space) be the same over
the entire image sequence [86]. It is precisely this constraint that makes Class B ago-
rithms computationally difficult. In this paper, we provide evidence that Class A ago-
rithms combined with the use of evolutionary systems produce as accurate an autocalibra-

tion astheir Class B counterparts.

Another concern with Class A algorithms is the existence of extra degenerate mo-
tions, these being pure rotations, pure trandations, affine viewing and spherical camera
motions [86, 87]. However, there exist many practical situations that do not contain these
degenerate motions. Also, in many cases autocalibration is the only option, and even a
less accurate autocalibration result is better than no calibration at all. For example, there
are many photographs and video clips in existence for which there is no knowledge of the
camera. In order to reconstruct the 3D world from those image sequences, autocalibration

isthe only option.



92

Autocalibration has been criticized in the past [88] because many different cali-
brations will provide a 3D reconstruction with reasonable Euclidean structure. In other
words, the corresponding reconstruction will usually look good because the different
right angles look sguare and the different length-ratios look correct. However, this de-
pends considerably on the image sequence, and the camera used to acquire that sequence.
All that we can conclude from this fact is that using the “look” of a reconstruction to
evaluate the autocalibration results is unreasonable. It is necessary to have the ground
truth camera calibration to do a proper performance evaluation. In this paper we evauate
the proposed autocalibration algorithms on image sequences for which the ground truth
camera calibration is known a-priori as well as comparing against results of the Class B
algorithms.

The constraining equations for the two autocalibration methods presented in this
work are non-linear and based on the fundamental matrix. In what follows, we will show
that it is possible to reformulate the process of autocalibration into the minimization of a
cost function of the calibration parameters. While this type of reformulation has been
achieved for class A agorithms and is clearly evident in Class C algorithms, this is not
the case for class B agorithms. For example, in [17] the basis of the class B autocalibra-
tion algorithm is the modulus constraint. The modulus constraint is a non-linear relation-
ship between the camera calibration parameters and the projective camera matrices that
makes autocalibration possible [80]. The application of the modulus constraint produces a
set of X polynomial equations for every pair of images, and a system of polynomial equa-
tions for the entire image sequence. Given an M image sequence, we have X" equations
in the system. The solution of such a polynomia system is very difficult to compute.
One possibility is to find all the permutations of exact solutions in closed form and then
to combine the results [79]. This is rather cumbersome. Another way to solve such a
polynomia system is to use a continuation method [89]. Unfortunately, continuation
methods only work well for a small number of equations, and are not suitable for the
large polynomial systems generated by long image sequences. By contrast, the methods
presented in this work are computationally efficient (with a known upper bound on the
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number of times the cost function will be executed) even for large image sequences.
Furthermore, the accuracy of these algorithms improves as the image sequence lengths

increase.

In this work, we examine two class A autocalibration algorithms based on the
fundamental matrices; one based on Kruppa's equation [75, 77, 79], and the second based
on the idea of finding the calibration matrix which optimally converts a fundamental ma-
trix to an essential matrix [78]. In both cases the problem can be formulated as the mini-
mization of acost function of the calibration parameters, which will be described in detail
in Sections 3 and 4. The correct camera calibration is the global minimum of this cost
function over the space of possible camera parameters. In the past, clams have been
made that such minimization approaches to autocalibration are sensitive to the initia
starting point of the gradient descent algorithm [76, 90]. However, when computing only
one parameter, the starting point is irrelevant because we can accurately solve the associ-
ated 1D optimization problem using standard numerical approaches [91]. When there is
more than one parameter, such as focal length and aspect ratio, we use a simple stochastic
approach [92] from the field of evolutionary computing to overcome this problem. We
show experimentally that for this type of cost function the stochastic method reliably
finds the global minimum. Aswell, a number of experiments are performed on image se-
guences with known camera calibration. We compare the results of our method against
Class B results on some of the same image sequences, and provide evidence that shows

that the stochastic approach achieves results that are comparable.

Our first Class A algorithm relies on the fact that the fundamental matrix can aso
be decomposed into terms of the essential matrix and the camera calibration matrices as
described by (5.1). Our second algorithm relies on the existence of the projection of the
absolute conic within an image pair.
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5.2 Autocalibration via Equal Eigenvalues

5.2.1 Single Image Pairs
The essential matrix can be considered as the calibrated version of the fundamen-

tal matrix. Given the camera calibration matrix K and the fundamental matrix F, then the

essential matrix E isrelated by the following equation:
E =K' FK (5.1)

Since F is a 3x3 matrix of rank two with the condition that there are exactly two non-zero
eigenvalues, E is aso of rank two. The essential matrix (E) however, has an added con-
straint that the two non-zero eigenvalues must be equal [93]. It is this constraint that is
used to create the autocalibration algorithm [78]. The goal isto find the calibration matrix
K that makes the two eigenvalues of E equal, or as close to equal as possible. Given two
non-zero eigenvalues of E, 61 and 6, where 61> o5, in the ideal situation (o3 - 62) should

be zero. Consider the difference (61 - 62) / 61, which can be rewritten as:
1-(c2/o1) (5.2)

If the eigenvalues of E are equal, (5.2) computes to zero; as they differ, equation (9) ap-
proaches one. Clearly, (5.2) becomes the cost function to be minimized.

5.2.2 Multiple Image Pairs
Since we are dealing with a sequence of M images, we can have at most M-1 ad-

jacent image pairs. Since a fundamental matrix is computed between each adjacent image
pair we therefore have M-1 different fundamental matrices F (i=1..M-1). Based on our
assumption that the intrinsic parameters of the camera do not vary, our goal is to find K
by minimizing the cumulative values of (5.2) for al the fundamental matrices (F) in the
sequence. Assume F; is the fundamental matrix relating image ix and ix+1. To autocali-

brate over the M image sequence, we must find the K that minimizes:

<

" wi(1— 02/ ) (5.3)

1l
=

Where ; is a weighting factor, between zero and one, which defines the confidence we

have in the computed fundamental matrix F. The weights w; are set in proportion to the



95

number of matching 2D feature points that support a given fundamental matrix. The lar-
ger the number of 2D points that support the epipolar geometry characterized by F, the
more confidence we have in that fundamental matrix, and therefore the smaller the
weight (remember we are minimizing). Each weight w; is normalized to a range from

zero to one.

5.3 Autocalibration via Kruppa’'s Equations

In a similar manner, we can convert Kruppa' s equations into a cost function that

can be used in either single or multiple image pairs.

5.3.1 Single Image Pairs
Another way to perform autocalibration from the fundamental matrix is to use

Kruppa s equations [86, 93]. To understand these equations we must first define the abso-
lute conic. In Euclidean space the absolute conic lies on the plane at infinity, and has the

equation:
X2 +y*+272=0. (5.4)

The absolute conic contains only complex points that satisfy the equation M™™M = 0. If

we consider a standard camera projection matrix
P=K[R|-Rt]. (5.5)

Where R is the rotational component of the motion of between camera positionsand t is
the translational component of the camera motion, then a 3D point x on the absolute

conic projectsto a 2D point:
m =P(M)=KRM. (5.6)
Where
M=R'K'm, (5.7)
and since MM = 0, thisimplies:

mK'RR"K'm = m'K'K*m = 0. (5.8)
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This clearly shows that any 2D point mis on the image of the absolute conic if and only

if it lies on the conic represented by the matrix
KTK™? (5.9).

From projective geometry,
KKT (5.10)

is the dual absolute conic, and is labeled as C. If we can find C, then we can directly

compute the camera parameters K by Cholesky factorization [94].

Kruppa s equations relate the fundamental matrix to the terms of the dual absolute
conic. The first form of these equations required the computation of not just the funda-
mental matrix, but also of the two camera epipoles, which are known to be unstable [93].
Recently, a new way of relating the fundamental matrix and the dual absolute conic was
described which does not require the computation of the camera epipoles [75]. Consider
the singular value decomposition of a fundamental matrix F to be UDV'. We let the col-
umn vectors of U and V be ug, Uy, Uz and vy, Vo, V3 respectively. This gives the new form
of Kruppa's equation as:

v,Cv, -v;2Cv,  V/Cyv,
réu/Cu, sru/Cu, s®u;Cu,

(5.11)

To autocalibrate we must find the C which makes these three ratios equal, or in the case

of estimation, as close to equal as possible. We let factor; be equal to:

v;Cv, —Vv;2Cv,
r’u,Cu, sru,Cu,

(5.12)

And we define factor, and factor; similarly as the other two possible permutations of the
system of ratios. Autocaibration can then be achieved by finding the C (KK ™) that mini-

mizes the sum of the factors squared.

5.3.2 Multiple Image Pairs
Given the same M-1 fundamental matrices defined in the previous section then autocali-

bration with the Kruppa method over M images requires the minimization of:
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N-1
Y a(factor? «factor; + factor.) (5.13)
i=1

Again, ®l is a weight factor, between zero and one, which is the confidence in the com-

puted fundamental matrix F; as described in the previous section.

54 TheEvolutionary Approach

Since the two autocalibration methods based on the fundamental matrix have an
associated cost function we can use a gradient descent algorithm to find the solution. The
caveat hereis that there are often many local minimain the cost function, so the solution
that is found depends on the starting point. However, we note that the calibration parame-
ters can all be bounded; i.e. the center of projection rarely varies from the image center,
the aspect ratio is generally one and the skew is ailmost always 90 degrees. Thus we are
attempting to find the global minimum for a set of real-valued, bounded optimization pa-
rameters. This problem has been dealt with in the field of evolutionary computing.

There are many possible evolutionary approaches, but they are not all equally ap-
plicable to every problem. We use the ideas around Genetic Algorithms (GASs) [95]. The
idea behind GAsisto simulate evolution by defining each solution as a chromosome, and
then defining the appropriate crossover and mutation operators. While GAs are a very
powerful framework, they must be adapted and tuned specifically for each application. In
our application of function minimization the process of simulated annealing has also been
successful [91]. The idea behind ssimulated annealing is to perform function optimization
by simulating the process of annealing crystals; essentially by slowly lowering the tem-
perature. The issue we face is: Which evolutionary approach is best? We define this
problem to mean the smplest and most effective algorithm that arrives at the correct an-
Swer.

As the camera calibration problem is being recast as a parameter optimization
problem for a set of real-valued, bounded optimization parameters, we use the dynamic

hill climbing technique that combines the strengths of genetic algorithms and hill climb-
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ing techniques that was specificaly designed for this type of problem. Dynamic hill
climbing (DHC) can be considered a hybrid evolutionary agorithm because the algo-
rithm makes use of concepts such fitness, population expansion and mutation, but utilizes
a hill climbing technique for determining local extrema. Also, by using a mutating coor-
dinate frame combined with local extrema exploitation DHC has been empirically shown
to outperform classical genetic agorithms, simulated annealing and typical hill climbers
when optimizing parameters of the DeJong [96] test suite [92]. DHC optimization results
on the DeJong test suite were independently confirmed in [97] and subsequently used in
range image registration. The compared methods included genetic algorithms, simulated
annealing and the DHC algorithm. Experimental results showed that the DHC agorithm
was the most successful evolutionary approach for this type of bounded, real-valued
function optimization. For the above reasons, we chose DHC and we describe the dy-

namic hill-climbing algorithm in detail next.

5.4.1 Dynamic Hill Climbing
The workhorse behind the DHC algorithm is simple, yet very efficient hill climb-

ing algorithm and the use of population expansion via mutation to cover the search space.
The process begins by selecting an individual randomly from the population (search
space) and applying mutations to the single individual, expanding the population. The
parent and al the offspring (mutations) are considered for the next generation, with the
fittest individual from the family surviving. At each generation the age of individual is
increased, however when the offspring are determined to be the fittest and selected for
survival, they inherit the age of the parent i.e. the generational age. The mutations are
performed by scalar adjustment to each of the coordinates in each direction. This means
we perform 2N mutations in an N dimensional search space, keeping within any bounds

that may limit the search space.

As the age of the population increases, the magnitude of the mutations propor-
tionately decreases allowing convergence toward the local extrema, and a more thorough
exploration near the local extrema as the population ages. While a variety of heuristics
may be used to determine the magnitude of the scalar adjustment, we use a logarithmic

halving of the bounded dimensions of the search space. Thisresultsin an upper bound of
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O(log D) generations where D is the largest range within the search parameters. Fur-
thermore, in an N dimensiona search space there are N generations considered as the
mutations adjust only a single parameter at atime. Finally, because each generation will
perform the fitness evaluation 2N times, we have an upper bound of 2N og(D) function
evaluations and an upper bound of O(N’logD) fitness function evaluations. Within the
scope of camera calibration, we have an upper bound of the search space being 5 dimen-
siona and a reasonable practical range for the parameter space, limiting D allowing us to
determine a concrete upper bound on the time complexity for camera calibration.

5.4.2 Mutating coordinate frames
A dstatic coordinate frame results in premature cessation at a local extrema (the

foothill problem) because the hill climber cannot move in the direction necessary to reach
the true extrema. For example, if a hill climber can move in only 4 directions, say the
major compass directions, when a true extrema can be reached by moving in a northwest
direction the classical hill climber will fail. DHC addresses this issue by allowing a mu-
tating (dynamic) coordinate system. DHC keeps a historical record of previous move-
ments and constructs a new basis via a Gram Schmidt orthogonalization of the last two
positions. By doing this, DHC is able to adjust for directional changes within the struc-

ture of the search space, which avoids the foothill problem in certain cases.

