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ABSTRACT

A method for quickly and reliably selecting and match-
ing points from three views of a scene is presented. The
points that are selected are based on the concept of epipolar
gradients, and consist in stable and relevant image features.
Then, the selected points are matched using edge trans-
fer, resulting in a measure of consistency for point triplets
and the edges on which they lie, with the camera system’s
trinocular geometry. This matching scheme is invariant to
image deformations due to changes in viewpoint.

1. INTRODUCTION

In computer vision, several applications require to match
feature points from a few fixed cameras. To achieve this
goal, cameras are first calibrated, then, guided matching
is performed. In applications such as telerobotics, where
the environment being modelled is continuously changing,
these operations must also be fast to allow a continuous up-
date of the match set, from which 3D information is ex-
tracted. The reliability of the matches is also crucial, as the
integrity of the task can be compromised by mismatches.

The most common approach to sparse matching, when
camera calibration is not available, is based on matching
Harris feature points, using some measure based on cor-
relation [4, 7, 10]. In [9], a system is presented for fast
calibrated matching based on this approach. However, al-
though Harris feature points are relatively stable and fast to
compute, it was found that on arbitrary scenes that are not
chosen to contain suitable textural content, the detected fea-
ture points might not be well distributed or stable enough
to completely cover the scene. In the context of 3D recon-
struction, this means that important 3D information about
scene objects might be missing.

An alternative feature detector is presented in this pa-
per, which is fast and results in more an better distributed
matches when camera systems are calibrated. This detector
relies on epipolar gradients, an idea introduced in this paper.
A simple way to match points is also presented which is ap-
propriate for calibrated triplets of images and is invariant to
deformations due to changes in viewpoint.

The next Section quickly reviews some features of trinoc-
ular geometry. Then, Section 3 discusses how feature points
are chosen. Next, Section 4 describes how feature points are
matched, Section 5 describes a constraint which weeds out
the possible remaining false matches, and finally, Section 6
presents experimental results.

2. TRINOCULAR GEOMETRY

Two views of a scene are related by the well known epipolar
geometry, which can be represented by a3× 3 fundamental
matrixF . For a pointx in the first image, the corresponding
point in the second image will lie on the epipolar linel′.
This line can be obtained fromFx = l′, wherex andl′ are
represented in homogeneous coordinates.

When three viewpoints are used, more relationships can
be obtained from trinocular geometry. The3×3×3 trifocal
tensorT relates pointsx, x′ andx′′ in three images:

x′′l = x′i

3∑

k=1

xkTkjl − x′j

3∑

k=1

xkTkil (1)

This define 9 trilinearities fori, j ∈ {1, 2, 3}, 4 of which
are linearly independent. Although there are more direct
ways of estimating the position of a pointx′′ from its corre-
sponding pointsx andx′, more stable results are obtained
by solving this over-constrained system of equations.

Trifocal geometry is a powerful tool for matching. In-
deed, for a pointx in a first image, the search for corre-
spondence is restricted to the linel′ in the second image.
And once the correspondence(x,x′) is known, the match-
ing point in a third image is determined by the trifocal ten-
sor. In practice, a third image can therefore be used to val-
idate matches between two other images. Once a match is
found, it is verified bytransferringit to the third image us-
ing equation (1), and evaluating a similarity measure be-
tween the transferred point and the other two [4, 7, 9].

Trifocal tensors can also relate lines between images.
Thus, when the equation of a line is known in two images,
it can betransferredto another one using:



li = l′jl
′′
kTijk (2)

This will be used in Section 4 towards matching feature
points using the direction of the edges on which they lie.

3. EPIPOLAR GRADIENT FEATURES

In many applications, it is too costly to compare points in a
first image with all points along their epipolar lines to search
for matches. Thus, matching is often limited to selected fea-
ture points. Feature points in the first image are only com-
pared to feature points along their epipolar line in the second
image. There is no need for selecting feature points in the
third image, however, as the trinocular geometry limits the
search to a single point neighborhood.

Good feature points are those that are likely to be easily
distinguishable from each other, and which can be identified
robustly, with respect to changes in viewpoint. These points
should also, as much as possible, represent significant scene
features, to result in a good model of the environment.

The most commonly used such feature points are Har-
ris corners [2]. These are high curvature points on image
edges, and were shown to be relatively stable [6]. However,
when some scene regions do not contain textures with clear
corners, few matching points might be detected. Thus, cor-
ners might not be distributed well enough to allow a satisfy-
ing reconstruction of the scene using only matched points.
Epipolar gradient features overcome these problems.

Let I andI′ be two images, withx a point inI, andx′

its corresponding point inI′. Then,x′ will lie on l′, the
epipolar line ofx in I′, and similarly,x will lie on l. Now
l andl′ should also correspond, so all points onl will have
their corresponding point lying onl′. Thus ifX, the world
point projected ontox andx′, is centered on a locally planar
surface, the points onl that are immediately next tox should
correspond to points inI′ that lie onl′ and are immediately
next tox′. Consequently, the intensity gradient ofI, atx, in
the direction ofl, should be similar to the intensity gradient
of I′, atx′, in the direction ofl′.

The intensity gradient in the direction of the epipolar line
will be referred to as theepipolar gradient. It can be com-
puted by projecting5I(x) onto l = (l1, l2, l3), giving the
explicit formula:

5ep(x) =
5I(x) · (−l3

l1
, l3

l2
)

‖(−l3
l1

, l3
l2

)‖ (3)

wherel can be obtained using an arbitrary linek′ not going
through the second image’s epipole as:

l = FT [k′]×Fx (4)

Thus, in a pair of images for which the epipolar geometry
is known, a point having a high absolute epipolar gradient in

Fig. 1. Detected epipolar gradient feature points

one image should have a high absolute epipolar gradient in
the other as well. This is why epipolar gradient features are
good candidates for matching. Additionally, these points
are usually found on the border of significant scene features
and are thus more relevant for scene reconstruction.

