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Abstract—In this paper we present a framework for vision-
based robot localization using natural planar landmarks.
Specifically, we demonstrate our framework with planar targets
using Fern classifiers that have been shown to be robust against
illumination changes, perspective distortion, motion blur, and
occlusions. We add stratified sampling in the image plane
to increase robustness of the localization scheme in cluttered
environments and on-line checking for false detection of targets
to decrease false positives. We use all matching points to im-
prove pose estimation and an off-line target evaluation strategy
to improve a priori map building. We report experiments
demonstrating the accuracy and speed of localization. Our
experiments entail synthetic and real data. Our framework
and our improvements are however more general and the Fern
classifier could be replaced by other techniques.

Keywords-robot localization; feature matching; Ferns; natu-
ral planar landmarks

I. INTRODUCTION

Robot localization is of key importance in mobile robot

navigation. It is the process by which the pose of the

robot is determined from sensor data. It is well known

that odometry and inertial navigation are not sufficient to

maintain an accurate estimate of the robot’s localization.

As a consequence, many exteroceptive sensors including

sonar, laser, GPS, and vision systems have been used for

more accurate localization. There has been considerable

research on developing various localization methods. Many

early successful approaches use artificial landmarks, such

as infrared light reflectors, ultrasonic beacons and visual

patterns. Those methods provide a robust and stable solution

for controlled environments, but they are not appropriate

for large spaces because of the need of fiducial markers.

By contrast, vision-based schemes using natural landmarks

are more appropriate for unmodified environments and in

general of low cost requiring only a single camera to acquire

images. They consist in general of extracting some invariant

features from the imaged scene and identifying the features

within a map. This map can be built simultaneously while a

robot navigates the environment such as in SLAM systems

(Simultaneous Localization And Mapping) e.g., as in [1],

or it can be learned off-line e.g., as in [2], [3]. In our

application, we have access to maps but we annotate the map

with natural landmark locations and hence, are concerned

with localization of a robot based on natural landmarks.

We are using Ferns as feature descriptors and as a match-

ing scheme. In this paper, we study in depth the performance

of Ferns for our robot localization problem using planar

targets. The choice of planar targets is based on the use of

the Ferns matching scheme that consists, during the training

phase, of generating virtually different views of the patches

to be matched. While any 3D targets can be used, it requires

an accurate 3D model to calculate the perspective projection

into the image plane. In indoor environments planar targets

abound and they can be easily measured with a ruler for

metric localization. We add to the Fern classification a step

whereby the quality of a planar target can be evaluated by

simulation. This enables rejection of targets that are not

expected to work well.

Another major concern in robot localization are changes

in the environment that clutter the scene when the robot

tries to localize a previously seen landmark. The Fern

classifier handles partial occlusions well but it relies on a

sufficient number of keypoints to be detected on the imaged

target which may not be true in cluttered environments. We

develop a simple stratified sampling technique to increase

the probability that a feature on a landmark can be detected

despite scene clutter. We demonstrate how the accuracy

of localization can be increased by applying this sampling

technique, and we compare the results with the common

solution for pose estimation using the strongest keypoints.

We make the following contributions in this work: an

experimental evaluation of the Fern classifier for robot

localization, practical techniques to improve the performance

of the scheme, and a framework for developing keypoints-

based visual robot localization.

II. RELATED WORK

Navigation and localization systems can be roughly di-

vided in those providing the robot with models of the

environment, with different degrees of detail, in (Map-based
navigation), and those that perceive the environment as they

navigate through it in (Mapless navigation). The method

presented in this paper falls within the first category. We
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refer the reader to surveys on robot navigation and localiza-

tion systems found in [4], [5], [6] for details. Vision-based

localization systems have made significant progress among

other mobile robot localization techniques, particularly, for

indoor applications. In many cases the localization problem

is two-dimensional, i.e., a robot position on a plane together

with a heading [7], [8], [2], [9], [10]. Other applications

require vision-based methods that provide six degree-of-

freedom camera pose.