5.4.3 Exploiting local optima
Dynamic hill climbing also tries to avoid early convergence to alocal extrema by

ensuring that diversity of the population is considered directly, and independently of the
fitness function. Because the local hill climber has a mutation size that decreases with
age, the local area is searched more thoroughly to help ensure that there is no other local
extrema with better fitness. Once alocal extrema is found, the individua is moved to a
separate pool of static individuals that have found local extrema. When the search sys-
tem stalls, DHC will examine the pool of static individuals who have achieved a local

extrema and select a new population that is as different as possible from the static pool.
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To facilitate this, DHC examines the Hamming distance (The number of differing
bits) between the two individuals and tries to maximize the distance. We note here that it
is possible that this strategy is not without its own problems, the following example illus-
trates this: Suppose a local extrema exists at 127, bit set 11111110, the maximum ham-
ming distance results in bit set 00000001, or 128, which is not sufficiently far from 127.
However, it should be noted that that a sufficiently large population reduces the probabil -
ity of getting stuck when using this strategy of exploiting the local optima.

5.4.4 Coverage of Search Space
The basic idea in the DHC approach is to repeatedly perform gradient descent in

the search space but to start the gradient descent in an area of the search space that is as
far removed as possible from previous solutions. We call this principle of operation Sta-
tistically Distributed Randomized Starting (SDRYS).
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FIGURE 5.1: SCATTER PLOT OF 2D SEARCH SPACE GENERATED BY SDRS.
250 points with atrend line indicating an even disbursement of start points.

The effect is to cover the search space very thoroughly, and at the same time
avoiding areas that have been previously explored and therefore avoiding the local mini-
mum. This covers the search space very effectively, asis shown in Figure 2. In this Fig-
ure we show the start points of the gradient descent in a 2D SRDS process. It is clear

from the distribution that the search space is uniformly explored.
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SRDS covers the search space as completely as possible with a user specified number of
starting points. Essentially SRDS is a simplified variation of dynamic hill climbing's ex-
ploitation of local optima. The only operating parameter is the number of repeated gradi-
ent descents to try, and thisis manually set to be approximately one hundred. It is impor-
tant to note that the range of the calibration parameters, focal length and aspect ration is
bounded. In practice, the focal length isin the range of 1 to 10,000 pixels, and the aspect
ratio is in the range of .5 to 2.0. Under these conditions and operating parameters the

DHC algorithm has had good practical success.

The pseudo-code for SDRSis below:

SDRS ()

For each parameter in the search space

Find the largest region that has not had a start point
Compute a random point X in this
region

Set point X to the start point
for this parameter
Endfor

Return N-dimensional startPoint for the next gradient descent (DHC)

5.4.5 Autocalibration Algorithm
The algorithm ESTIMATE_K returns the calibration parameters in the matrix K

that produced the minimum value from the cost function. It is based on the SRDS and the
DHC agorithms described previously. As we have shown in the previous sections, the
actual evaluation of the cost function for the two different autocalibration methodsis very
efficient and the upper bound on the number of calls to these functions is also known to
be O(N?log(D)). The equal eigenvalues approach requires only the computation of the
eigenvalues of a three by three matrix, and for the Kruppa approach the computation of
three ratios based on the SVD of a 3x3 matrix. Furthermore, precomputing the SVD and
storing them in a lookup table for use by the algorithm can further optimize the process

and reduce the time required to execute the cost function. A single gradient descent of
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the cost function uses the Powell optimization algorithm, which is in turn based on re-

peated applications of the one dimensional Brent method [91].

Aswe know the upper bound on the number of times the cost functions are called,
we have an upper bound on the entire process of O(N’logD), which is the upper bound
for the DHC algorithm. The remainder of the autocalibration algorithm is simply the ad-
dition of constants affecting the computation time which are equal to the time required to
execute 1 instance of the cost function. To be precise: Given an image sequence of M
images, and computing N intrinsic parameters, bounded by a maximum range of D, the
running time on the autocalibration will be no more than O(MN?og(D)) computations of
the cost function. As we can see this s linear with respect to the number of images, as
opposed to the exponential number of equations generated using the modulus constraint
based methods.

The basic pseudo-code for estimating K:

ESTIMATE_K()
For n times
StartPoint = SRDS()
Perform the DHC gradient descent
from StartPoint.
IF Cost function (Equal Eig.
OR Kruppa) is minimal
Save this K.
ELSE
Discard this K
Endfor

Return K

5.5 Degeneracy

The method presented makes use of all the computed inter frame geometries,
however no consideration is given for incorrectly computed fundamental matrixes. An
incorrect fundamental matrix can occur and is known as a degeneracy case. It is com-
monly known that there are degenerate situations where many epipolar geometries will

support the same feature match set [98].
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FIGURE 5.2: DEGENERATE EPIPOLAR GEOMERTY

Two epipolar geometries that support a feature match set, yet only one can be correct.
(From [98])
As shown in Figure 5.2, we have 27 corresponding points and two computed epipolar ge-

ometries that support them. Clearly there can be only one truly correct geometry; how-
ever, it simply takes a single outlier to potentially produce an incorrect geometry. Clearly
an incorrect fundamental matrix will result in an incorrect self-calibration when using
only the one incorrect fundamental matrix.

The potential for computation of a single degenerate fundamental matrix from a
sequence of images when using a RANSAC method is unavoidable and thus all com-
puted geometries from an image sequence are to be considered. By simply using the fun-
damental matrix with the highest support, we will achieve incorrect results when that
computed geometry is degenerate. By using all of the computed fundamental matrices,
we have some knowledge on the effect each fundamental matrix has on the cost function.
If we assume for demonstrations sake, that we have equal confidence in each and every
fundamental matrix that has been computed for an M+1 image sequence. A single de-
generate geometry will weigh in at 1/M and therefore only affect the computation propor-

tionally to the number of images in the sequence.

5.5.1 Handling Degeneracy
While methods exist that attempt to detect degenerate configurations [98], we

have chosen to use the number of supporting matches for each fundamental matrix as a
measure of confidence. This metric, while not theoretically as reliable as a method that
detects degeneracy, is suitable because the automated methods for computing the funda-
mental matrix [99] provide arelatively large number of matches with the associated fun-
damental matrix. Our experiments are performed under the assumption that the number
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of feature matches used to compute the fundamental matrix reduces the likelihood of
computing a degenerate geometry. We rely on the effectiveness of the software pre-
sented in [100] to produce many feature matches and compute fundamental matrices with
sufficient support that the probability of outlier caused degeneracy is greatly reduced, yet
any reliable computation of the fundamental matrix will have the same result. Therefore,
we use magnitude of the support feature set that was used to compute the geometry as a

measure of our confidence.

Degeneracy can also be effectively handled in other ways and we outline a couple
of methods next. The first obvious solution is to use the PLUNDER algorithm (Pick
Least UNDEgenerate Randomly) outlined by Torr in [98], however it is more compli-
cated to implement than other solutions. The benefit of handling degeneracy this way is
that we can be sure that all fundamental matrices we are using are not degenerate. An-
other aternative is to prune fundamental matrices that produce calibrations parameters
that are not consistent with the entire set. Effectively we perform a single image pair
calibration for each fundamental matrices in the sequence and perform a statistical analy-
sisof theindividual results. We can now prune any fundamental matrix whose individual
calibration results are outside an acceptable level of error. Using covariance analysis or

Frobenius norm will provide reasonable results.

5.6 Experiments

There is no practical reason to autocalibrate al five intrinsic parameters [88],
however, by assuming the principle point and the skew are fixed, results are encouraging.
This problem is not unique to our method, and occurs in Class B algorithms as well [81].
In [81], the principle point could not be computed accurately using the Class B algorithm

and for this reason it was also assumed to be fixed.

For many autocalibration algorithms the evaluation of performance consists of a
simple visual inspection of the resulting 3D reconstruction. Thisis not an adequate metric
because it has been shown that the quality of the final reconstruction is visually accept-
able for a wide variety of calibration parameters [88]. In order to test the capabilities of
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the presented evolutionary method, we used test data for which the ground truth was
known; i.e. the intrinsic parameters are already known apriori. Some of these data sets
are the same ones used in the literature, in particular those for the class B algorithms. The
conclusions are that the results of the Class A agorithms using the evolutionary approach
is comparable to that of the Class B algorithms yet the simplicity and efficiency of the
evolutionary method is significant. The experimental results also give an indication of
what the autocalibration errors are for atypical image sequence. We performed these ex-
periments a number of times, to make sure that the results of the SRDS agorithm are re-
peatable and unbiased.

The first set of experiments described in Table 1 show how the autocalibration
process works when we are calibrating only the focal length. Table 1 shows the results
for anumber of different test sequences that have been processed in previous autocalibra-
tion papers [17, 77, 79, 101]. In particular, the Castle sequence [79] is used as a test case
for comparison with the class B approach that requires a projective reconstruction. We
see that our autocalibration results are comparable to those of other class B self-
calibration algorithms.

In Table 1 we list our autocalibration results compared to the previously published
results in the literature, which we assume to be correct. In the last example from [101]
shown in Table 1, the error with the Kruppa autocalibration is quite large. A possible ex-
planation is that the motion is close to being a pure trandation, which is known to be a
degenerate motion for the Kruppa algorithm [86, 87]. It is aso a good indicator of how
the Equal Eigenvalues method performs well in spite of these degenerate motions. In
these experiments we take the image sequences as input and compute the matching fea-
ture points automatically, using the software described in [100]. In other words we are
not given matching 2D feature points, but simply a set of images. Therefore the closeness
of our results to those published in the literature is significant because we are actually
using different software to compute the fundamental matrices. We also are unable to ver-
ify independently that the published ground truth focal lengths are correct, it is possible

that the stated focal lengths have some level of error in them as well.
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In the next set of experiments outlined in Table 2, the 2D feature points were se-
lected by hand as part of a photogrammetric model building process. From these manu-
aly selected correspondences we compute the fundamental matrix between all image
pairs in the sequence. In this experiment we know the intrinsic parameters of the camera
a-priori from the project parameters of the photogrammetric package [41]. We therefore
assume that all the intrinsic parameters are set apriori, except for the focal length which
we autocalibrate. Table 2 shows the autocalibrated focal length in millimeters versus the
true focal length, aong with the percentage error for both autocalibration methods.
Since we have the associated 3D reconstructions for the corresponding 2D features, we

can use more sophisticated performance measures, namely reprojection error.

For a given autocalibrated focal length we compute the reprojection error for al
the corresponding feature points. The reprojection errors are the pixel differences be-
tween the projection of the 3D feature points into 2D and the original corresponding 2D
features. We compute the median of the reprojection errors using the correct focal length,
the focal length found by the eigenvalue method, and the focal length found by Kruppa's
method. The median of the reprojection errors is a good indicator of the quality of the
Cpipolariicttion for a given focal length. We see that the median reprojection error in-
creases for the autocalibrated focal lengths, but only slightly. This implies that the error
in the autocalibrated focal lengths would not have a significant impact in terms of recon-

struction quality; this independently verifies the work of Bougnoux [88].

In the next experiment we attempt to autocalibrate both aspect ratio and focal
length using the two class A methods. We are again using as input a series of photo-
grammetric projects for which we know the 2D feature correspondences as well as the
ground truth.

While the results as shown in Tables 3 and 4 are reasonabl e, the errors when auto-
calibrating two camera parameters are sometimes higher than autocalibrating just one pa-
rameter. The error again compounds when we attempt to auto calibrate al parameters. In
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particular, the percentage error in the focal length increases dlightly. One possible expla-
nation is that the gradient descent algorithm is stuck in alocal minimum. To verify this,
the results shown in these two tables were computed by averaging over one hundred
separate runs of the optimization algorithm. The variance as shown in Tables 3 and 4 for
the autocalibrated aspect ratio and focal length is very small over these runs. This indi-
cates that it is highly likely that the stochastic optimization algorithm is finding the cor-

rect globa minimum.

Table 1: Results of autocalibration for focal length vs other algorithms. Focal length
isin pixels. Correspondences are computed automatically.
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Castle 27 1100 1156.50 5 1197.7 8
Valbone 9 682 605.5 11 685.71 0.5
Nekt 6 700 798.58 14 872.44 24.6
etluueshiba 5 837 857.25 2.4 1233.85 47.4

Table 2: Results of autocalibration for focal length for photogrammetric sequences.
Focal length isin mm., and reprojection error isin pixels. Correspondences selected by

hand.
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Plant 6 2420 | 2255 | 6.8 24.39 | 0.78 0.80 1.49 1.04
Statue 7 511 | 3.67 | 282 5.29 35 3.93 9.61 1.95

Table 3: Results of autocalibration for focal length and aspect ratio for photogram-
metric sequences. The equal eigenvalue method is used and focal length isin mm.
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Table 4: Results of autocalibration for focal length and aspect ratio for

photogrammetric sequences. The Kruppa autocalibration method is used.
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Curve 1.0 0.997 0.011 1.3 6.97 7.56 0.21 8.4
Cylinder 1.0 1.03 0.0001 3 28 32.91 0.0001 17.5
Plant 1.0 0.92 0.003 8 242 | 26.33 0.12 8.8
Dam 0.81 0.997 0.0001 19.75 | 30.75| 3843 0.0001 24.9

Table5: Results for autocalibration of focal length for three

sequences taken from the same uncalibrated camera.

# of Im- Eigen Kruppa
Name ages focal Focal
Chapel 12 27.82 31.31
Climber 13 27.91 33.88
Workshop 8 26.19 38.09

The next set of experiments, shown in Tables 5,6 and 7, have asinput image se-
guences that were taken with the same camera with invariant intrinsic parameters. There
are image sequences that we have taken by hand, for which ground truth is known, or
from various other modeling projects [102]. In these experiments we again compute the
correspondences automatically using the software described in [100]. Test cases Chapel
and Workshop are ailmost pure translation while the Climber sequence has a motion with
significant trandlation and rotation. We autocalibrate only the focal lengths, which should
be equal for al three sequences. The variance of the computed focal length for the eigen-
value method is 0.96 mm and for Kruppa approach is 3.42mm. It is not surprising that the
autocalibration results differ, since certain motions are degenerate with regards to the
Kruppa based autocalibration [86]. What these results clearly show is that for a given
camera, and substantially different sequences, the evolutionary algorithms (especially the
equal eigenvalues method) are convergent. Furthermore, longer sequences converge with

amore accurate estimation of the intrinsic camera parameters.

