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Abstract

Local spatio-temporal features and bag-of-features rep-

resentations have become popular for action recognition.

A recent trend is to use dense sampling for better perfor-

mance. While many methods claimed to use dense feature

sets, most of them are just denser than approaches based

on sparse interest point detectors. In this paper, we explore

sampling with high density on action recognition. We also

investigate the impact of random sampling over dense grid

for computational efficiency. We present a real-time action

recognition system which integrates fast random sampling

method with local spatio-temporal features extracted from

a Local Part Model. A new method based on histogram in-

tersection kernel is proposed to combine multiple channels

of different descriptors. Our technique shows high accuracy

on the simple KTH dataset, and achieves state-of-the-art on

two very challenging real-world datasets, namely, 93% on

KTH, 83.3% on UCF50 and 47.6% on HMDB51.

1. Introduction

Action recognition in videos has recently been a very ac-

tive research area due to its wide applications such as intel-

ligent video surveillance, video retrieval, human-computer

interaction and smart home. State-of-the-art approaches

[23, 24, 30] have reported good results on human action

datasets. Among all the methods, local spatio-temporal fea-

tures and bag-of-features(BoF) representations achieved re-

markable performance for action recognition. Laptev and

Lindeberg [12] were first to introduce space-time interest

point by extending 2D Harris-Laplace detector. Schüldt et

al. [25] built on Harris corner detector with automatic scale

selection to detect salient sparse spatio-temporal features.

To produce denser space-time feature points, Dollár et al.

[4] used a pair of 1D Gabor-filter to convolve with a spatial

Gaussian to select local maximal cuboids. Willems et al.

[33] proposed Hessian3D detector and extended SURF de-

scriptor to detect relatively denser and computationally ef-

ficient space-time points. A recent trend is the use of dense

sampled feature points [26, 32] and trajectories [30] for ac-

tion recognition.

While impressive progress has been made, there are still

some problems that need to be addressed. First, most ex-

isting action recognition methods use computationally ex-

pensive feature extraction, which is a very limiting factor

considering the huge amount of data to be processed. Also,

sparse interest point representations may miss important as-

pects of the scene and therefore do not generate enough rel-

evant information for classification. In contrast, dense sam-

pling methods can provide a very large number of feature

patches and thus can potentially produce excellent perfor-

mance. The best results are observed when the sampling

step size decreases [30, 32]. However, the increase in the

number of processed points adds to the computation com-

plexity even if simplifying techniques are used, such as in-

tegral video and approximative box-filters.

Most interest point detectors used for action classifica-

tion are extended from 2D space domain. They were orig-

inally designed for feature matching, not for selecting the

most discriminate patches for classification. Interest point

detectors [32] or selected features [14] by unsupervised

learning have been shown to be very useful for simple KTH

dataset [25] with single, staged human actions and uncorre-

lated backgrounds. We argue that it is more suitable to in-

clude the background information for real-life challenging

datasets [10, 18, 22] because some of their background fea-

tures are highly correlated with the foreground actions(e.g.

diving with water background and skiing with snow back-

ground), and thus provide discriminative information for the

foreground categories.

It should also be noted that the bag-of-features model

only contains statistics of unordered features, and any in-

formation concerning temporal ordering and spatial struc-

ture is lost. A more discriminative method should include

global structure information and ordering of local events.

To overcome these challenges, we proposed an efficient

method for real-time action recognition. Inspired by the

success of random sampling approach in image classifica-

tion [21], we use random sampling for action recognition.
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For computation efficiency, we use a Local Part Model [26]

to extract features. This Local Part Model provides a bet-

ter representation of spatio-temporal activities because it

includes both structure information and ordering of local

events. We evaluated our random sampling strategy com-

bined with Local Part Model on publicly available datasets

and show real-time performance and state-of-art accuracy.

2. Related works

A recent trend is to use dense sampling over sparse

interest points for better performance. Dense sampling

has shown to produce good results for image classification

[1, 15]. For action recognition, Wang et al. demonstrate in

[32] that dense sampling at regular space-time grids outper-

forms state-of-the-art interest point detectors. Similar re-

sults have also been observed in [26, 30]. Compared with

interest point detectors, dense sampling captures most infor-

mation by sampling every pixel in each spatial scale. How-

ever, such approaches are often computationally intractable

for large video datasets.