Fig. 1 shows some detected points1. Note that points may
be detected only on every few lines to limit their number.

4. MATCHING BASED ON EDGE TRANSFER

Now that feature points suitable for matching have been se-
lected, these points must be matched. A common way of
comparing potentially matching points is normalized cor-
relation. Such a correlation based approach can give good
results when the difference between viewpoints is limited,
but is not an accurate measure of similarity in the case of
more widely separated views. Then, a measure which is in-
variant to the reprojection deformation of the area around
feature points is needed.

Many such invariant measures have been proposed, no-
tably [1, 3, 5, 8], but they are only invariant to rotation
or affine transformations of point neighborhoods, and some
are computationally rather expensive. Since here, matching
is guided by the camera system’s trifocal geometry, points
have a few candidate matches, so a more invariant, but less
discriminant comparison measure can be used.

Two simple descriptors are used, together with a similar-
ity measure defined between them. The most important de-
scriptor is based on the transfer of lines tangent to edges go-
ing through the points in the first two images to the third one
using equation (2). These transferred lines should also be
tangents to edges going through the corresponding points.
Thus, a measure of similarity between three points is the
difference between the orientation of the tangent to the edge

1obtained from the model house image sequence available at
http://www.robots.ox.ac.uk/ vgg/data/



of one of the points, and the orientation of the line obtained
by transferring the tangents to edges of the other two.

The other descriptor is simply the intensity value in the
image at the pixel. This value should be preserved in differ-
ent views of the same point taken simultaneously. By itself
it is not very discriminating, but it does improve the results
from using only edge transfer. Of course, the intensity val-
ues near edges are unstable, so the average of neighboring
intensities weighted by a gaussian is used.

Let ∆I(x,x′,x′′) be the maximum difference between
the intensities ofx,x′ or x′′, and∆θ(x,x′,x′′) be the dif-
ference between the gradient orientation atx′′ measured in
I′′ and computed from the gradients atx andx′. Then the
similarity measure betweenx, x′ andx′′ is:

s(x,x′,x′′) = max(
∆I(x,x′,x′′)

σ∆θ
,
∆θ(x,x′,x′′)

σ∆I
) (5)

whereσ∆I andσ∆θ, the respective standard deviations were
used to normalize the descriptors to a similar range. This
measure will have a low value for corresponding points.

5. DISPARITY CONSISTENCY CONSTRAINT

Sometimes, the similarity measure presented in the previ-
ous section might not be discriminating enough. Conse-
quently, even when the search for matches is guided by the
trinocular geometry, mismatches can be expected. However
mismatches are very undesirable when the goal is recon-
struction. Fortunately, when many matches are identified
throughout the images, and mismatches are relatively few,
they can be eliminated by simply enforcing that matches
which are near each other have similar disparities.

To this end, a constraint on the disparity gradient is ap-
plied as in [9]. The disparity gradient is a measure of the
compatibility of two matches. It is essentially the norm of
the difference of the disparities, normalized by the distance
between the matches. For two pairs(x,x′) and(y,y′), hav-
ing disparitiesd(x,x′) andd(y,y′) respectively, and their
disparity gradient is defined as:

∆d(x,x′;y,y′) =
|d(x,x′)− d(y,y′)|
|dcs(x,x′;y,y′)| (6)

Where dcs(x,x′;y,y′) is the distance between the mid-
point of the disparity vectors. A pairs is considered a mis-
match when its disparity gradients with many of its clos-
est neighbors are too high. This eliminates false matches
as long as they are not surrounded only by similar false
matches, an unlikely situation.

6. EXPERIMENTAL RESULTS

Fig. 3 shows the result of applying the matching scheme
to a triplet of images. In the first image, the lines join the

Fig. 2. Matched points with Harris features

coordinate of feature points there, to their coordinate in the
second image, and thus represent the disparity between the
first two views. Similarly, the lines in the second image
indicate the disparity between that image and the third one.
Fig. 2 shows the disparities between the first and second im-
ages when a Harris detector and correlation are used instead.
The same number of feature points were used in both exper-
iments, and the thresholds relevant to the matching process
were chosen empirically to maximize the resulting number
of matches. It can be seen that the first method obtained
more matches (479 versus 414), and provides scene fea-
tures which are more relevant to scene reconstruction (the
matches obtained through the Harris detector being mostly
located on the front wall of the house).

Fig. 4 shows matches found using the epipolar gradient
and edge transfer for simple images of a few objects. Dis-
parities between the first and second images are also shown.
Here, 318 matches were found. With the same number
of feature points, the Harris detector with correlation only
found 31. The proposed method gave significantly better
results since these images contain few clear corners, and
the difference between their viewpoints is significant.

7. CONCLUSION

In summary, two new techniques were introduced for fast
and reliable calibrated sparse matching. A new feature was
used based on epipolar gradients, and a new correspondence
measure was introduced which relies on transferring edges.

These new techniques are improvements over other ap-
proaches. The features based on epipolar gradients are more
stable, constitute features which are more relevant to the
structure of scenes, and are usually well distributed over im-
ages. Matching based on edge direction is fast, and view-
point independent. Beyond calibrated sparse matching, we
believe that epipolar gradients and edge transfer are inter-
esting concepts susceptible of finding other applications.



Fig. 3. Matched points with proposed method

Fig. 4. Matched points with proposed method
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