The localization problem is related to the problem of

structure-from-motion (SFM) that consist of inferring the

environment structure and camera motion under the as-

sumption of small baseline motion. SFM-based localization

for SLAM has been addressed, e.g., in [11], [12], [13],

[14], [15], [16]. In general, SFM-based localization does not

consider the kidnapping problem which is that the robot may

be picked up and placed at a different position.

Se et al. [17], [1] present a trinocular SLAM system using

SIFT descriptors as landmarks. The landmarks are matched

between the three views to reconstruct the 3D points. The

system also uses odometry-based initialization to estimate

the ego-motion of the camera. Wuest et al. [18] use the FAST

features detector [19] and model the probability distribution

of each feature. Each feature is then tracked successfully by

means of a finite set of Gaussian mixtures. An extension of

this method for a large number of features seems difficult

because of the use of a Gaussian kernel. Also, in their

visibility modeling only camera translation was considered

but orientation is important for robot localization. Closest

to our localization is the system presented by Alcantarilla et

al. [20] using a non-parametric learning framework to predict

for each feature its visibility with respect to the varying

camera poses.

III. KEYPOINTS TRACKING BY FERNS

We will review Fern descriptors here detailing the back-

ground for our evaluation of Ferns during localization.

Tracking with Ferns descriptors proceeds by recognizing

patches of an imaged object from different perspective views

using a classification scheme [21]. Ferns rely on an off-line

training phase during which multiple views of the image

patches are used to train a naive Bayes classifier. Recognition

is based on neighborhood intensity comparisons. During

training features of the planar patches around a keypoint are

synthesized by warping them using random homographies.

A recent study has shown the robustness of the Ferns

as a feature tracker among other comparable descriptors

such as (SURF, SIFT, Randomized Trees) [22]. The Fern

descriptor is geared towards tracking in real-time after a

training stage. It copes well with dynamic lighting in the

scene and motion blur due to camera motion. It has also

shown more robustness with respect to scale and perspective

distortions compared to other descriptors. Ozuysal et al. [21]

have shown the effectiveness of Ferns descriptors in a SLAM

system, and they have shown their capability to recover from

complete failure. However, they did not address performance

during pose estimation which is required by any localization

system.

A. Ferns: Basic Model

Keypoints are detected using an extrema of Laplacian

operator and binary features fk,1, fk,2, · · · , fk,N associated

with each keypoint pk. The binary features are computed

by comparing image intensities in the neighborhood of a

keypoint, that is

fk,j =

{
1 if I(pl) < I(pm)
0 otherwise

(1)

where (pl, pm) ∈ Nk, with Nk is the neighborhood of the

keypoint pk. Given the set of features (fk,j , j = 1, · · · , N),
the problem of recognizing a target then becomes identifying

the class ci to which a keypoint pk belongs by maximizing

the following joint conditional probability,

argmax
ci

P (fk,j , j = 1, · · · , N | C = ci) (2)

With a high number of features N , the full joint distribution

is too large to be fully represented. Instead, the features

are grouped into M groups of size S, referred to by the

Ferns. By assuming independence between features, the

joint probability can be approximated by the product of the

individual conditional probabilities, that is

P (fk,j , j = 1, · · · , N | C = ci) ≈
M∏
k=1

P (Fk,s | C = ci)

(3)

Where Fk,s = {fσ(k,1), . . . , fσ(k,S)} represents the kth

fern with a random permutation function σ(k, s) with

range 1, . . . , N . Independence between features is crucial

to successfully classifying keypoints. Lack of independence

among sample points can bias estimates and measures of

precision. This assumption holds for the case when patches

of different keypoints do not overlap. To reduce the chance

of such overlaps and to increase the probability that a

keypoint lays on an interested area, we propose to use

stratified sampling reducing the variance of estimates.