Uniform random sampling [21], on the other hand, can

provide performances comparable to dense sampling. A re-

cent study [29] shows that action recognition performance

can be maintained with as little as 30% of the densely de-

tected features. Mathe and Sminchisescu also show similar

results in [19]. Given the effectiveness of the uniform sam-

pling strategy, one can think of using biased random sam-

plers in order to find more discriminant patches. Yang et al.

[34] are able to identify more features on the object of in-

terest by using a prior distribution over patches of different

locations and scales. Liu et al. [16] select the most dis-

criminative subset from densely sampled features using the

AdaBoost Algorithm. [19, 29] are based on the idea that eye

movement of the human viewers is the optimal predictor of

visual saliency. They measured the eye movement of human

observers watching videos, and used the data to produce an

“empirical” saliency map. By using such saliency maps,

they pruned 20-50% of the dense features and achieved bet-

ter results. The requirement of prior eye movement data

renders such methods impractical for real applications. In

addition, because of computational constraints, these meth-

ods didn’t explore high sampling density schemes to im-

prove their performance.

As for real-time action recognition algorithms, both Ke

et al. [7] and Willems et al. [33] use approximative box-

filter operations and integral video structure to speed-up the

feature extraction. Patron-Perez and Reid [2] employ a slid-

ing temporal window within the video and use first-order

dependencies to effectively approximate joint distribution

over feature observations given a particular action. Yeffet

and Wolf [35] efficiently classify the actions with Local Bi-

nary Patterns and an approximate linear SVM classifier. Yu

et al. [36] extend the efficient 2D FAST corner detector to
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Figure 1: Example of Local Part Model defined with root

filter and overlapping grids of part filters.

the 3D domain V-FAST detector, and applied semantic tex-

ton forests for fast visual codeword generation.

3. Real-time action recognition approach

Our method builds on our previous work based on Local

Part Model [26]. However, instead of using dense sampling,

we focus on real-time applications by using random sam-

pling. Nowak et al. [21] have shown that the most impor-

tant factor governing performance is the number of patches

sampled. While the performance of dense sampling is im-

proved as the sampling step size decreases [30], such ap-

proach becomes rapidly computationally intractable due to

the very large number of patches produced. To overcome

such problem, our approach increases the sampling density

by decreasing the sampling step size, and at the same time

controls the number of sampled patches. In addition, we

experimentally found that, with proper sampling density,

state-of-the-art performance can be achieved by randomly

discarding up to 92% of densely sampled patches.

3.1. Local Part Model

Inspired by the multiscale, deformable part model [5]

for object classification, we proposed a 3D multiscale part

model in [26]. However, instead of adopting deformable

“parts”, we use “parts” with fixed size and location on the

purpose of maintaining both structure information and or-

dering of local events for action recognition. As shown

in Figure 1, the local part model includes both a coarse

primitive level root feature covering event-content statistics

and higher resolution overlapping part filters incorporating

structure and temporal relations.
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Spatial resolution Cuboid[4] Dense[32] Ours

80 x 60 767

160 x 120 4,295

360 x 288 44 643 27,950

Table 1: Average number of generated features per frame

for different methods. Our numbers are based on a video

length of 160 frames. The numbers of Cuboid and Dense

are based on the report [32].

We found that, in addition to preserving local temporal

context, this approach applies well to the context of dense

sampling. Under the local part model, a feature consists of

a coarse global root filter and several fine overlapped part

filters. The root filter is extracted on the video at half the

resolution. For every coarse root filter, a group of fine part

filters are acquired from the full resolution video at the loca-

tions where the root filter serves as a reference position. For

sampling, the dense sampling grid is determined by the root

filter applied on half the spatial resolution of the processed

video. At this resolution, it can achieve very high sampling

density with far less samples. In addition, no drop in perfor-

mance is observed due to this lower resolution because the

fine-grained information is still included in the part filters.