The final set of experiments, shown in Tables 6 and 7, has as input image se-
guences that are used as test data for the ISPRS Working Group V/2 on Scene Modelling
and Virtual Reality [102]. These images are used to test different model building software
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packages, and the ground truth is known. In Tables 6 and 7, we again compute the corre-
spondences automatically using the software described in [100], and autocalibrate only
the focal length. We see, in Table 6 that the results are reasonable given that the true fo-
cal length is 1737 pixels in al cases, but that sometimes Kruppa's approach does not
converge. The likely causes are sensitivity to motion degeneracy and the difficulty of

convergence with a small number of images associated with the Kruppa method.

Table 6: Results for autocalibration of focal length for three sequences used by the
ISPRS Working Group on Scene Modelling and Virtual Reality.

# of Im- Eigen Kruppa
Name ages focal Focal
Indoor 5 1663 1815
Waterways 3 1759 fail
Building 2 1609 fail
Table 7: Results for autocalibration of focal length and comparison to ground truth.
Focal Computed
Project length (in Focal # of Images %
pixels) . Iength Error
(in pixels)

Amsterdam 1736.7 1866.7 4 7.48
Benches 1736.7 612 7 64.76
Chapel-| 2105 1640 2 22.0
Chapel-S 2105 1473 7 30.0

Corfu 2923.4 2995 7 0.02
Fitting 1684 1681 2 0.001
Florence 1897.3 1787 6 0.058
Light 2348.3 3647 4 55
Nikh 2348.3 2348 2 0.001
Oldbuild 1649.5 1588 7 0.037
Reg-1 2095 1609 7 23.1
Reg-2 611 747 27 22.2
Sphinx 1754 1764 16 0.0057

Table 7 presents a variety of experiments also from the ISPRS workgroup. In certain ex-
amples that error is very large, however the average error is only 17.25 percent with a
standard deviation of 21.99. By removing the two grossly incorrect samples from the ta-
ble the percent error and standard deviation drop in amost in half to 9.54 and 12.11 re-
spectively.
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In summary, Table 1 shows that the evolutionary approach is as good as the pub-
lished results for Class B algorithms, particularly the castle sequence. However, the class
B agorithms are not easily scalable from a computational point of view, and thus cannot
handle long image sequences. The class A, fundamental matrix based, approaches are
very efficient computationally because single evaluations of the cost functions do not
take long and accuracy increases as the sequence length increases. The time taken for
autocalibration is in the order of seconds for all the image sequences on a 400 MHz Pen-
tium Il processor. It seems that the equal eigenvalues method is superior to the Kruppa's
method for degenerate motions and smaller sets of images. There are cases, however,
where the Kruppa s method clearly outperforms the equal eigenvalues method. Further
investigation is necessary to determine whether or not a heuristic can be developed to
choose one algorithm over the other by pre-determining the camera motion using arbi-
trary intrinsic camera parametersin afirst step and using this knowledge to select an ap-

propriate Class A, B, or C algorithm that using an evolutionary approach.

5.7 Conclusionsand Discussion

Thiswork presents an algorithm for self-calibration that has four maor advantages:
1) Simplicity (and ease of implementation)
2) Accuracy and Reliability
3) Scaahility (handles very long sequences)
4)  Speed of Execution (known upper bound)

In theory, the autocalibration methods that use fundamental matrices should not
perform as well as those that use the camera projection matrices of a projective recon-
struction [86, 87, 93]. However, we show that for non-degenerate motions both methods
perform equally well when we are calibrating only the focal length, or the focal length
and aspect ratio. The equal eigenvalues approach, combined with evolutionary methodsis
very simple and performs as well as any Class B method we compared it against. While it
istheoretically equivalent to the Kruppa approach, it performs better numerically in situa-
tions where we are closer to degenerate motions, such as pure trandation and seems to

converge better for smaller sets of images. Experimentally we have shown that evolu-
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tionary based autocalibration using class A agorithms produces similar results to their

class B counterparts.

We have shown that in practice the Statistically Distributed Random Starting
(SDRS) helps to find the global minimum of the cost function reliably. We have also
shown that the error in the autocalibration of the focal length is usualy in the range of to
15%. Thisis adequate for applications in which the final results are used for visualization
purposes, such as model building but clearly not for applications that currently require

exact depth information.

When dealing with long image sequences, class B algorithms will produce a set of
polynomia equations for each image pair. This results in a large system of equations for
the entire image sequence. Continuation methods can solve small systems of equations
but areill posed when the number of equations becomes large. The methods proposed in
this work have advantages for long image sequences. The methods we have described are
computationally efficient with a known upper bound that is better than any published
class B method on long image sequences and produces comparable results. It is also the
case that processing long image sequences is advantageous in that any error for an indi-
vidual fundamental matrix (because of a degenerate motion for example) will have less of
an impact on the final result. For example, an M image sequence has M-1 adjacent pairs
and therefore M-1 representative fundamental matrices. As M becomes larger (i.e. then
number images in the sequence increases) the individual error associated with a single
image pairs has less effect. The accuracy of the estimation only increases with the size of
the image sequence. As the sequence length tends to infinity, the error can be more
closely associated to the error within the individual computation of the fundamental ma-
trix. Another advantage of long image sequences is that the global optimum is better de-
fined than when using short image sequences. In other words with long sequences the
global optimum tends to be sharper and better defined making the results more stable.

Due to alack of standardized data sets that can be used to effectively benchmark

different autocalibration routines; the “look” of a resulting reconstruction is often used as
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a benchmark, which is not appropriate for performance evaluation. For proper perform-
ance analysis of autocalibration algorithms it would be very useful to have a standardized
set of images for which the ground truth is known. A start has been made in [26], but
more needs to be done. At the very least, results using such test data should include the
accuracy of the parameter values, consistency of results (similar to experiment 5), and an

accuracy to image sequence length ratio benchmark.

Evolutionary based autocalibration with varying intrinsic parameters still remains
an open problem; however it is conceivable to adapt the cost functions to alow for vary-

ing focal lengths between image pairs.
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Chapter 6
Synchronizing M ultiple Video Sequences

6.1 Introduction

There are many common applications of multiple video cameras today that range
from video surveillance of large areas such as shopping centers, parking lots and cam-
puses, to videography and filmmaking that utilize multiple video cameras when shooting
individual scenes of a screenplay. However, in some situations such a photogrammetry
and camera metrology, the use of multiple cameras is required when there are moving
objects in the scene [1]. As different human operators may control these cameras, and
only in certain situations is it feasible to use a professional camera synch date, there is

the fundamental problem of sequence synchronization that needs initial resolution.

Figure 6.1: Camera Sync Slate, ak.a. clapper board®
Intuitively, the synchronization problem refers to the following: Given k different
video sequences that overlap in time, identify one frame from each of the different se-
guences that refer to the same point in time. Such a set of framesis called a synchronized
cross camera subset. More formally, for each video sequence i, let the frame-time func-
tion T;(f) map an integral frame number f of sequencei to auniversa time, i.e.

Ti(f):N >R (6.1)
The synchronization problem can now be expressed as finding a set of frames numbers,

fi, fa, ..., fk, One from each video sequence, such that the synchronization equality T (f1)

8 Picture from Filmtools, Burbank CA. http://www.filmtools.com/ Used with permission.
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= Ty(fy)= ... = Tw(fi) holds. Such a set of frames that exactly solves the synchronization
equality is said to be in perfect integral synchronization.

However, due to possible minute variations in camera start times and variations in
frame rates, perfect integral synchronization does not always exist. In such a case we
search for a set of frames whose pair-wise difference with respect to the synchronization
equality is minimized. We provide exact bounds on the value of this pair-wise difference
in the next section. If we remove the restriction of integral frame numbers, the frame-

time function maps frame values (integral and non-integral) to apoint in time, i.e:

Ti(f):R—>R (6.2)
In this case, the frame-function maps a real frame number (sub-frame accurate) to an ex-
act moment in time. In such a case, there will always exist a set of real frame numbers,
f1, f2, ..., f, one from each video sequence such that synchronization equality Ti(f;) =
Fa(f2)= ... = Ti(f) holds.

In summary the synchronization problem is:

1. ...referred to as the full frame synchronization problem when restricted to integral
frame numbers, and seeks to minimize the pair-wise differences of the synchroni-
zation equality. i.e. [Ti(f;) — T;(fj)| is minimal for all sequence pairsi,;.

2. ...referred to as the exact synchronization problem when unrestricted, and seeks
to exactly solve the synchronization equality.

We fully explore the details of the functions, the equality and their use in both fla-

vours of the synchronization problem in section 6.2.

6.1.1 Additional Background
Synchronization is often assumed [104], however, since the processing of large

volumes of video data is becoming tractable, recent work has investigated the problem of
synchronizing video sequences. In [105] the synchronization problem is constrained to
having a large planar surface present. The method computes the homography that de-
scribes the transformation of the ground plane and looks for the frame pair with the most
consensus of the moving objects. The method suffers under certain 3D motions such as
similar objects moving in aline with constant velocity. In [106], the method is also con-

strained by a large ground plane being present, but further requires intrinsic camera pa-
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rameters so that the 3D information about trajectories can be computed and subsequently
corrected in conjunction with the epipolar geometry. Furthermore, the method assumes a
homogenous camera system. In [107] afixed set of extrinsic camera parameters, identi-
cal frame rates, and a static scene are required so that motion of the rig is identical on a
frame to frame basis. This alows the algorithm to simply find the matching geometric
changes between frames N and N+1 for camera 1, M and M+1 for camera 2, leaving the
offset in frames being [M-N|. In [108], the authors also take advantage of the fact that
objects moving on a planar surface produce a 3D trajectory contour that is identical from
camera to camera. Upon finding the contour similarities, the frame synchronization is
identified. Under repeating motion the contours will be identical, and synchronization
will not be possible. In[109], the synchronization is based on viewing similar non planar
3D motion trgectories in time with applications to telelearning so that exact precision in
synchronization is not fundamentally necessary. In [109, 110], the imposition of rank
constraints on corresponding frame features is examined, rather than the epipolar geome-
try. In order to determine the synchronization a search is performed for frame pairs that
minimize the rank constraint. However, in robust computations of the epipolar geometry,

the rank constraint should be enforced.

Generaly speaking these methods are restrictive because of the requirements of
large planar surfaces being present or the requirement that the camera system be partialy,
if not fully, calibrated. Furthermore, as synchronization is simply a means to an end, they
examine the full frame synchronization problem rather than the exact synchronization
problem. In this work we examine the theoretical nature of the synchronization multiple
video sequences and prove the maximum upper bound on the difference between full
frame and exact synchronizations. We propose a novel method that handles a much lar-
ger set of input sequences and does not rely on any particular camera configuration or
constraints on the objects. The method is performed solely in projective space and does
not require trajectory correspondence to be solved apriori. The main constraint of our
method is that there are at |east three cameras that remain stationary throughout the video
capture process; a very common situation in many multi-video applications. The motion
of the moving objects is slightly constrained in that it cannot have a periodic characteris-
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tic such as a pendulum, nor can the motion be directly along the optical axis of one of the
cameras. Any camera count over three can be handled by our method on an overlapping

basis.

In this chapter we examine the following: Section 6.2 formalizes the problem of
synchronizing video sequences and introduces terminology. Section 6.3 outlines our
proposed method that includes 1) Computing camera geometries, 2) Generating trajecto-
ries, 3) Using inflection points to grossly approximate the synchronization, and 4) using
the computed geometries to compute the exact synchronization. Section 6.3 ends with an
adaptation to handle errors in the computed geometries. In Section 6.4, we perform ex-
periments with our proposed method and present results. In section 6.5, we examine

some practical issues and finally we draw some conclusions.

6.2 Problem Formalization

We begin by formalizing the synchronization problem, and follow up by introduc-

ing terminology used in the description of the proposed solution.

6.2.1 The synchronization problem
We first examine some properties of the relationship between multiple video se-

guences and specify terminology. We let F:R—->{0,1} be the frame-capture function.
F(x) = 1if at time x, aframe in video sequence i is being captured and F;(x) = O other-
wise. Close examination reveals that the frame-capture function is periodic in nature and
therefore the model for video capture and synchronization we use is wave based, not lin-
ear as one might expect. The time between peaks in the function F; is known as the pe-
riod (in wave mechanics terminology) and what is commonly referred to as the frame
rate (p), is actualy the frequency. Recall that frequency and the period are inversely re-
lated. Figures 6.2 and 6.3 plot the function F. The peaks (value 1) occur when aframeis
captured and the valleys occur (value 0) when frames are not being captured. Notice that
in the case of multiple video sequences there exist what we call primary synchronization
points that minimize the distance between the exact synchronization times and the full

frame synchronization times.
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Defintion: A primary synchronization point is a point in time that minimizes the differ-
ence between the exact synchronization function (6.2) and the full frame synchronization
function (6.1) for al sequences. i.e. The frame numbers that satisfy the synchronization
equality and minimize the difference given by (6.3).

Formally, the difference between full frame and exact synchronization is given by:
[Ti(fi)=Ti( fi +0.5)) (6.3)
Any synchronization time that does not minimize the difference (6.3) is termed a secon-
dary synchronization point i.e. any non primary synchronization point. As we see in Fig-
ure 6.2, given 3 video sequences of differing frame rates that are perfectly synchronized
in time, clearly visible cycles of primary synchronization occur. For perfectly synchro-
nized video sequences, these primary synchronization points correspond to the full

frames that were taken at the exact same moment in time.