B. Keypoints Selection by Stratified Sampling

Stratified sampling is a technique of sampling that main-

tains some characteristics of the data set within its sampled

subsets. It is achieved by firstly partitioning the data set

into a number of mutually exclusive subsets of cases, each

of which is representative of some aspect of the real-world

process involved. In general, sampling from the population

is then achieved by randomly sampling from the various sub-

sets to achieve representative proportions. A tutorial example

of random sampling is shown in Figure 1 compared with
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(a) (b)

Figure 1. Illustration of stratified sampling in (b) vs. random sampling in
(a). Both illustrations show the same number of targets.

stratified sampling using the same total number of samples

but in nine strata. Instead of random sampling, the feature

detector is applied in the subsets to select the strongest

features in the same way it is applied in the whole image. A

more detailed performance assessment comparing strongest

features with stratified sampling is given in Section IV-A.

IV. EXPERIMENTAL EVALUATION

We present our framework for the experimental evaluation

of localization by planar natural landmarks in five subsec-

tions summarizing the performance for pose estimation and

camera localization. In each subsection, we give the specific

experimental framework and report results obtained for the

different experiments. The five subsections are: Stratified

Sampling versus Most Stable Keypoints selection (§IV-A),

Time Performance and Target Detection rate (§IV-B), Pose

Estimation Using Corner Points only versus use of all

matched features (§IV-C), Pose Estimation Using Real Data

(§IV-D) and finally Target Evaluation (§IV-E). All experi-

ments are executed on a MacBook Pro laptop (2.3Ghz Intel

Core i5 with 4GB of RAM) with an implementation utilizing

OpenCV 2.3.1. The camera resolution is 1280 × 720 in all

experiments.

A. Stratified Sampling vs. Most Stable Keypoints

One of the most important steps in planar object detection

is keypoint selection. The selected keypoints are matched

against the database of the training set in order to recognize

the target in the video frame. Without a sufficient number of

good quality keypoints detected on the target, the process of

target detection and consequently the camera pose estimation

will fail. Commonly, the strongest feature keypoints are

selected in an image for processing. Selecting the strongest

feature points is motivated by the fact that strong feature

points are more likely to be stable under viewpoint changes.

However, the strength of feature points in themselves is not

always a sufficient criteria for success in target recognition.

The feature points also have to be part of the target rather

than part of the background scene. We study therefore a

stratified sampling strategy where we tessellate the image

plane and select strong features in each strata.

We conducted experiments in order to compare the two

strategies: a pre-selected number of the strongest feature

points and the above stratified sampling strategy. We po-

sitioned a target in a cluttered environment and compare the

detection results using different numbers of keypoints with

the two approaches. The strongest feature points strategy

is configured to select a maximum of 300, 700 and 1000

keypoints, respectively. Our stratified sampling approach

uses a 7×7 grid where the most relevant points in each cell

are selected. For comparison, the total number of keypoints

in the image is kept the same for both approaches.

In our experiments, the stratified sampling solution was

more robust for target detection , detecting the target (here, a

poster with a world map) for all the keypoints configurations

in our experiment. This is because the sampling strategy

inspects the whole image in search for the most repre-

sentative points of each cell. When selecting the strongest

points, we only were able to detect the target with 1000

keypoints while with a maximum of 700 and 300 no key-

point was detected in the target region. In cluttered scenes,

the target is not necessarily the object giving rise to the

most keypoints in the image. The surrounding objects may

have more representative features and may therefore attract

all of the keypoints. In the current test image, we needed

to increment the number of keypoints to detect some in

the targets area (see Figure 2). However, even increasing

the number of keypoints is unlikely to work consistently

because in dynamic scenes new clutter can appear in the

image and may potentially attract more keypoints than the

preset maximum. The stratified sampling solution is more

stable in this scenario because adding objects to one region

wont affect the keypoint selection in other regions. Figure 3

shows that the stratified strategy is able to detect the target

despite the insertion of more clutter that partially occludes

the target.