3.2. Integral video and descriptors

Following the ideas of [7, 9, 33], we use integral video

for fast 3D cuboid computation. With integral video, the

volume of any 3D patch can be calculated from 8 addi-

tions, independent of the patch size. In our method, for

each clip, we compute two integral videos, one for the root

filter at half resolution, and another one for the part filters

at full resolution. The descriptor of a 3D patch can then be

computed very efficiently through 8 additions multiplied by

the total number of root and parts. Apart from descriptor

quantization, most cost associated with feature extraction is

spent on accessing memory through the integral videos.

For computational efficiency consideration, we first test

the HOG3D [9] descriptor. The HOG3D is based on

simple spatio-temporal 3D gradients which are cheap to

compute. We also test our method with HOG/HOF [13]

and MBH [30] descriptors, which involve computationally

expensive dense optical flow calculation. Therefore, we

down-sampled the UCF50 and HMDB51 videos to half the

spatial resolution for all our experiments. Since we use ran-

dom sampling, no feature detection is required. The feature

computation time is mainly spent on the feature description.

3.3. Sampling strategy

3.3.1 Dense Sampling Grid

We perform uniform random sampling on a very dense sam-

pling grid. We follow the same multi-scale dense sampling

grid as in [26] but with denser patches. A feature point is de-

termined by 5 parameters (x , y , t , σ, τ). A 3D video patch

centred at (x , y , t) is sampled with a patch size determined

by the multi-scale factor (σ, τ). The consecutive scales are

obtained by multiplying σ and τ by a factor of
√
2. In our

experiments with HOG3D, we set the minimal spatial size

to 16 x 16 pixels and minimal temporal size to 10 frames.

With a total of 8 spatial scales and 2 temporal scales, we

sampled the video 16 times.

A key factor governing sampling density is the overlap-

ping rate of sampling patches. We explore very high sam-

pling density with 80% overlap for both spatial and tempo-

ral sampling. Table 1 shows the comparison of the average

number of generated features per frame for different meth-

ods. The features produced with cuboid and dense sampling

in [32] are sampled from videos with resolution of 360 x

288 pixels. At same resolution, we generate 43 times more

features than the dense sampling method in [32].

3.3.2 Random Sampling Strategies

For an image of size n×n, the number of possible sampled

patches is n4 [11]. Nowak et al. have shown in [21] that

the performance is always improved as the number of ran-

domly sampled patches is increased with as many as 10000

points per image. For video recognition, such an approach

would be computationally prohibitive. Therefore, we have

to use some strategies to reduce number of sampled points

per frame and at the same time maintain an adequate sam-

pling density.

One solution is to do sampling at lower spatial resolu-

tion. As discussed above, the Local Part Model is well

suitable for maintaining sampling density. By using it, the

dense sampling grid is determined by the root filter, which

is applied at half the resolution of the processed video.

As stated above, we use half the video resolution for

UCF50 and HMDB51 in our experiments. Table 2 shows

the average number of dense points (the third column) per

video for different datasets. It also includes the average per-

centage of random samples vs. the total number of densely

sampled points. For example, the average video size of

HMDB51 is 182 x 120 pixels and 95 frames, and we ran-

domly sample 10000 patches from the dense grid of 87,249

points. The dense grid is decided by root filter, which is

performed on half the video size (91 x 60 pixels and 95

frames).

We randomly select 4000, 6000, 8000 and 10000 fea-

tures for each video, and report the classification results for
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Dataset Avg. video size Dense

samples

10,000

samples

KTH 80 x 60 x 94 72,324 13.83%

UCF50 80 x 60 x 199 129,150 7.74%

HMDB51 91 x 60 x 95 87,249 11.46 %

Table 2: The sampling percentage of 10,000 random sam-

ples vs. total points (the third column) of dense sampling for

different datasets.

each of them. They are chosen uniformly from the dense

grid, so samples at finer scales predominate. We set the

maximal video length to 160 frames. If the video is larger

than 160 frames, we simply divide it into several segments,

and select features at same rate for each segment. The 10k

random samples represent 7.74-13.83% of the total dense

points (depending on dataset). Our sampling density is

much higher than [30, 32]. Also, compared with [29] which

randomly discarded up to 60-70% of dense points, we ob-

tain a much higher pruning rate.