Primary synchronization points

Figure 2: Perfect integral synchronized video sequences with varying frame rates show-
ing primary synchronization points. .

Primary synchronization points occur at regular intervals that are a function of the
frame rates of the individual sequences. The number of frames between these primary
sync points for two sequencesis afunction of the frame rates given by:

_ max{ps, p2
frames(p;, p2) = Mintonpd (6.4)
The time between two primary synchronization points (1) is determined by the maximum

frame rate and the least common multiplier of (6.4) for al pairs of sequences.

A = pmax o LCM { frames(pi, pi) | Vij st. 1<i < j < N} (6.5)
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We coin the term primary synchronization period, denoted by the symbol A, to be the

time between these events.

In practice however, we do not always have perfectly synchronized video se-
guences as shown in Figure 6.2. Instead, we have a dight synchronization offset. We
can seein Figure 6.3, for sequences that are slightly out of sync, that the offset is minimal
at the primary synchronization points. Furthermore, this offset has a maximum bound for

any secondary synchronization point. We explore this bound next.

Secondary synchronization point
A

| T O O~
[ .|

4 v
Primary synchronization points

Figure 6.3: Imperfectly synchronized video sequences with varying frame rates showing
primary and secondary synchronization points.

Given two imperfectly synchronized video sequences, the maximum full frame
sync offset is half the maximum difference between two frame captures of the higher
frame rate sample. Aswe can see in Figure 3 for any pair of sequences, a frame in the
slower frame rate sample straddles two frames of the higher frame rate sample, and thus
full frame synchronization will be with the closest frame, in time, of the higher rate sam-
ple. For two video sequences, the quality of full frame synchronization is bounded by:

(101
mm{ }
ofst(vsv2) - — 2P (66)
For N video sequences, the error is bounded to a maximum error defined by (6) for al
camera pairs and is characterized by:

A = max{offset(Vi,Vj)} Vijst. 1<i< j< N (6.7)
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It turns out that the maximum error will always be between the slowest and the 2™ slow-
est video frame rates, and thus for N cameras, A can be easily determined using (6.6) and
the two slowest frame rates.

Lemma 2.1 For N video sequences, the maximum full frame offset is bound by half the 2™
slowest camera period.

Proof: Let py, p2 and p3 be the three slowest frame rates from N sequences such that: py <
..< p3 < p2 < p;. For al sequence pairs, the offsets defined by (6.5) are p»/2, p3/2, and
pal2 respectively. Since p; is greater than ps, po/2 is greater than pa/2. Asps, p2 and p; are
the three slowest rates, any other frame rate p; (i>3) from the N sequence is less than p3
resulting in an application of (6.5) resulting in pi/2 which is less than our largest value
pal2. Therefore, the error is bounded by p,/2, half of the 2™ slowest framerate. ©

Primary synchronization point

AN
]
N

Figure 4: Video sequences with respect to auniversal timeline.

Given two frames from a single video sequence i, the amount of time that elapses
between frame f; and f, is (fo-f1)*p;. We let E represent the amount of time that has
elapsed between the first frame and the n™ frame (denoted n;) in sequence i. Specifically,
the n™ frame (n;) in sequencei will be taken at elapsed time E; and is given by the follow-
ing equation:

E=ni-pi (6.8)
Because the sequence start time is the beginning of the sequence, we have a ssimple linear

relationship between the frame rate and the frame number. However, since we want to

synchronize video cameras that were not necessarily started at the same point intime, itis
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necessary to determine the elapsed time within the context of a universal timeline, and
not simply within the time line of the single sequence itself. We can now specify the ex-
act nature of the function described in (6.1) and (6.2) by by:

Ti(n)=Ei+S (6.9)
where the start time of the sequence i, is at some offset § from the universal start time.
This offset in the universal time line represents a phase shift in wave mechanics termi-
nology. Aswe seein Figure 4, three cameras started at different points in time have dif-
ferent phase shifts with respect to the universal time line. We see that there are phase
shifts S, §, and S¢ that correspond to the differences in time for which the cameras
started capturing video sequences.

Given multiple video sequences, the synchronization consists of the frame num-
bers that were taken at the same instant in universal time, within the known bounded er-
ror A givenin (6.7). For 3 video sequences (i, j, K), the universal time line obeys the syn-
chronization equality:

TiN)=E+S=E+S5=Ek+% (6.10)
The problem of synchronization is now, in fact, two fold. 1) finding the inter-sequence
times (Ei) where a synchronization point occurs and 2) solving for the universal time
phase shifts (S). In practice, we can impose the constraint that S; be set to universal time
0 and base our phase shift values on a time frame dictated by camera start events. We
can determine the camera start order by examining the elapsed sequence times in the or-
der of highest to lowest.

The goa of synchronization is now to solve for the synchronization equality
(6.10). This can be done on an integral frame basis, knowing that we can only be accu-
rate to within the time frame given by (6.7), or it can be solved exactly by allowing sub
frame accuracy determination in equation (6.10). If we choose to only support integral
frame numbers, equation (6.10) has constraints on the determination of the inter-sequence

times that account for the maximum error A.
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|(Ei+S)-(Ei+S)| <A
|(Ei+S)-(Ex+ S| <A (6.11)
|(Ei + 9) - (Ex+ S| <A
Additional cameras are a simple extension of the equality from (6.10) and the constraints
from (6.11). Primary synchronization points minimize the constraints given by (6.11),

and in practice should be sought.

The E's are solved by finding a primary synchronization point where each frame
was taken at the same moment in time of the same 3D scene, and the S's by setting S; to
be zero, therefore becoming the universal start time, and using algebraic manipulation to

solve for the remaining.

21  Terminology
We continue by specifying terminology that defines the core concepts behind the pro-

posed solution. A camera sequence (CS) is the linear sequence of frames from a single
video camera; like a single redl of film. A cross camera subset (CCS) is a set of N im-
ages, where each image in the subset comes uniquely from one of the N cameras. A syn-
chronized CCSis a cross camera subset where each frame of the set is full frame syn-
chronized as outlined in equation (6.1).

A cross camera subset is not necessarily aligned in time, we denote a CCS to be ssimply a
selection of N frames, one from each of N camera sequences. The problem of camera
synchronization is that of determining the exact the same moment in time for each of the

video sequences, i.e. finding a synchronized CCS.

We further sub-classify cross camera sets into dynamic-CCS and static-CCS. As ther
names elude, a static-CCS is comprised of those images that have the same static content
(or in practice, a majority of static content). There are multiple static-CCS candidates
among a set of video camera sequences. The term static-CCSis not to say that thereis no
dynamic motion within the frames, but rather we are interested only in the static content
of each frame so that we can compute the camera geometries. A dynamic-CCS is the set

of images in which we are utilizing the dynamic aspects of the cross camera set. Again
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this is not to say that al pixels within a set of candidate frames are moving, but rather

they contain the same moving objects.

Cross
———— -— Camera
Subset

t
t t

Figure 6.5: 3 camera sequences in athree video camera setup with varying frame rates,
with a synchronized cross camera set in gray.

6.3 Recovery of the synchronization
Because we are utilizing multiple non-moving video cameras, we can use the fun-

damental matrices [9] and the trifocal tensor [10] of the three views to determine the syn-
chronization offsets. Thereis only one instant in time where al moving and non-moving
features will have perfect consensus on the camera geometries, and this is when the mov-
ing objects are captured at the same instant in time. When dynamic-CCS objects concur
with the geometry computed with static-CCS, the frames that comprise the dynamic-CSS
are full frame synchronized. Moreover, the best geometric support will come from a
primary synchronization point. It is also important to note that more than one dynamic-
CSS will support the geometry computed from the static-CSS; those being any dynamic-
CSS that contain synchronized frames.

Clearly a pure brute force method (using all frame permutations) of finding the
dynamic-CCS that supports our computed camera geometry is not an option since the
combinations are exponential to the number of cameras. This would require MM combi-
nations to be examined, where N is the number of cameras and M is the frame count.
One way to reduce the cost of the brute force method is to align groups of 3 adjacent

cameras. With a maximum synchronization offset of just 30 frames (£15), athree camera
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system will yield 27,000 combinations to be tested. This still remains computationally
intense. In general, the number of combinations required to perform such a computation

for an N camera sequence with a maximum offset of max_offset frames, would be:

(N —2)- max_offset 3 (6.12)

We alleviate the need to perform these brute force computations (even smarter

brute force) by creating a virtual image that embeds the dynamic object trajectories in
2D. We utilize these virtual trajectory images to quickly determine the synchronization.
The core idea we utilize is that the camera geometry and the object trajectories will con-
cur, alowing us to quickly compute the frames with maximal geometric consensus and
therefore implicitly generate the synchronization offsets. We use a basic 4 step system:
1) compute the camera geometry from a static-CCS, 2) generate trgjectory images for
each sequence, 3) Narrow down trajectory images via inflection points, 4) Refine the se-
lection via consensus to single frame accuracy and via pure geometric support to sub

frame accuracy.

6.3.1 Computing Camera Geometry from the Static-CCS
Because the cameras are static, and the features considered in a static-CCS are

also stationary and we can select any frames as candidate frames so long as they mini-
mize the effect of the moving objects. There are a variety of ways to achieve this, from a
brute force examination of the frame data using some difference metric, to a user selected
set of frames. Selecting static features that do not change from frame to frame, i.e. back-
ground subtraction, or utilizing optical flow methods to remove pixels that are not static,

simply adds computational overhead that is practically not necessary.

Selecting frames that are relatively close to the synchronized frames should be
avoided in this step to prevent outliers from being included, resulting in a degenerate
computation of the camera geometry. However, due to the large ratio of frames to cam-
eras, and thiswill be true in most practical cases, we can simply sample frames from each
camera sequence so that they are well distanced in time.
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FIGURE 6.6: REQUIRED GEOMETRIES FOR A 3 CAMERA SYNCHRONIZATION

Once the static-CCS has been selected, it is used to first compute information about
the camera geometry. In Figure 6, we see the required geometries to compute the syn-
chronization of three video sequences. The fundamental matrices Fi, and Fp3, and the
trilinear tensor, T3, are required from a 3 camera system and can be computed robustly
using techniques outlined in [9][10], furthermore, one can simply use the tensor alone
since F12 and Fo3 can be derived from T123. We use the software presented in [11] for our

experiments.

6.3.2 Generating the Trajectory Images
We utilize a feature tracking mechanism to generate the trgjectory images. Aswe

track features over time, we associate the current frame number to the position within the
trajectory image. Feature tracking is performed on the luminance channel (grey map) for

the video frames. The luminance channel is computed as follows:

Luminance = Red*0.299 + Green*0.587 + Blue*0.114 (6.13)
The feature tracker we use is based on the work of Lucas and Kanade in [49]. Thiswork
was further developed by Tomasi and Kanade in [50] of which Shi and Tomasi provide a

complete description in [51].

Briefly, features are located by examining the minimum eigenvalue of a 2x2 im-
age gradient matrix. The features are tracked using a Newton-Raphson method of mini-
mizing the difference between the two windows around the feature points. We continue

by presenting avery brief outline of the work by Tomasi et al [49,50,51].
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Given a point p in an image |, and its corresponding point q in an image J, the displace-

ment vector o between p and g is best described using an affine motion field:

d=Dp+t (6.14)
where
O Oxy
D=
{dyx dyy} (615

isadeformation matrix and t is the translation vector of the centre point of the tracked
feature window. The trandation vector t is measured with respect to the feature in ques-
tion. Tracking feature p to feature g is simply the problem of determining the six parame-
ters that comprise the deformation matrix D and the trandlation vector t. In the case of

pure translation, D will be the identity matrix and thus

d=p+t (6.16)
Because of this, the case of pure trandation is computationally smpler and thus prefer-
able due the higher frame rates typically found in video data. Since the motion between
adjacent frames of standard video is generally quite small, it turns out that setting the de-
formation matrix to identity is a safe computation [50], leaving us with the translation
vector being exactly the displacement vector. A complete description of the tracking

equations and feature tracking criteria can be found in Chapter 2, section 11.

FIGURE 6.7: INITIAL IMAGE, TRAJECTORY IMAGE
(target and head features) tracked over 45 frames, final image
The displacement vector is computed using a pyramid of resolutions because
processing a high resolution image is computationally intense. The multi-resolution
pyramid within the feature tracker reduces the resolution of the entire image, say by a

factor of 2. Tracking occurs by tracking a features general areain the lowest resolution
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and upgrading the search for the exact location as it progresses back up the pyramid to

the highest resolution.

While tracking features it is possible that an extremely large object motion be-
tween frames does occur and features cannot be tracked any further resulting in smaller
object trgjectories. This is especialy true in the case of slower frame rates. So long as
the object tragjectories overlap in time, the length of the trajectory bears little relevance,
although longer sequences help in finding inflection points and help to ensure that trajec-
tory correspondences exist. In Figure 6.7, we have a trajectory image for 3 seconds of a

video sequence along with the first and last frames from the from the trajectory sequence.

FIGURE 6.8: TRAJECTORY IMAGE (ENLARGED) FOR A 3 SECOND INTERVAL.

In Figure 6.8 we present an enlarged version of the trajectory image. Theimage main-
tains a separate colour for each point feature tracked and specifies the exact point feature

position in black for each frame.

6.3.3 Gross approximation of synchronization via trajectory images
We begin by performing a gross approximation of the full frame synchronization.

Because we are not assuming trajectory correspondence, we must have enough interest
points tracked to ensure correspondence between the 3 views. This will result in clut-
tered trgjectory images, however we can reduce the trajectory images in the presence of

inflection points.