B. Time Performance and Target Detection

While the above example demonstrates the improvements

achievable with stratified sampling, we are interested in

the impact of the strategy on robot localization. Successful

localization depends on the target detection success rate,

the occurrence of false positives and the execution time.

Execution time in a real-time application such as robot

localization will have a direct impact on the utility of the

method. Therefore, we evaluate the impact of using the two

previous strategies in terms of processing time for each of

the steps in detecting a planar target and computing the pose.

We include target detection rate as a quality benchmark. For

this experiment, we used a recorded video of 1627 frames

containing the target seen from a moving camera directed

towards the world map target on a random path. The camera

has been calibrated with the aid of a printed checkerboard

and the calibration procedure available in OpenCV [23]. The

timed steps are: remove camera distortion (CD), image pre-

processing (PRE), feature extraction (FE), feature matching

(FM), and pose estimation (PE). In the experiment we use
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Figure 2. Top row shows the stratified sampling approach with a total of 300, 700 and 1000 keypoints detected. In the bottom row the top 300, 700 and
1000 keypoints in the image were detected.

Figure 3. Stratified sampling (top) and top most stable keypoints (bottom)
with a total of 1000 keypoints detected in both.

a cap of a total of 1000 keypoints for both strategies.

The FE and FM steps dominate the processing time of the

algorithm using about 80% of the total execution time of the

five steps (see Figure 4). In general, the total execution time

is about the same for both approaches, in particular, stratified

sampling does not increase the overall execution time of

the localization. The execution time of FE depends on the

method of feature extraction, i.e., the Laplacian of Gaussian

as in the original Fern approach [21]. The execution time of

the FM step is affected by the number of features to match

against in the database and the extraction of their descriptors.

The time complexity of classifying a keypoint is O(M),
where M is the number of classes in the database (i.e. we use

100 classes). On the other hand, the detection rate improves

greatly with the stratified sampling approach while the false

detection reduces simultaneously (see Figure 5).

Figure 4. Execution time comparison (in milliseconds) between Most
Stable Keypoints and Stratified Sampling. From left to right: Camera
Distortion, Pre-processing, Feature Extraction, Feature Matching and Pose
Estimation.

We propose to include an on-line check for detection

of false positives after matching keypoints. Using prior-

knowledge of the fact that we are looking for a planar object
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imposes constraints on the image of the keypoints belonging

to the target. After removal of camera distortion, all the

inliers must be imaged inside the area of the estimated target

and this image must be planar. We check if the convex hull

of the features for the estimated target are inside the corners

of the estimated target pose projected into the image. A false

detection is flagged when the obtained homography from the

inliers computed using RANSAC [24] does not project to a

planar target. The average processing time of the planarity

check is about 0.015 milliseconds for each video frame. It

has therefore negligible impact on the total execution time

for pose estimation.

Figure 5. Detection rate (false detection,true detection) for stratified
sampling and strongest keypoints.

C. Corner Points vs. Matched Points

In the next experiment we compare the impact of com-

puting the pose, i.e., solving the PnP (perspective n-point)

problem using two slightly different approaches.

For this experiment, we render images by projecting the

target into the image plane from different angles and depths.

We use the camera’s intrinsic parameters obtained in the

calibration of the real camera through the camera module

of our implementation. We use the synthetic images to test

for planar target detection accuracy and the subsequent pose

estimation using the method by Schweighofer and Pinz [25].

In the synthetic images we know the exact projection of the

target given the orientation and position of the camera. We

generate 1000 images at three different distances from the

target with orientation angles between 30 and 150 degrees

and compute the projection , translation and rotation error.

When generating the image using the camera information,

we include random background and foreground noise, and

random Gaussian Blur to simulate the real capture process

(see Figure 6). The background is filled with uniform

noise with parameters from 0 to 255 grayscale values. The

foreground noise added is additive white Gaussian noise

with zero mean and variance of 10 grayscale values. The

Gaussian Blur uses uniformly distributed random kernel

size (ksize), odd values from 3 to 9 and standard deviation

σ = 0.3 ∗ (ksize/2− 1) + 0.8.