4. Experiments

To demonstrate the performance of our sampling strat-

egy, we evaluated our method on three public action bench-

marks, the KTH [25], the UCF50 [22] and the HMDB51

[10] datasets. We randomly sampled 3D patches from the

dense grid, and used them to represent a video with a stan-

dard bag-of-features approach. To generate codewords, we

randomly selected 120,000 training features, and used k-

means to cluster them into 4000 and 6000 visual words.

The sampled 3D patches are represented by descriptors,

and the descriptors are matched to their nearest visual words

with Euclidean distance. The resulting histograms of visual

word occurrences are fed into a non-linear SVM with his-

togram intersection kernel [28]. For multi-class SVM, we

used LIBSVM [3] one-versus-one approach implemented

by max-wins voting.

To combine multiple channels of different descriptors,

most methods use RBF-χ2 kernel [31, 37]:

K(xi, xj) = exp(−
∑

c

1

Ac
D(xc

i , x
c
j)), (1)

where D(xc
i , x

c
j)) is the χ2 distances between the samples

for the c-th channel, and Ac is the mean value of the χ2

distance between the training samples for the c-th channel.

While this approach produced “comparable results” [37],

we argue that it is intuitive to add more weight to descriptors

with higher classification power. For instance, in our exper-

iments, the MBH outperform HOG on HMDB51 dataset by

a large margin (43.0% vs. 21.0%). We propose a histogram

intersection kernel for multi-channel classification:

KIH(xi, xj) =
∑

c

wc

max(wc)
min(xc

i , x
c
j), (2)

where wc is classification accuracy for the c-th channel,

which can be learnt from the training data. max(wc) is

the maximal value from wc of all channels.

One advantage of this approach is its computational ef-

ficiency. Given wimin(a, b) = min(wia, wib) for positive

numbers, we can concatenate the weighted histograms of all

channels, and use a single efficient intersection kernel SVM

[17].

To compensate for the random sampling, we repeated ev-

ery experiment 3 times, and report average accuracy and

standard deviation over 3 runs.

4.1. Datasets

The KTH dataset [25] is an older dataset. It contains

six action classes: walking, jogging, running, boxing, hand

waving and hand clapping. Each action is performed by

25 subjects in four different scenarios: outdoors, outdoors

with scale variation, outdoors with different clothes and

indoors. The background is static and homogeneous. In

our experiment, we followed the experimental setup as

those in [30, 32] by dividing the videos into testing set

(2,3,5,6,7,8,9,10 and 22) and training set (the remaining

subjects). We trained a non-linear SVM on training set and

report the average accuracy over six classes on testing set.

The UCF50 dataset [22] contains 50 classes and 6680 re-

alistic videos taken from YouTube. The videos are grouped

into 25 groups, where each group consists of a minimum of

4 action clips. The video clips in the same group may have

similar background or be played by the same subjects. The

dataset is very large and relatively challenging due to cam-

era motion, cluttered background, large scale variations, etc.

We report 5-Fold-Group-Wise Cross-Validation in Table 3

and Leave-One-Group-Out Cross-Validation in Table 4.

The HMDB51 dataset [10] is by far the largest human

action dataset with 51 action categories, with at least 101

clips for each category. It is perhaps the most realistic and

challenging dataset. The dataset includes a total of 6,766

video clips extracted from Movies, the Prelinger archive,

Internet, Youtube and Google videos. Three distinct train-

ing and testing splits have been selected from the dataset,

with 70 training and 30 testing clips for each category. We

used the original non-stabilized videos with the same three

train-test splits as the authors [10], and report the mean ac-

curacy over the three splits in all experiments.

4.2. Parameters

There are few parameters for our method, which deter-

mine the feature dimensions.
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Figure 2: Sample of frames from KTH (first row), HMDB51 (second rom) and UCF50 (last row). The frames from KTH

share same background for all categories. The cluttered background are shown on both HMDB51 and UCF50 datasets.