An inflection point is found examining the tragjectories for similarities in overall
shape. In the presence of object motion where direction is changed suddenly; the trajec-
tories show this change at a very obvious point shown in Figure 6.9. In practice this al-
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lows us to get within a few frames of correct synchronization, but is never guaranteed to
be exact. The reason for thisis due to differing frames rates combined with perspective
distortions of the fluidly moving objects causing a many-to-one, frame-to-pixel location
of inflection pointsin the trgjectory images.

FIGURE 6.9: ?STRAJECTORY IMAGES WITH ogwous COINCIDENT POINTS OFC INFLECTION

In practice, the presence of obvious inflection points may be quite difficult to find,
especially when the motions of the dynamic objects are not under control of the applica-
tion. Furthermore, the tragjectories of non rigid objects have different times in which the
change of motion represents itself. For example, the loose fitting clothing of a basketball
player making a jump shot continues moving upwards after the player has reached the
apex of the jJump causing the abrupt change in motion of the player’s head and clothing to
occur in different features at different pointsin time. In order to resolve these discrepan-

cies, it would be necessary to first solve the trgjectory correspondence problem.

A closer examination of motion trajectories and the corresponding frames in the
video sequences helps to show how the gross approximation errors occur. When object
motion changes, especially if it is in the direction of the optical axis, there are severd
frames associated to a single pixel location. Furthermore, should the object motion be
extremely slow, there are multiple frames associated with the feature location and there-
fore a higher error in the gross approximation will result. To confirm, we tracked a target
over 15 frames as it moved towards a camera along the optical axis. The result was a
many to one, frame to pixel location association that made exact locaization of the

framesimpossible.

Once we have identified the inflection points, and implicitly the gross approxima

tion of the synchronization, it is further refined by creating a reduced trajectory image



128

around the point of inflection and a geometric consensus stage is applied. In cases where
inflection points cannot be reliably found, the gross approximation stage can be omitted
and we use the larger trgjectory images in the consensus stage. This will result in many
more consensus trials being performed, as we see in Figure 6.10a, because the epipolar
line will potentially intersect with many more trajectories causing the candidate set to be
larger. In Figure 6.10b we show a reduced trajectory image (enlarged for viewing) for an

8 frame track after the point of inflection.
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FIGURE 6.10: EPIPOLAR LINE AND TRAJECTORIES.
The intersection of trgjectories and the epipolar line make up the candidate set of points.
(@) large trgjectory (b) reduced trgjectory

6.3.4 Refinement via maximal geometric consensus
During the creation of the trgjectory images, we associate a list of frame numbers

to each tracked pixel position of the dynamic objects in the trgectory image. We can
now effectively compute the synchronization to sub-frame accuracy using the camera ge-
ometry and the trgjectory images. We do this by selecting a point x in any trgjectory in
the first image. We then compute the epipolar line that will intersect the corresponding
trajectory in the second trajectory image. The epipolar line will also cross other traecto-
ries in the second image, and we use the intersections of the epipolar line and the trgjecto-
ries to create a candidate set of matching points. As shown in Figure 6.11, these candi-
date frames can be computed to sub-frame accuracy as the intersection of the trajectory
line joining two point positions in adjacent frames. For each point in the candidate set,
tensor transfer is applied aong with the first point to compute a third point in the third
trajectory image. The computed 3" point (via tensor transfer) is used to find the closest
trajectory point. This closest point is also computed to sub frame accuracy as shown in
Figure 6.11.
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Once the 3 points have been associated to their respective trajectories, the nearest
full frames are selected for a consensus trial. We compare a window around the exact
tracked point position for each of points using normalized cross correlation to determine
whether or not the three points are similar enough to perform the consensus trial. When
the points agree, we then verify that a variety of features in the selected frames support
the given geometry by generating corner features and performing matching that is guided
by the pre-computed geometries. The putative synchronized frame set with the highest
consensus overall is selected as the synchronized CCS.
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FIGURE 6.11: COMPUTING FRAME VIA EPIPOLAR AND TENSOR TRANSFER.

In practice, one should always start with the slowest camera when selecting the first point
X because it will help to reduce the number of potential consensus trials as the two slow-
est cameras define the largest possible error in synchronization time as discussed in sec-
tion 2. Moreover, attempts should be made to use a reduced trajectory image so that the
number of many-to-one frame-to-pixel associationsis minimized and therefore the size of
the candidate set of matching points will be smaller. If any of the computed points lie on
overlapping tracks, we test all the possible combinations of frames. For a point X whose
epipolar line intersects X trajectories and the subsequent tensor transfer is equidistant to
Y trajectories results in a consensus trial for X-Y frame triplets, a drastic reduction in
consensus trials compared to (N-2)max_offset® which is the number of trials for a smart

brute force method as discussed in section 3.
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6.3.5 Synchronization in the face of erroneous geometries.
In the presence of error in the computed geometries, an exact answer cannot be

trusted. Even a single pixe displacement of the epipolar line will result in an incorrect
location of the intersection of trgjectories and the epipolar line, which will result in an
inexact time localization. In the presence of larger inaccuracies, it is beneficial to exam-
ine a broader range of frames when operating our consensus trials. We do this by modi-
fying the generation of the candidate set to include multiple frames from each track that
intersect with the epipolar line. We examine a number (g) of complete frames on either
side of the epipolar line. The value for ¢ is dictated by our confidence in the computed
geometry, its error and the distance between tracked points. This will increase the num-
ber of consensus trials by a factor of (2¢+1)? times, the number of trials where we have
absolute confidence in the computed geometries. The optimal epsilon is function of the
frame rates and guarantees us to search at least one primary synchronization point. For
each sequence, i, epsiloniis:

2]
This will result in (N-2)(2e+1)? consensus trials. For our experimental trials, we set € to
be 2 as computed from (6.17).

6.3.6 Algorithm Review: Synchronize
We quickly review the synchronization algorithm

Input: 3 video camera view sequences
Output: frame numbers for 3 synchronized frames

Externa Functions:

Projective_Transfer (pl,p2) performs tensor transfer between pl,p2 returns point p3
Xcorr(f1,pl,f2,p2,f3,p3) performs pair wise normalized cross correlation for 3 points (px)
in 3 frames (fx)and returns the minimum correlation of al 3 pairings.

Select frames that a form static-CCS

Compute fundamental matrices (F,, and F,;) & triliner tensor (Ti,;)
Generate trajectory images at 3 second intervals

Find and match inflection points in trajectory images

Generate reduced trajectory images around inflection points
Select a point x from f1 on a trajectory image 1

< O Ul W N

1l = Fi,x (compute Epipolar line)
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8 Compute the candidate set of points (X.;) i.e. the intersections
of the trajectories and the epipolar line 1
9 For each point pair (x, x.) do

10 X, = Projective Transfer (x, x.)
11 Compute frame number f, from x.; to sub-frame accuracy (Fig 13)
12 Compute frame number f; from x, and the nearest trajectory to

sub-frame accuracy (Fig 13)
13 If (Xcorr(fi,X, [f2+05],%ci, [f3+05], Xe) < threshold)

14 Perform guided matching using frames |fi+05)|f2+05])|f3+05| and

the geometry computed in (2)

15 If consensus feature count is maximal then
Save f,, f,, and f;

16 Endfor(9)

17 Return f,, f,, and £f;

6.4 Experimental Results

We have applied the algorithm to various sequences, both synthetic and those
captured by a variety of different cameras of varying quality and frame rates. We com-
pare to known ground truth where possible, while in the other cases, we compare to our
hand selected ground truth.

6.4.1 Synthetic Data
In our synthetic data set, we have a series of static 3D pointsin a variety of posi-

tions. Our dynamic 3D points are the vertices of a cube which we move before construct-
ing each frame in our sequence. The frame rates are the same and constant for each gen-
erated sequence, and the sequences are perfectly synchronized. This scenario represents
a system of cameras with identical frame rates that are full frame synchronized. The off-
sets were set to be 0, 5 and 10 frames respectively. In this case, the motion of the cube
was arranged so that the vertices of the cube projected to a unique pixel after each mo-
tion. This resulted in a trgjectory image with a one-to-one pixel/frame number associa-
tion. The trifocal tensor was derived from the projection matrices and the fundamental
matrices were subsequently derived from the tensor. The trgjectory images were gener-
ated using the projected positions of the 3D vertices of the cube. Due to the simplistic
motion, there were no inflection points in the trajectory image, thus application of the
consensus algorithm was all that was necessary. Under these ideal conditions, the syn-

chronization was computed exactly to be frame deltas 0, 5 and 10 respectively.
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In our next synthetic example, we configured the system to have the same con-
stant frame rates for each generated sequence. In this example, the sequences are not per-
fectly synchronized and frame deltas of O, 5.25 and 10.75 were used to represent a system
similar to Figure 3. In this case, the motion of the cube was arranged so that the vertices
of the cube projected to a unique pixel after each motion and that for each full frame tick,
the points moved exactly 4 pixels. This resulted in a trgjectory image with a one-to-one
pixel/frame number association and allowed us to easily determine the sub-frame offsets.
Under these conditions, the synchronization was computed exactly to be frame deltas 0,
5.25 and 10.75 respectively.

6.4.2 Real Data
In the following experiments, we used various digital cameras with video capture

capabilities. The cameras had different capture capabilities such as frame rates and reso-
lutions. In our first experiment, we used a system of 3 cameras that grabbed frames on a
synchronized basis, we then offset the video sequences by 5 and 10 frames for the second
and third cameras respectively to be used as our ground truth. This scenario represents a
system of cameras with identical frame rates that are full frame synchronized and the cap-
ture process was started simultaneously (as in Figure 1). As we can see in Table 1 the
computed full frame synchronization is correct, however due to minor errors in computed
geometry, the exact synchronization exhibits the minor errors. The error falls well within
the expected maximum error of %2 aframe.

) Uni-
First Exact
Gross. Exact | Primary E>.<act vgrsal First | Ground
Camera | Approxi- Time | Time
. Sync Sync . . Full Truth
mation . Ei(s) | Shift
Point ! Frame
S (9
1 141 141 0 0 1.994 0 0
2 146 146.05 5.05 1.010 | 0.984 5 5
3 151 150.97 9.97 1.994 0 10 10

Table 1: Synchronization Results

In Figure 12, we show the synchronized frames in rows and sequences in columns
for this example. As you can see the events (specifically the hand) are well matched in

time.
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In our next set of experiments, we utilize 3 off the shelf digital cameras with video cap-

ture capabilities. The cameras were of varying quality and frame rates. The camera limi-
tations for this set of experiments are presented in Table 2. This reflects the situation de-
picted in Figure 3. Given the frame rates, we can expect full frame synchronization to

fall within 0.033 seconds of the perfectly accurate synchronization.

FIGURE 6.12: 3 SYNCHRONIZED (ROWS), CONSECUTIVE FRAMES (COLUMNS)

Camera Frame Noise Resolution
Rate level (Sharpness)
1 15 typical low
2 15 typical standard
3 10 high standard

Table 2: Camera Characteristics

0 %1‘1 5Z = g‘g & & g‘g g >
3 HQQ 3 o< 8 ~8 =32 o 8 =
2| 2 588 o [P28 ¢ | *Z 23 s 3
o g |57~ N2 =8 5 3 =8 %8

b = o ® - ®

115 | 127 | 8467 | 7533 | 12675 | 845 | 745 | 127 | 8467

/15 | 228 | 152 | 0.80 | 229.33 | 15289 | 0.611 | 229 | 15.267

/10 | 160 16 0 159 15.9 0 159 15.9
Table 3: Synchronization Results

In the first two examples, we used a target as the moving object in order to assure

corresponding points would produce corresponding trajectories. In both of these exam-
ples, the target was moved such that an obvious change of direction (inflection points)

N~
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occurred. These very sharp inflection points allow the gross approximation method to
achieve very close results to the synchronized frames with maximal consensus. We can
see in Table 3 that the gross approximation in the presence of inflection points are accu-
rate to within a few frames of the exact full frame synchronization. In Table 4, we con-

firm that the time difference falls within the expected values given the ground truth.

The targets, while helpful in ensuring the accuracy by allowing multiple corre-
sponding trajectories causes the al gorithm to force many more consensus trials because of
the feature proximity. With fewer corresponding features being tracked, there are fewer
pointsin the candidate sets and thus fewer geometric consensus trials. However, in order
to ensure accurate synchronization, we need to ensure that at least one corresponding fea-

ture is sufficiently tracked in all 3 cameras sequences.

Ground Truth . Difference
(user selected) Time from com-
puted time
127 8.467 0.017
229 15.267 0.022
159 15.9 0

Table 4: Synchronization Results

=~

FIGURE 6.13: SELECTED SYNCHRONIZED FRAMES

B

A second example using the same cameras outlined in Table 2 also bring us to the
same conclusion. The results, outlined in Table 5, support the previous experiments find-
ings that the gross approximation, in the presence of inflection points is accurate to
within afew frames.

In order for the exact computation of synchronization via geometric consensus to be
effective, there is the requirement of corresponding features being successfully tracked.
The targets, seen in Figure 13 help to ensure that corresponding features are indeed

tracked. Asaresult, the trajectory images are quite feature-rich. In contrast, without the
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use of targets, the trajectory images may be quite sparse due to the static background fea-
tures being selected automatically over the moving object features. In our final example,

we abandon the use of targets and look to automatically track features on dynamic ob-

jects.
Gross Exicft Full Full Frame-
Approxima chrsgni 7o Frame Ground
tion ) Sync. Truth
tion

Camera l frame 165 167 167 167

Camera 2 frame 212 213.66 214 214

Camera 3 frame 170 170.80 171 170

Total Frame 4 113 1 N/A

Error
Table 5: Synchronization Results

Unlike our target based approach, the gross approximation became more difficult
and required minor manual interventions. Because the features on the moving objects
lack the contrast of the target, it was often the case that features on the moving objects
would not be automatically selected into the tracked features list. A minor manual step to
force feature selection in selected areas helped to generate better trajectory images.
Background subtraction techniques would help to remove the need for this manual re-

guirement.