Figure 6. Example of generated target view by rotation around the image y-
axis. Random noise and blur are added to simulate the real capture process.
Red boundary is the ideal target projection, blue boundary an estimate.

The first approach, named here Corner Points (CP) uses

only four points (i.e. corners of the target) to estimate the

pose. The corners of the targets are acquired by computing

the homography from the training image and the matching

points in the video frame. The homography is obtained using

RANSAC [24]. Transforming the four corners of the targets

training image we can get the position of the target in the

video frame. The pose estimation is finally computed by the

3D correspondence of the four corners of the target and the

translated corners positions (see Figure 7).

Figure 7. Outline of the Corner Points and Matched Point approaches. CP
uses the matched points to obtain the homography and then translate the
training image to the video frame. PnP is solved only with the four corners
(i.e. C1...C4) of the target. MP translates the matching points in the training
image to its 3D coordinates and solve PnP using their correspondence (i.e.
M1...Mn).

For the second approach named here Matched Points

(MP), we skip the homography computation and the projec-

tion of the corners. Instead we use all the matching points of

the target between its training image and the analyzed video
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Table I
COMPARISON BETWEEN MP AND CP AT DIFFERENT TARGET’S DEPTHS

Target Depth 200 cm 300 cm

MP CP MP CP

True Detection (%) 92 90 86.1 82.9

False Detection (%) 3.8 5.8 3 6.2

Reproj. error (pixel) 7.2 11.4 7.46 16.3

Translation error (cm) 1.31 1.93 2.32 4.2

Rotation error (angle) 1.32 1.44 2.11 3.82

Location error (cm) 5.19 6.02 13.736 21.138

frame to compute the extrinsic camera parameters. The 3D

position of the matched points are obtained from the four

3D coordinates of the targets corners and the fact that it is

a planar object and we know the image coordinates of the

match in the training image (see Figure 7 right).

The projection error for CP is computed as the average

distance of each corner between our approximation and the

real projection (see Equation 4). For the MP the projection

error is computed as the average distance of each matched

point real projection and its detected position by the Fern

classifier (see Equation 5).

CPerror =

4∑
i=1

|Ci − Ĉi|)
4

(4)

MPerror =

n∑
i=1

|Mi − M̂i|)
n

(5)

The rotation error is the angle in degree between the

normal of the projected and estimated target. Translation

and camera location error are defined as the norm between

the real and the estimated value.

MP outperformed CP in all the classifications, increasing

the detection rate and reducing false positives, re-projection,

translation, rotation and camera location errors (see Table I

). MP is a more stable approach than only using the four

target’s corners directly from the homography estimation.

D. Pose Estimation Using Real Data

For this experiment we placed four targets and positioned

the camera pointing towards their center at different ranges

and view angles. Accurate ground truth for the pose of

the camera is not available to us, therefore we evaluate

the accuracy in terms of quantities that can be precisely

measured. We place multiple targets at precisely known

relative position and orientation from each other. Now, if we

estimate the pose of the camera between two or more targets,

we can calculate the difference between those poses. In a

common coordinate system, the difference of the poses will

be exactly the spatial transformation between the targets (see

Figure 8). Suppose (Ra, Ta) and (Rb, Tb) are the pose of the

Figure 8. Detection output example of our implementation using the four
target setup.

camera with respect to a pair of targets (a, b), respectively.

Then the relative pose between the two targets satisfies

T̂ = Ta −RTb and R = RaR
−1
b . (6)

The errors of the relative translation and rotation are

defined as the Euclidean distance between the real translation

T and its estimation T̂ and the angle between the two

estimated normal vectors na and nb of the planer targets

using the dot product (See Equation 7).

eT = |T − T̂ | and eR = arccos(na · nb). (7)

The pose estimation is evaluated between four targets

having different textures. Figure 9 shows those targets and

their relative translations. The rotation between each pair of

targets is the identity matrix. We placed the camera around

the center of the four targets in nine equally spaced direc-

tions from −60◦ to 60◦ degrees, and at different distances

with respect to the center of the targets from 0.90 m to

2.10 m. We obtained an average translation error of 2.74
cm over the whole dataset, and a rotation error of 2.6251◦.
These values are in line with our experiments with synthetic

images in Section IV-C. Next, we will discuss our strategies

to evaluate the feasibility of a target for robot localization

based on a a priori test.