Local part model. The root filter of local part model

is sampled from the dense sampling grid of the processed

video at half the resolution. For each root patch, we sam-

pled 8 (2 by 2 by 2) overlapping part filters from the full

resolution video. Both root and part patches are represented

with a descriptor. The histograms of 1 root patch and 8 part

patches are concatenated as one local ST feature. Therefore,

each feature is 9 times the dimension of a single descriptor.

HOG3D. We tested our method with three different

HOG3D feature dimensions: 60, 96 and 144. At 60 dimen-

sion, the parameters are: number of histogram cells M = 1,

N = 3; number of sub-blocks 2 × 2 × 2; and polyhedron

type icosahedron(20) with full orientation. At 96 dimen-

sion, the parameters are: number of histogram cells M = 2,

N = 2; number of sub-blocks 2× 2× 3 for KTH, 1× 1× 3
for UCF50 and HMDB51; and polyhedron type dodecahe-

dron(12) with full orientation. At 144 dimension, the pa-

rameters are: number of histogram cells M = 2, N = 3;

number of sub-blocks 2×2×2 for KTH, 1×1×2 for UCF50

and HMDB51; and polyhedron type dodecahedron(12) with

full orientation. For all cases, the cut-off value is c = 0.25.

With one HOG3D descriptor at dimension of 60, 96 or 144,

our local part model feature (with 1 root filter and 8 part

filters) has a dimension of 540, 864 or 1296, respectively.

HOG, HOF and MBH. The minimal patch size is 16×
16 × 14 for HOG and 20 × 20 × 14 for HOF and MBH.

Each patch is subdivided into a grid of 2 × 2 × 2. With 8

bins quantization, one descriptor of HOG, HOF , MBHx or

MBHy has a dimension of 64 (2×2×2×8). Our local part

model feature has a dimension of 576 (9 × 64). For MBH,

we simply concatenate MBHx and MBHy into a descriptor

with size of 1152.

4.3. Results

Table 3 presents our experimental results with HOG3D

descriptor for all three datasets. All the tests were run

with the parameters listed in previous section. For each

video, we randomly sampled 4000, 6000, 8000 and 10000

3D patches as features, and performed classification using

a standard Bag-of-Feature approach with 4000 and 6000

codewords, respectively. The feature dimensions of 540,

864 and 1296 were tested. To compensate the sampling ran-

domness, all the tests were run 3 times. The mean accuracy

and standard deviation are given.

In general, the best performance is observed with 6000

codewords combined with 10000 features per video. The

performance is almost always improved as the number of

patches sampled from the video is increased. This is con-

sistent with the results of random sampling for image classi-

fication [21]. Also, 6000 codewords give better result than

4000 codewords. For feature dimension, there is no clear

performance advantage when using 1296 over 864. How-

ever, both of them show better results than a dimension of

540. In practice, it is preferable to use dimension of 864

for better computational efficiency without sacrificing the

performance.

On both KTH and UCF50 datasets, the best result is

achieved using 6000 codewords and 10000 sampled patches
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Feature size Samples
KTH UCF50 HMDB51