0 § 32 o g‘g & & gg g >
= 282 3 |gzaz| 8 8 |z32|58| 2
2| o 5S8 S |23 © | ®Z [®e%| 3
s| & 879 @ =4 5 | 2g |38

o = o ) - ®

115 244 | 16.267 | 11.133 | 24280 | 16.187 | 11.213 | 243 16.20
115 302 | 20.133 7.267 301.50 | 20.100 | 7.300 | 302 20.13
3| V10 274 | 27.400 0 274 27.400 0 274 | 2740

Table 6: Synchronization Results

=

N

FIGURE 6.14: SELECTED SYNCHRONIZED FRAMES
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Again, the results shown in Figure 14, listed in Table 6 and Table 7 fall within the
expected maximum error. However, in this specific case, the epipolar line fell exactly
halfway between the two points in sequence 2. Our decision to move up, rather than
down affected the accuracy and caused a single frame error in the computed full frame
synchronization, but does not change the accuracy of the exact computation. A minor
anomaly worth noting, is that in this example, the hand selected ground truth value for
sequence 2 (301) may be incorrect. All three methods, gross approximation, exact and
robust all agree with a value of 302. When selecting the ground truth, we had several
people examine the frames and come to a consensus of the frame numbers that they be-
lieved were synchronized.

Difference
Ground Truth Time from exact
(user selected) computed
time
243 16.200 0
301 20.067 0.033
274 27.400 0

Table 7: Synchronization Results

a 5 M Q 3 Z

S s 24F = 2 38:iz
1 12533 127 127 127
1 2 227 229 229 229
3 159 159 159 159
1 16625 167 167 167
2 2 2115 213 214 214
3 170 170 170 171
1 24066 243 243 243
3 2 30425 302 301 302
3 274 274 274 274

Table 8: Comparison of methods in the face of geometric inaccuracy

In our final set of experiments, we artificialy added error to the computed geome-
tries to simulate degenerate geometries. We then ran the examples again using the robust

strategy outlined in section 3.5 for dealing with erroneous geometries. As we can seein
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Table 8, the strategy of dliding up and down the trajectories and performing more consen-
sustrails on al the local combinations is helpful in the face of inexact geometries. How-
ever, it requires substantially many more consensus trials, and therefore requiring more

computing time.

By using the robust method, we are able to achieve results that are very close to

ground truth.

6.5 Practical Considerations

During the investigation, several practical issues were raised. Instrumenta to the
success of the accurate computation of the synchronization is an accurate computation of
the camera geometries. The problem of computing an accurate set of camera geometries
is considered difficult; and inaccurate geometries, even within a few pixels, can result in
an incorrect selection of synchronized frames that are no better than the gross approxima-
tion stage. In practice, SIFT features [111] helped to generate accurate geometries in dif-

ficult circumstances.

The primary area of concern for the tracking aspect is the avoidance of multiple
frame associations to a single feature location and that corresponding features are tracked
for some period of time. In order to avoid multiple frame associations, the maximum
length of the trajectories should be less than the tracked features intra frame pixel dispar-
ity when generating the reduced trajectory images. It is difficult to ensure that corre-
sponding moving object features are tracked in al views, but in practice, targets ensured
that many corresponding trajectories existed. However, in situations where targets were
not used, simply selecting areas to automatically select features to track helped to im-
prove the situation at the cost of taking away from the hands off approach that the targets
allowed. Restricting the area for detection of features to track in an automated method

would help to make the algorithm more practical.

Open problems include automatic detection of corresponding inflection points and
the automatic detection of corresponding trajectories apriori. While these values are im-

plicitly computed by the method, thus known apostori, knowing them apriori would result
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in a reduction of the number of times the consensus step (the largest consumption of

time) isrequired.

6.6 Conclusionsand Discussion

In this work we present a novel method for multiple video temporal synchroniza-
tion using feature tracking and geometric consensus. The proposed method allows for the
least constraints being placed on the camera setup and the scene being viewed. The
method provides two levels of accuracy by using a two step process of grossly approxi-
mating the frame synchronization followed by a refinement step that examines the se-
lected frames for their consensus with the camera geometry. The method has been suc-
cessfully used on both synthetic data and real data with substantial noise, differing frame
rates and varying levels of initial synchronization. Even in the presence of erroneous ge-
ometries, it is possible to get very close synchronization results at the cost of performing

more consensus trials to account for the geometric inaccuracies.
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Chapter 7

Conclusions and Open Problems

7.1 Summary

Video data presents a variety of problems for computing due to introduction of is-
sues not often found in classical computer vision. Primarily, the sheer volume of the data
itself is aprimary concern that will often prevent the straight forward application of stan-
dard computer vision algorithms to each individua frame. Aswell, video data introduces
another dimension into the computation models: time. Temporal constraints also prevent
the application of standard algorithms as they are often presented as single image algo-
rithms. For example: content based image retrieval techniques cannot be simply applied
to video data. Furthermore, video data is often accompanied by audio data. While not
examined directly in this thesis, audio data is yet another dimension for consideration
when processing video data. For all of the above reason, the field of computation video
has started to emerge as an interesting and necessary field of computer science. As com-
putational video is an emerging research area, this thesis has presented practical algo-
rithms for a variety of problems commonly encountered by applications that utilize video
data.

Chapter 3 presented a method to select appropriate frames from a video sequence
for subsequent processing using computer vision algorithms. Furthermore, the chapter
presents a publicly available platform called the Projective Vision Toolkit that allows fu-
ture researchers to reduce the learning curve and accel erate research into the field.

Chapter 4 presented a computer vision based approach to the problem of segment-
ing commercia video. Shots detection forms the cornerstone of many content based
video/image retrieval systems. The quest for a perfect segmentation algorithm still re-
mains. However, this chapter presented an improved methodology that significantly out-
performs existing techniques.

Chapter 5 presented a Genetic Algorithm based system to perform autocalibration

of cameras. Current techniques are not scalable to the volume of data present in video
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sequences and thus are not a tractable solution. We presented an extremely fast and accu-
rate method for self calibration of video cameras.

Chapter 6 presented a theoretical look at the mathematical properties of the video
synchronization problem and shows the existence of two distinctly different flavors of the
synchronization problem. The chapter proceeds to present a solution to the synchroniza-
tion problem that, unlike existing solutions, considers both flavors of the problem and is
not constrained by the presence of large planar surfaces.

The solutions presented in this thesis represent the only the tip of the iceberg
when dealing with video data and ring true to the words of Anton Checkov: “Yet it was
clear ... that the end was still far, far off, and that the hardest and most complicated part

was only just beginning” . We next examine alist of open problems and future work.

7.2 FutureWork

Finally, areas where future work would be beneficial are plenty in emerging
fields. We present some areas related to the each of the chapters, but left unexplored by

thisthesis.

First, corner features used in the Projective Vision Toolkit suffer under certain
camera motions when trying to compute corresponding features between views. The
same problems that exist for feature matching also exist for feature tracking. An exami-
nation into scale invariant features (SIFT) [111] has shown some initial promise within
the PVT and in a feature tracking context. More work is necessary to fully develop the
idea of Scale Invariant Feature Transform Tracking (SIFT?). This will allow more accu-
rate computation of geometries and more robust feature tracking.

A second areato examine isin video tracking as well. Independently moving ob-
jects will temporarily occlude different static areas of the scene as they move causing fea-
ture loss in tracking applications. Identifying such occlusions would help to enumerate
the independently moving objects and allow re-tracking once the occlusions a gone. Re-
search into detecting and combining occlusions as part of the annotation and tracking of

objects in video sequences would prove beneficial because independently moving objects
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often possess cohesive features such as color and texture, object segmentation and track-

ing may prove fruitful.

A third area where further effort is required is the adaptation of the methods in
Chapter 5 to alow the autocalibration of video cameras with varying intrinsic parameters.
Auto-focus features are becoming standard features on commercial video cameras and in
order to provide practical application to the more modern version of video cameras, it
will be necessary to adapt the cost functions presented in Chapter 5 to minimally allow

for differing focal lengths between views.

Finally, there are a variety of future problems that arise due smply to the solu-
tions of the problems presented in this thesis. Real-time constraints are always a consid-
eration for applications such as rea-time television viewing by computer programs,
autonomous vehicle projects where real-time reaction is necessary and real-time envi-
ronment recreation for virtual reality applications. Adaptations to color information also
present an interesting set of problems. As this thesis performed the magjority of its work
in the luminance domain, a detailed investigation into the use of color to perform tasks