E. Target Evaluation

Pose estimation is highly dependent on the target detec-

tion process. The number of correct matches between the

extracted keypoints and the training images of the target

improve the accuracy. We use natural targets to solve the

localization problem; therefore, the selection of a target with

stable repeatable keypoints from different views and depths

will aid the performance of the localization. We therefore

like to evaluate the feasibility of a target before adding it
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Figure 9. Image 1) shows the four targets Target − {00, 01, 10, 11} and their positions. The translation T00 − 01 is the relative translation from
Target 00 to Target 01. The same scheme applies for the other three relative translations shown in (1). The target dimensions are 27x20 cm, except for
Target− {01} which is 27x18 cm. Images 2a) and 2b) are the translation and rotation errors computed while moving the camera from 0.90 m to 2.10
m ranges. Images 3a) and 3b) are the translation and rotation errors with camera view angles from −60◦ to 60◦ at 150cm range.

to the map. To evaluate a target we use the results of the

target’s performance measured using synthetic data.

The target evaluation process consists of two steps. First,

we train the system using one fronto-parallel image of

the target. The feature database is created using the Fern

classifier of the most stable feature points of the target

image. Once the learning process has finished, we use the

information of the camera to project the target from different

cameras views by setting the distance from the camera

to the target and rotating around the targets center. The

background of the generated image is filled with random

noise and blur. Then, for each generated frame we evaluate

the target according to detection rate, re-projection error,

pose estimation and camera location, just as in our synthetic

data simulation in Section IV-C. These values serve as a

prediction of the quality of the target, i.e., an indication of

the accuracy to expect when the particular target would be

employed for robot localization.

As an illustrative example, we take the four targets from

the previous section and run the synthetic target evaluation

on them. The results are highly related to the pose computed

from real data (see Section IV-D). The target evaluation

strategy confirms the instability of Target 01 and Target
11 compared to the other two (See Figure 10). The pose

estimation inaccuracy of these two targets is therefore the

likely cause of the translation and rotation errors in the real

data experiment (i.e. translations T00-01, T01-11, and T10-

11 are noisy if the camera distance is beyond 1.65 m). This

gives us confidence to use the above evaluation process as a

target selection strategy before adding targets to the system’s

database.

V. CONCLUSION

In this paper we presented a framework and experimental

evaluation of the Fern classifier for robot localization using

natural landmarks along with practical improvements to

increase the performance of the scheme. These improve-

ments are stratified sampling, on-line checking of false

target detection, use of all matching points to improve pose

estimation and an off-line target evaluation strategy. Our

stratified sampling technique is able to double the true rate

of detection while reducing false target detection without

affecting execution time. On-line checking of the detection

of a planar target helped reducing false positives. The use of

all matching points vs. simply the corners of a rectangular

target improved the accuracy of localization by up to 50%.

Finally, our off-line target evaluation predicts the quality

of the target and hence, the precision to expect when the

particular target would be employed as part of a map. The

experimental results illustrate that natural targets and Fern

classifiers with our additions are a feasible solution for

visual robot localization. All our extensions of the Ferns

localization are not specific to Ferns and could be integrated

with other robot localization schemes. In future work we

would like to evaluate different feature matching for robot

localization in our framework.
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Figure 10. Target evaluation of the four targets. Translation and rotation
error show the instability of Target 01 and Target 11 compared with
the other two. In the experiment, we simulate the movement of the camera
in front of the target from 0.8 m to 2.1 m. The average translation error
for the complete set is 2.85 cm and 1.45◦ of average rotation error.
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