4k words 6k words 4k words 6k words 4k words 6k words

540

4000 87.6%± 0.33 87.9%± 0.42 67.3%± 0.30 67.2%± 0.14 31.3%± 0.67 31.6%± 0.40

6000 87.9%± 0.85 88.8%± 0.77 67.0%± 0.22 67.8%± 0.06 32.1%± 0.31 32.0%± 0.12

8000 88.8%± 0.61 88.1%± 0.60 67.1%± 0.18 67.6%± 0.25 32.2%± 0.16 32.8%± 0.50

10000 88.6%± 0.42 88.8%± 0.31 67.0%± 0.21 67.6%± 0.14 32.5%± 0.28 32.6%± 0.27

864

4000 91.9%± 0.37 92.8%± 0.24 69.8%± 0.26 70.1%± 0.45 33.0%± 0.22 33.1%± 0.21

6000 92.4%± 0.12 92.5%± 0.12 70.2%± 0.11 71.1%± 0.34 33.8%± 0.24 33.9%± 0.59

8000 92.7%± 0.29 92.8%± 0.13 70.1%± 0.16 71.0%± 0.20 34.2%± 0.26 34.0%± 0.42

10000 92.7%± 0.29 93.0% ± 0.29 70.0%± 0.08 71.7% ± 0.18 34.7%± 0.40 34.6%± 0.01

1296

4000 91.7%± 1.40 92.7%± 0.31 70.0%± 0.37 70.1%± 0.30 33.8%± 0.38 33.9%± 0.20

6000 91.9%± 0.31 92.4%± 0.27 70.7%± 0.17 71.0%± 0.08 34.0%± 0.39 34.8%± 0.48

8000 92.0%± 0.71 92.7%± 0.41 70.2%± 0.29 71.3%± 0.15 34.7%± 0.64 35.6%± 0.28

10000 92.4%± 0.24 92.7%± 0.18 70.4%± 0.21 71.3%± 0.27 34.8%± 0.28 35.6% ± 0.25

Table 3: Average accuracy on all three datasets with 4000, 6000, 8000 and 10000 randomly sampled features per video. The

table gives the mean and standard deviation over 3 runs with 4000 codewords and 6000 codewords, respectively. 5-fold group

wise cross-validation is used for UCF50. Note: if video has more than 160 frames, more features are sampled at the same

sampling rate as the first 160 frames.

at a feature dimension of 864. For HMDB51, the best re-

sult is obtained using 6000 codewords and 10000 samples

at dimension 1296.

One very important observation from Table 3 is that all

values of the standard deviation are very low. Such low

standard deviation demonstrates effectiveness and consis-

tency of our methods in spite of the random sampling. As

discussed on Section 3.3.2, 10000 random samples repre-

sent 7.74-13.83% of the dense points. The consistency of

the results at such high rate of randomness can be explained

by the very high sampling density used by our approach.

4.4. Comparison to state-of-the-art

KTH is a simple dataset with six classes sharing the

same homogeneous, uncorrelated backgrounds. The best

performances have been obtained on the methods which fo-

cus on the foreground human motion. Such systems include

feature point approaches [4, 25, 33] and template based ap-

proaches [23]. Because we randomly select the features,

all parts of the scene have equal probability. The similarity

of the background in all classes may reduce the classifica-

tion power. This is consistent with conclusion in [37] that,

for “easier” datasets, using foreground and background fea-

tures together does not improve the performance for image

classification. Nevertheless, we obtain 93%, which is better

than the uniform dense sampling methods [13, 26, 32].

Table 4 shows the comparison of our method with the

state-of-the-art. We use the parameters listed in Section 4.2.

We concatenate MBHx and MBHy into a single MBH de-

scriptor and use 6000 codewords. For other descriptors, we

use 4000 codewords. For multiple channels, we combined

all 4 descriptors (as shown in Table 4) with the proposed

histogram intersection kernel. The HOG3D has a feature

dimension of 864. The results show consistently good per-

formance on HOG3D, HOF and MBH descriptors. We ob-

tained 21.0%(HMDB51) on HOG. This is probably due to

the reduction in resolution we applied, and we observed bet-

ter result (24.8%) when using full size video.

On HMDB51 and UCF50, we achieved classification re-

sults similar to the current state-of-the-art method [31], but

by analysing the videos at half the resolution. Also, by ran-

domly sampling cubic patches, we are able to use integral

video to accelerate the processing. In case of [31], the use

of curve trajectories limits them to use integral image only.

Our approach is then significantly faster.

Our method demonstrates very good performance on

large scale challenging datasets with more realistic scenar-

ios. One possible explanation for such good performances

on real life videos resides in our random sampling con-

ducted on an extremely dense sampling grid. For 10000

patches per video on HMDB51, we have around 100 fea-

tures per frame, which is similar as [31]. However, our

sampling density is much higher because the sampling is

performed on one quarter size of that in [31]. Compared

with interest point detectors, we have more patches sampled

from the test videos, and with uniform random sampling

our method also includes correlated background informa-

tion. Such background information may improve discrimi-

native power for recognition on real-life videos.