may also prove fruitful.
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Appendix A
Exact Match countsfor PVT Example Sets
Q) S dl TR =X
=252 2 (5£2|32 |g8¢
Image pair and L ocation § g. %’*:_3 @ ) %’*:_31,; % =3 = 0 z
Bo|38] 3 |B~2| 28 (=92
> 3 5| 83 ? 8
ex1/bighouse/c-000101.pgm-c-000102.pgm.matches 417 | 389 | 6.71 363 | 6.68 12.95
ex1/bighouse/c-000102.pgm-c-000103.pgm.matches 349 | 321 | 8.02 313 | 249 10.32
ex1/bighouse/c-000103.pgm-c-000104.pgm.matches 470 | 447 | 4.89 420 | 6.04 10.64
ex1/bighouse/c-000104.pgm-c-000105.pgm.matches 487 | 479 | 164 455 | 5.01 6.57
ex1/bighouse/c-000105.pgm-c-000106.pgm.matches 393 | 373 | 5.09 366 | 1.88 6.87
ex1/bighouse/c-000106.pgm-c-000107.pgm.matches 531 | 530 | 0.19 518 | 2.26 245
ex1/bighouse/c-000107.pgm-c-000108.pgm.matches 422 | 405 | 4.03 | 393 | 2.96 6.87
ex1/bighouse/c-000108.pgm-c-000109.pgm.matches 509 | 506 | 0.59 494 | 2.37 2.95
ex1/bighouse/c-000109.pgm-c-000110.pgm.matches 505 | 504 | 0.20 487 | 3.37 3.56
ex1/bighouse/c-000110.pgm-c-000111.pgm.matches 433 | 411 | 5.08 398 | 3.16 8.08
ex1/chapel/p0000888.j pg-p0000889.j pg.matches 299 | 210 | 29.77 | 199 | 524 33.44
ex1/chapel/p0000889.j pg-p0000890.j pg.matches 299 | 196 | 3445 | 165 | 1582 | 44.82
ex1/chapel/p0000890.j pg-p0000891.j pg.matches 289 | 255 | 11.76 | 234 | 824 19.03
ex1/chapel/p0000891.j pg-p0000892.j pg.matches 299 | 219 | 26.76 | 200 | 868 | 3311
ex1/chapel/p0000892.j pg-p0000893.j pg.matches 303 | 254 | 16.17 | 238 | 6.30 | 21.45
ex1/chapel/p0000893.j pg-p0000894. pg.matches 265 | 179 | 3245 | 164 | 838 | 3811
ex1/chapel/p0000894.j pg-p0000895.j pg.matches 291 | 174 | 4021 | 168 | 3.45 42.27
ex1/chapel/p0000895.j pg-p0000896.j pg.matches 321 | 251 | 21.81 | 228 | 916 | 28.97
ex1/chapel/p0000896.j pg-p0000897.j pg.matches 283 | 176 | 37.81 | 159 | 9.66 | 43.82
ex1/chapel/p0000897.jpg-p0000898.j pg.matches 296 | 254 | 1419 | 189 | 2559 | 36.15
ex1/chapel/p0000898.j pg-p0000899.j pg.matches 282 | 236 | 16.31 | 208 | 11.86 | 26.24
ex1/chapel/p0000899.j pg-p0000900.j pg.matches 293 | 162 | 4471 | 149 | 8.02 | 49.15
ex1/climber/p0000361.jpg-p0000362.j pg.matches 243 | 132 | 45.68 73 470 | 9.96
ex1/climber/p0000362.j pg-p0000363.j pg.matches 229 | 131 | 42.79 74 451 | 6.69
ex1/climber/p0000363.jpg-p0000364.j pg.matches 242 | 139 | 42.56 94 3237 | 6116
ex1/climber/p0000364.jpg-p0000365.j pg.matches 247 | 128 | 48.18 88 315 | 64.7
ex1/climber/p0000365.jpg-p0000366.j pg.matches 225 | 113 | 49.78 79 30.0 | 648
ex1/climber/p0000366.jpg-p0000367.j pg.matches 239 | 101 | 57.74 63 37.62 | 73.64
ex1/climber/p0000367.jpg-p0000368.j pg.matches 230 | 115 | 50.00 | 79 | 31.30 | 65.65
ex1/climber/p0000368.jpg-p0000369.j pg.matches 245 | 119 | 5143 89 25.21 | 63.67
ex1/climber/p0000369.jpg-p0000370.j pg.matches 238 | 143 | 39.92 85 40.56 | 64.29
ex1/climber/p0000370.jpg-p0000371.jpg.matches 251 | 107 | 57.37 76 28.97 | 69.72
ex1/climber/p0000371.jpg-p0000372.j pg.matches 240 | 126 | 47.50 87 30.95 | 63.75
ex1/climber/p0000372.jpg-p0000373.jpg.matches 243 | 126 | 48.15 88 | 30.16 | 63.79
ex1/equiproom/p0001989.j pg-p0001990.j pg.matches 106 | 103 | 2.83 20 80.58 | 81.13
ex1/equiproom/p0001990.j pg-p0001991.j pg.matches 209 | 182 | 1292 | 107 | 41.21 | 48.80
ex1/equiproom/p0001991.j pg-p0001992.j pg.matches 207 | 168 | 1884 | 119 | 29.17 | 4251
ex1/equiproom/p0001992.j pg-p0001993.j pg.matches 284 | 254 | 1056 | 205 | 19.29 | 27.82
ex1/equiproom/p0001993.j pg-p0001994.j pg.matches 259 | 231 | 1081 | 157 | 32.03 | 39.38
ex1/equiproom/p0001994.j pg-p0001995.j pg.matches 279 | 207 | 2581 | 183 | 1159 | 3441
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ex1/equiproom/p0001995.j pg-p0001996.j pg.matches 259 | 219 | 1544 | 168 | 23.29 | 35.14
ex1/equiproom/p0001996.j pg-p0001997.j pg.matches 286 | 266 | 6.99 221 | 16.92 | 22.73
ex2/castle/kasteel 101.ppm-kasteel 102.ppm.matches 122 | 121 | 0.82 42 65.29 | 65.57
ex2/castle/kasteel 102.ppm-kasteel 103.ppm.matches 433 | 425 | 1.85 400 588 | 7.62
ex2/castle/kasteel 103.ppm-kasteel 104.ppm.matches 128 | 91 | 2891 91 0.00 | 28.91
ex2/castle/kasteel 104.ppm-kasteel 105.ppm.matches 74 | 52 | 2973 | 40 | 23.08 | 45.95
ex2/castle/kasteel 105.ppm-kasteel 106.ppm.matches 166 | 139 | 16.27 | 132 5.04 | 20.48
ex2/etlueshibal/et| 101.pgm-et] 102.pgm.matches 184 | 183 | 0.54 115 | 37.16 | 37.50
ex2/etlueshibal/et| 102.pgm-et] 103.pgm.matches 151 | 149 | 1.32 95 36.24 | 37.09
ex2/etlueshibal/et| 103.pgm-etl 104.pgm.matches 148 | 147 | 0.68 87 40.82 | 41.22
ex2/etlueshiba/et| 104.pgm-etl 105.pgm.matches 75 | 74 | 133 47 36.49 | 37.33
ex2/Iab4thfl oor/p0000748.j pg-p0000749.j pg.matches 302 | 241 | 20.20 | 143 | 40.66 | 52.65
ex2/Iab4thfl oor/p0000749.j pg-p0000750.j pg.matches 260 | 201 | 2269 | 106 | 47.26 | 59.23
ex2/Iab4thfloor/p0000750.) pg-p0000751.j pg.matches 305|269 | 11.80 | 171 | 36.43 | 43.93
ex2/lab4thfloor/p0000751.jpg-p0000752.j pg.matches 320 | 292 | 8.75 182 | 37.67 | 43.13
ex2/Iab4thfl oor/p0000752.j pg-p0000753.j pg.matches 262 | 184 | 29.77 | 101 | 4511 | 61.45
ex2/Iab4thfl oor/p0000753.) pg-p0000754.j pg.matches 250 | 187 | 25.20 79 57.75 | 68.40
ex2/Iab4thfl oor/p0000754.) pg-p0000755.j pg.matches 314 | 282 | 1019 | 139 | 50.71 | 55.73
ex2/1ab4thfl oor/p0000755.j pg-p0000756.j pg.matches 259 | 197 | 23.94 71 63.96 | 72.59
ex2/lab4thfloor/p0000756.j pg-p0000757.j pg.matches 254 | 223 | 1220 | 94 | 57.85 | 62.99
ex2/lab4thfloor/p0000757.jpg-p0000758.j pg.matches 238 | 223 | 6.30 65 | 70.85 | 72.69
ex3/csroom/p0000827.j pg-p0000828.jpg.matches 210 | 172 | 18.10 85 50.58 | 59.52
ex3/csroom/p0000828.j pg-p0000829.jpg.matches 217 | 166 | 23.50 84 49.40 | 61.29
ex3/csroom/p0000829.j pg-p0000830.jpg.matches 145 | 131 | 9.66 34 74.05 | 76.55
ex3/csroom/p0000830.j pg-p0000831.jpg.matches 234 | 142 | 39.32 96 32.39 | 58.97
ex3/csroom/p0000831.jpg-p0000832.jpg.matches 264 | 225 | 1477 | 120 | 46.67 | 54.55
ex3/csroom/p0000832.j pg-p0000833.j pg.matches 241 | 149 | 38.17 97 | 34.90 | 59.75
ex3/csroom/p0000833.j pg-p0000834.jpg.matches 286 | 201 | 29.72 | 145 | 27.86 | 49.30
ex3/csroom/p0000834.j pg-p0000835.jpg.matches 267 | 182 | 31.84 90 50.55 | 66.29
ex3/readingroom/p0000842.jpg-p0000843.jpg.matches | 176 | 137 | 22.16 81 40.88 | 53.98
ex3/readingroom/p0000843.jpg-p0000844.jpg.matches | 219 | 171 | 21.92 | 129 | 24.56 | 41.10
ex3/readingroom/p0000844.jpg-p0000845.jpg.matches | 249 | 211 | 1526 | 163 | 22.75 | 34.54
ex3/reidscul pt/p0001070.j pg-p0001071.j pg.matches 345 | 287 | 16.81 | 157 | 45.30 | 54.49
ex3/reidscul pt/p0001071.jpg-p0001072.j pg.matches 465 | 423 | 9.03 216 | 48.94 | 53.55
ex3/reidscul pt/p0001072.jpg-p0001073.j pg.matches 329 | 259 | 21.28 | 121 | 53.28 | 63.22
ex3/reidscul pt/p0001073.j pg-p0001074.j pg.matches 378 | 331 | 1243 | 145 | 56.19 | 61.64
ex3/reidscul pt/p0001074.j pg-p0001075.j pg.matches 320 | 251 | 2156 | 119 | 5259 | 62.81
ex3/reidscul pt/p0001075.jpg-p0001076.j pg.matches 405 | 375 | 741 184 | 50.93 | 54.57
ex3/reidscul pt/p0001076.jpg-p0001077.j pg.matches 384 | 346 | 9.90 156 | 54.91 | 59.38
ex3/totem1/p0001062.j pg-p0001063.jpg.matches 358 | 269 | 24.86 | 233 | 13.38 | 34.92
ex3/totem1/p0001063.j pg-p0001064.j pg.matches 327 | 241 | 26.30 | 186 | 22.82 | 43.12
ex3/totem1/p0001064.j pg-p0001065.j pg.matches 334 | 256 | 23.35 | 218 | 1484 | 34.73
ex3/totem1/p0001065.j pg-p0001066.j pg.matches 363 | 281 | 2259 | 246 | 12.46 | 32.23
ex3/totem1/p0001066.j pg-p0001067.jpg.matches 372 | 297 | 20.16 | 252 | 15.15 | 32.26
ex3/totem1/p0001067.j pg-p0001068.j pg.matches 307 | 235 | 2345 | 202 | 14.04 | 34.20
ex3/totem1/p0001068.j pg-p0001069.j pg.matches 341 | 266 | 21.99 | 215 | 19.17 | 36.95
ex4/workshopl/p0001669.j pg-p0001670.j pg.matches 202 | 122 | 39.60 87 28.69 | 56.93
ex4/workshop1/p0001670.jpg-p0001671.jpg.matches 217 | 140 | 3548 97 | 30.71 | 55.30
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ex4/workshopl/p0001671.pg-p0001672.jpg.matches | 232 | 179 | 2284 | 97 | 4581 | 58.19

ex4/workshopl/p0001672.jpg-p0001673.jpg.matches 282 | 242 | 1418 | 157 | 3512 | 44.33

ex4/workshopl/p0001673.jpg-p0001674.j pg.matches 353 | 336 | 4.82 239 | 28.87 | 32.29

ex4/workshopl/p0001674.jpg-p0001675.j pg.matches 312 | 272 | 12.82 | 190 | 30.15 | 39.10

ex4/workshopl/p0001675.jpg-p0001676.jpg.matches | 290 | 237 | 18.28 | 166 | 29.96 | 42.76

ex4/workshop2/p0001677.jpg-p0001678.j pg.matches 175 | 169 | 3.43 42 75.15 | 76.00

ex4/workshop2/p0001678.j pg-p0001679.j pg.matches 229 | 182 | 20.52 | 108 | 40.66 | 52.84

ex4/workshop2/p0001679.j pg-p0001680.j pg.matches 201 | 158 | 21.39 63 60.13 | 68.66

ex4/workshop2/p0001680.j pg-p0001681.j pg.matches 210 | 163 | 22.38 95 41.72 | 54.76

ex4/workshop2/p000168L.jpg-p0001682.jpg.matches | 245 | 216 | 11.84 | 102 | 52.78 | 58.37

ex4/workshop2/p0001682.j pg-p0001683.j pg.matches 214 | 135 | 36.92 70 48.15 | 67.29

ex4/workshop2/p0001683.j pg-p0001684.j pg.matches 211 | 156 | 26.07 81 48.08 | 61.61

ex4/workshop2/p0001684.j pg-p0001685.j pg.matches 292 | 271 | 7.19 157 | 42.07 | 46.23

ex4/workshop3/p0001686.j pg-p0001687.j pg.matches 198 | 192 | 3.03 66 65.63 | 66.67

ex4/workshop3/p0001687.j pg-p0001688.j pg.matches 179 | 167 | 6.70 43 74.25 | 75.98

ex4/workshop3/p0001688.j pg-p0001689.j pg.matches 157 | 148 | 5.73 39 73.65 | 75.16

ex4/workshop3/p0001689.j pg-p0001690.j pg.matches 154 | 152 | 1.30 39 74.34 | 74.68

ex4/workshop3/p0001690,jpg-p0001691 jpg.matches | 159 | 158 | 063 | 28 | 82.28 | 82.39

ex4/workshop3/p0001691.jpg-p0001692.jpg.matches | 173 | 166 | 405 | 37 | 77.7 | 7861

ex4/workshop3/p0001692.j pg-p0001693.j pg.matches 202 | 182 | 9.90 61 66.48 | 69.80

ex5/bsmnt/bsmnt100.pgm-bsmnt101.pgm.matches 281 | 280 | 0.36 241 | 1393 | 14.23
ex5/bsmnt/bsmnt101.pgm-bsmnt102.pgm.matches 288 | 286 | 0.69 263 804 | 8.68
ex5/bsmnt/bsmnt102.pgm-bsmnt103.pgm.matches 291 | 289 | 0.69 236 | 18.34 | 18.90
ex5/bsmnt/bsmnt103.pgm-bsmnt104.pgm.matches 273 | 272 | 0.37 233 | 14.34 | 1465
ex5/bsmnt/bsmnt104.pgm-bsmnt105.pgm.matches 277 | 276 | 0.36 240 | 13.04 | 13.36
ex5/bsmnt/bsmnt105.pgm-bsmnt106.pgm.matches 254 | 252 | 0.79 219 | 1310 | 13.78
ex5/bsmnt/bsmnt106.pgm-bsmnt107.pgm.matches 279 | 275 | 143 242 | 12.00 | 13.26
ex5/bsmnt/bsmnt107.pgm-bsmnt108.pgm.matches 238 | 232 | 2.52 145 | 37.50 | 39.08
ex5/bsmnt/bsmnt108.pgm-bsmnt109.pgm.matches 229 | 226 | 131 148 | 34.51 | 35.37
ex5/bsmnt/bsmnt109.pgm-bsmnt110.pgm.matches 256 | 252 | 1.56 212 | 15.87 | 17.19

ex5/montreal statue/p001756.jpg-p001757.jpg.matches | 299 | 182 | 39.13 | 163 | 10.44 | 45.48

ex5/montreal statue/p001757.jpg-p001758.jpg.matches | 323 | 211 | 3467 | 184 | 12.80 | 43.03

ex5/montreal statue/p001758.jpg-p001759.jpg.matches | 337 | 293 | 13.06 | 242 | 17.41 | 28.19

ex5/montreal statue/p001759.jpg-p001760.jpg.matches | 330 | 267 | 19.09 | 207 | 22.47 | 37.27

ex5/vehiclelimagel09.jpg-imagel10.jpg.matches 257 | 141 | 4514 | 136 355 | 47.08
ex5/vehiclelimagel10.jpg-imagelll.jpg.matches 209 | 184 | 11.96 | 177 3.80 | 1531
ex5/vehiclelimagelll.jpg-imagell2.jpg.matches 232 | 193 | 1681 | 181 6.22 | 21.98
ex5/vehiclelimagel12.jpg-imagell3.jpg.matches 219 | 189 | 13.70 | 173 8.47 | 21.00
ex5/vehiclelimagel13.jpg-imagell4.jpg.matches 143 | 110 | 23.08 95 13.64 | 33.57
ex5/vehiclelimagel14.jpg-imagell5.jpg.matches 163 | 133 | 1840 | 103 | 22.56 | 36.81
ex5/vehiclelimagel15.jpg-imagell6.jpg.matches 186 | 162 | 1290 | 127 | 21.60 | 31.72

ex5/vehiclelimagel16.jpg-imagell?.jpg.matches 136 | 108 | 20.59 88 1852 | 35.29
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Example and location