Our parameters are optimized for real-time process at

half the spatial resolution. We expect the performance to

improve further with parameter tuning in the case of full

resolution videos.

4.5. Computation efficiency

Table 5 summarizes average computation speed at dif-

ferent stages for HMDB51 dataset when using HOG3D de-
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Feature size

Speed (frames per second)

Integral video HOG3D & Sampling
Brute Force BoF matching Total fps

4k words 6k words 4k words 6k words

540 65.57 384.48
cpu 84.00 56.06 34.54 29.61

gpu 266.12 180.63 49.94 46.59

864 62.66 394.10
cpu 53.37 36.21 28.014 23.20

gpu 166.24 113.37 45.72 41.23

1296 62.45 393.12
cpu 37.57 25.62 23.60 18.78

gpu 113.62 76.19 41.51 35.30

Table 5: Average computation speed with four cores at different stages in frames per second for HMDB51 dataset. 10000

features are sampled. Note: the classification stage is not included.

Descriptor Feature size

Speed (frames per second) Mean accuracy

Integral video Sampling
Flann BoF matching Total fps

4k words
4k words 6k words 4k words 6k words

MBH 1152 41.19 192.4 267.14 252.78 30.79 29.92 41.1%± 0.23

HOG3D 864 71.88 159.60 290.81 282.60 42.22 41.69 33.3%± 0.19

Table 6: Average computation speed with single core at different stages in frames per second for HMDB51 dataset. The 10K

samples are used in the experiment, and the optical flow computation for MBH is included in “Integral video”.

Method HMDB51 UCF50

HMDB51 [10] 23.2% 47.9%

ActionBank [23] 26.9% 57.9%

MIP [8] 29.17% 72.68%

Subvolume [24] 31.53% -

MRP [6] 40.7%∗ -

GIST3D [27] 29.2%∗ 73.7%∗

UCF50 [22] 27.02%∗ 76.90%∗

Dense trajectories [31] 46.6%%∗ 84.5%∗

O
u
rs

HOG 21.0%±0.28 58.6%±0.16
HOF 33.5%±0.31 69.7%±0.12
HOG3D 34.7%±0.40 72.4%±0.02
MBH 43.0%±0.11 80.1%±0.39
Combined 47.6%±0.29∗ 83.3%±0.15∗

Table 4: Comparison of average accuracy on UCF50 and

HMDB51 with state-of-the-art methods in the literature.

Those marked with ∗ are results with combined descriptors.

Leave One Group Out Cross-validation is used for UCF50.

scriptor. Similar speed is observed on KTH and UCF50

datasets, on which we test with same spatial resolution. The

computation time was estimated on an Intel i7-3770K PC

with an AMD HD7770 GPU @1050 Hz. Our prototype

is implemented in C++. The run-time estimates for ”Inte-

gral video” and ”HOG3D & random sampling” were ob-

tained on CPU parallelized with OpenMP. The speed for

integral video varies little, and it only depends on the size

of videos. Because there is no feature detection for random

sampling, the introduction of integral video has greatly im-

proved the speed for random sampling and HOG3D. We

simply use brute-force match to assign HOG3D descriptors

to their closest visual words. Brute-force matching is the

most time-consuming step, but very suitable for GPU com-

puting. We test it with and without GPU. The results show

that our system runs at over 30 frames per second with low

feature dimensions by using only CPU and at high feature

dimensions using GPU.

We also tested single core speed with the same param-

eters as the experiments in Table 4, but using FLANN

[20] for bag of word matching instead of brute-force. The

FLANN can speed up matching process by 40x at a price

of 0.5% to 2% drop in final classification results. The detail

results are listed in Table 6.

5. Conclusions

This paper has introduced a sampling strategy for effi-

cient action recognition. We also proposed a histogram in-

tersection kernel to combine multiple channels of different

descriptors. We introduced the idea of using very high sam-

pling density for efficient and accurate classification. Com-

pared with existing methods, a major strength of our method

resides in its very high computational efficiency. Our re-

sults show its effectiveness and efficiency on various de-

scriptors, and achieves state-of-the-art on two realistic large

scale datasets, UCF50 and HMDB51.
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