ex1/bighouse/c-000101.pgm-c-000102.pgm-c-000103.pgm.matches
ex1/bighouse/c-000102.pgm-c-000103.pgm-c-000104.pgm.matches
ex1/bighouse/c-000103.pgm-c-000104.pgm-c-000105.pgm.matches
ex1/bighouse/c-000104.pgm-c-000105.pgm-c-000106.pgm.matches
ex1/bighouse/c-000105.pgm-c-000106.pgm-c-000107.pgm.matches
ex1/bighouse/c-000106.pgm-c-000107.pgm-c-000108.pgm.matches
ex1/bighouse/c-000107.pgm-c-000108.pgm-c-000109.pgm.matches
ex1/bighouse/c-000108.pgm-c-000109.pgm-c-000110.pgm.matches
ex1/bighouse/c-000109.pgm-c-000110.pgm-c-000111.pgm.matches
ex1/chapel/p0000888.j pg-p0000889.j pg-p0000890.j pg.matches
ex1/chapel/p0000889.j pg-p0000890.j pg-p0000891.j pg.matches
ex1/chapel/p0000890.j pg-p0000891.j pg-p0000892.j pg.matches
ex1/chapel/p0000891.j pg-p0000892.j pg-p0000893.j pg.matches
ex1/chapel/p0000892.j pg-p0000893.j pg-p0000894.j pg.matches
ex1/chapel/p0000893.j pg-p0000894.j pg-p0000895.j pg.matches
ex1/chapel/p0000894.j pg-p0000895.j pg-p0000896.j pg.matches
ex1/chapel/p0000895.j pg-p0000896.j pg-p0000897.j pg.matches
ex1/chapel/p0000896.j pg-p0000897.j pg-p0000898.j pg.matches
ex1/chapel/p0000897 .j pg-p0000898.j pg-p0000899.j pg.matches
ex1/chapel/p0000898.j pg-p0000899.j pg-p0000900.j pg.matches
ex1/climber/p0000361.j pg-p0000362.j pg-p0000363.j pg.matches
ex1/climber/p0000362.j pg-p0000363.j pg-p0000364.j pg.matches
ex1/climber/p0000363.j pg-p0000364.j pg-p0000365.j pg.matches
ex1/climber/p0000364.j pg-p0000365.j pg-p0000366.j pg.matches
ex1/climber/p0000365.j pg-p0000366.j pg-p0000367.j pg.matches
ex1/climber/p0000366.j pg-p0000367.j pg-p0000368.j pg.matches
ex1/climber/p0000367.jpg-p0000368.j pg-p0000369.j pg.matches
ex1/climber/p0000368.j pg-p0000369.j pg-p0000370.j pg.matches
ex1/climber/p0000369.j pg-p0000370.j pg-p0000371.jpg.matches
ex1/climber/p0000370.j pg-p0000371.j pg-p0000372.j pg.matches
ex1/climber/p0000371.j pg-p0000372.j pg-p0000373.j pg.matches
ex1/equiproom/p0001989.jpg-p0001990.j pg-p0001991.jpg.matches
ex1/equiproom/p0001990.jpg-p0001991.j pg-p0001992.jpg.matches
ex1/equiproom/p0001991.jpg-p0001992.j pg-p0001993.jpg.matches
ex1/equiproom/p0001992.jpg-p0001993.j pg-p0001994.j pg.matches
ex1/equiproom/p0001993.jpg-p0001994.j pg-p0001995.j pg.matches
ex1/equiproom/p0001994.jpg-p0001995.j pg-p0001996.j pg.matches
ex1/equiproom/p0001995.jpg-p0001996.j pg-p0001997.jpg.matches
ex2/castle/kasteel 101.ppm-kasteel 102.ppm-kasteel 103.ppm.matches
ex2/castle/kasteel 102.ppm-kasteel 103.ppm-kasteel 104.ppm.matches
ex2/castl e/kasteel 103.ppm-kasteel 104.ppm-kasteel 105.ppm.matches
ex2/castle/kasteel 104.ppm-kasteel 105.ppm-kasteel 106.ppm.matches
ex2/etlueshiba/et| 101.pgm-etl 102.pgm-etl 103.pgm.matches
ex2/etlueshiba/et| 102.pgm-etl 103.pgm-etl 104.pgm.matches
ex2/etlueshiba/et| 103.pgm-etl 104.pgm-etl 105.pgm.matches
ex2/lab4thfloor/p0000748.j pg-p0000749.j pg-p0000750.j pg.matches
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0.00
36.84



146

ex2/labathfloor/p0000749.jpg-p0000750.j pg-p0000751.j pg.matches
ex2/lab4thfloor/p0000750.j pg-p0000751.j pg-p0000752.j pg.matches
ex2/lab4thfloor/p0000751.jpg-p0000752.j pg-p0000753.j pg.matches
ex2/lab4thfloor/p0000752.j pg-p0000753.j pg-p0000754.j pg.matches
ex2/lab4thfloor/p0000753.j pg-p0000754.j pg-p0000755.j pg.matches
ex2/lab4thfloor/p0000754.j pg-p0000755.) pg-p0000756.j pg.matches
ex2/lab4thfloor/p0000755.j pg-p0000756.j pg-p0000757.jpg.matches
ex2/lab4thfloor/p0000756.j pg-p0000757.j pg-p0000758.j pg.matches
ex3/csroom/p0000827.j pg-p0000828.j pg-p0000829.j pg.matches
ex3/csroom/p0000828.j pg-p0000829.j pg-p0000830.j pg.matches
ex3/csroom/p0000829.j pg-p0000830.j pg-p000083L.jpg.matches
ex3/csroom/p0000830.j pg-p0000831.j pg-p0000832.j pg.matches
ex3/csroom/p0000831.j pg-p0000832.j pg-p0000833.j pg.matches
ex3/csroom/p0000832.j pg-p0000833.j pg-p0000834.j pg.matches
ex3/csroom/p0000833.j pg-p0000834.j pg-p0000835.j pg.matches

ex3/readingroom/p0000842.j pg-p0000843.j pg-p0000844.j pg. matches
ex3/readingroom/p0000843.j pg-p0000844.j pg-p0000845.j pg. matches

ex3/reidscul pt/p0001070.jpg-p0001071.j pg-p0001072.jpg.matches
ex3/reidscul pt/p0001071.jpg-p0001072.j pg-p0001073.jpg.matches
ex3/reidscul pt/p0001072.jpg-p0001073.jpg-p0001074.jpg.matches
ex3/reidscul pt/p0001073.jpg-p0001074.j pg-p0001075.jpg.matches
ex3/reidscul pt/p0001074.jpg-p0001075.jpg-p0001076.jpg.matches
ex3/reidscul pt/p0001075.j pg-p0001076.j pg-p0001077.jpg.matches
ex3/totem1/p0001062.j pg-p0001063.jpg-p0001064.j pg.matches
ex3/totem1/p0001063.j pg-p0001064.j pg-p0001065.jpg.matches
ex3/totem1/p0001064.j pg-p0001065.j pg-p0001066.j pg.matches
ex3/totem1/p0001065.j pg-p0001066.j pg-p0001067.jpg.matches
ex3/totem1/p0001066.j pg-p0001067.jpg-p0001068.jpg.matches
ex3/totem1/p0001067.j pg-p0001068.j pg-p0001069.j pg.matches
ex4/workshop1/p0001669.jpg-p0001670.j pg-p0001671.jpg.matches
ex4/workshop1/p0001670.jpg-p0001671.j pg-p0001672.jpg.matches
ex4/workshop1/p0001671.jpg-p0001672.j pg-p0001673.jpg.matches
ex4/workshop1/p0001672.jpg-p0001673.j pg-p0001674.jpg.matches
ex4/workshop1/p0001673.jpg-p0001674.j pg-p0001675.j pg.matches
ex4/workshop1/p0001674.jpg-p0001675.j pg-p0001676.j pg.matches
ex4/workshop2/p0001677.jpg-p0001678.j pg-p0001679.jpg.matches
ex4/workshop2/p0001678.jpg-p0001679.j pg-p0001680.j pg.matches
ex4/workshop2/p0001679.jpg-p0001680.j pg-p0001681.jpg.matches
ex4/workshop2/p0001680.j pg-p0001681.j pg-p0001682.jpg.matches
ex4/workshop2/p0001681.jpg-p0001682.j pg-p0001683.j pg.matches
ex4/workshop2/p0001682.j pg-p0001683.j pg-p0001684.j pg.matches
ex4/workshop2/p0001683.jpg-p0001684.j pg-p0001685.j pg.matches
ex4/workshop3/p0001686.j pg-p0001687.j pg-p0001688.j pg.matches
ex4/workshop3/p0001687.jpg-p0001688.j pg-p0001689.j pg.matches
ex4/workshop3/p0001688.j pg-p0001689.j pg-p0001690.j pg.matches
ex4/workshop3/p0001689.jpg-p0001690.j pg-p0001691.j pg.matches
ex4/workshop3/p0001690.j pg-p0001691.j pg-p0001692.j pg.matches
ex4/workshop3/p0001691.jpg-p0001692.j pg-p0001693.j pg.matches
ex5/bsmnt/bsmnt100.pgm-bsmnt101.pgm-bsmnt102.pgm.matches
ex5/bsmnt/bsmnt101.pgm-bsmnt102.pgm-bsmnt103.pgm.matches

36 36
72 35
47 25
30 25
23 23
20 10
12 12
13 13
17 17
7 7
10 10
32 32
27 15
40 24
34 34
23 22
65 48
79 38
48 28
47 27
50 31
49 24
52 24
96 64
89 57
120 79
132 78
98 59
86 86
21 16
21 14
29 29
65 30
86 86
67 38
18 12
20 15
14 11
11 8
20 16
11 9
34 25
14 14
5 5
6 6
4 2
1 1
11 8
198 167
184 134

0.00
51.39
46.81
16.67

0.00
50.00

0.00

0.00

0.00

0.00

0.00

0.00
44.44
40.00

0.00
4.35
26.15
51.90
41.67
42.55
38.00
51.02
53.85
33.33
35.96
34.17
40.91
39.80
0.00
23.81
33.33
0.00
53.85
0.00
43.28
33.33
25.00
21.43
27.27
20.00
18.18
26.47
0.00
0.00
0.00
50.00
0.00
27.27
15.66
27.17
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ex5/bsmnt/bsmnt102.pgm-bsmnt103.pgm-bsmnt104.pgm.matches
ex5/bsmnt/bsmnt103.pgm-bsmnt104.pgm-bsmnt105.pgm.matches
ex5/bsmnt/bsmnt104.pgm-bsmnt105.pgm-bsmnt106.pgm.matches
ex5/bsmnt/bsmnt105.pgm-bsmnt106.pgm-bsmnt107.pgm.matches
ex5/bsmnt/bsmnt106.pgm-bsmnt107.pgm-bsmnt108.pgm.matches
ex5/bsmnt/bsmnt107.pgm-bsmnt108.pgm-bsmnt109.pgm.matches
ex5/bsmnt/bsmnt108.pgm-bsmnt109.pgm-bsmnt110.pgm.matches
ex5/montreal statue/p001756.jpg-p001757.jpg-p001758.jpg.matches
ex5/montreal statue/p001757.jpg-p001758.jpg-p001759.jpg.matches
ex5/montreal statue/p001758.jpg-p001759.jpg-p001760.jpg.matches
ex5/vehiclelimagel09.jpg-imagell10.jpg-imagelll.jpg.matches
ex5/vehiclelimagel10.jpg-imagelll.jpg-imagell2.jpg.matches
ex5/vehiclelimagelll.jpg-imagell2.jpg-imagell3.jpg.matches
ex5/vehiclelimagel12.jpg-imagell3.jpg-imagelld.jpg.matches
ex5/vehiclelimagel13.jpg-imagell4.jpg-imagells.jpg.matches
ex5/vehiclelimagell4.jpg-imagells.jpg-imagell6.jpg.matches
ex5/vehiclelimagells.jpg-imagell6.jpg-imagell?.jpg.matches

171
180
170
168
114
79
103
90
116
117
63
96
82
51
37
57
41

140
135
144
132

18.13
25.00
15.29
21.43
42.11
41.77
47.57
30.00
27.59
38.46
28.57
25.00
23.17
19.61
29.73
31.58
34.15
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Appendix B

The Portable Image Library (PIL)

One of the fallouts from this thesis was the creation of alibrary to handle a variety
of different image and video formats. The Portable Image Library (PIL) provides a con-
sistent interface and allows the accessing and manipulation of still image and video for-
mats for the three most popular computing platforms today: SUN-Solaris, Linux and Mi-
crosoft Windows. PIL isaC API (Application Programming Interface) that makes use of
its own canonical image format, and alows a programmer to load various image formats
such as GIF, JPG, PNG, TIFF, BMP, PGM, PPM, DICOM and PCT. Furthermore, the
library supports the frame-by-frame loading of video formats such as MPEG across all
platformsand AVI, WMV formats on Windows platforms.

Because PIL allows students to be able to open image and video data of a variety
of different formats with only afew lines of C code, students can immediately begin im-
plementing image and video processing algorithms without consideration of the com-
plexities that surround image file formats and byte ordering on different computer proc-
essors. Assuch PIL isan ideal platform to base computer vision and image processing

courseson. PIL isfreely availableto all.
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Appendix C

The Projective Vision Toolkit (PVT)

Based on the PIL Libraries, the Projective Vision Toolkit (PVT) is a series of utilities
available in binary form that allow you to take an image sequence and compute the fun-
damental matrix and trifocal tensor. The current version only goes as far as computing
these two quantities, along with the correspondences that support them. It does so com-
pletely automatically, using only natural features. The most important assumption is that
the maximum motion of a single feature is limited (usually to 1/3 of the image size). We
are able to process images that are more widely separated than those from a video cam-
era, but can not handle ultra wide separations. If one wishes to perform a reconstruction
of the camera positions it is necessary to autocalibrate (or to a-priori have the calibration)
which is aso provided as part of the PVT. In each of our current examples (outlined in
Appendix A) we have a VRML file (.wrl extension) which shows the reconstruction of
the camera positions along with the features that were detected. In this case the recon-
struction was obtained by sending the correspondences and calibration information to the

Photomodeler package.

The PVT comes with a number of utilities that are al'so useful in the context of research
and/or teaching. Geometry and sequence viewers help to solidify the ideas behind epipo-

lar geometry by alowing visual examination of tensor and epipolar transfer.
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