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ABSTRACT

This paper describes a method for image rectification of a
trinocular setup. The rectification method used is an extension
of a recent approach based on the fundamental matrix to gen-
erate the correcting homographies in the case of a stereo pair.
The extended method uses the fact that the triplet of images
can be treated as two pairs and that homographies are simply
projections of the different images planes onto new planes.
Rectification thus becomes a matter of deciding which plane
will be the common one and what transformation or homog-
raphy is to be applied to each image.

1. INTRODUCTION

Feature matching, among other applications, is greatly im-
proved by image rectification. As a matter of fact, the set
of epipolar lines corresponding to a set of matches is trans-
formed after rectification into a set of lines that are either ver-
tical or horizontal. In the case of matching, the problem is
therefore reduced to a simple line scan.

Many methods exist and have been implemented to solve
the rectification problem for stereo and trinocular vision. Hart-
ley worked on finding the rectifying transformation from the
fundamental matrix with a strong mathematical justification
[1]. Loop et al. developed a method to find the rectifying
homographies and added some constraints to reduce the dis-
tortion introduced by rectification [2]. These methods are ap-
plicable to uncalibrated cameras and, in the case of two views,
are close in theory to an algorithm presented by Mallon and
Whelan [3]. The method they proposed follows Hartley’s in
principle but has its own original distortion reduction proce-
dure. This approach is the one that is extended in this paper.

In the case of three views, Luping et al. presented a tech-
nique to rectify a triangular triplet of images using the per-
spective projection matrices (PPM) [4]. This technique uses
camera calibration and is therefore not suitable for uncali-
brated environments. Zhang et al. proposed a method to
obtain the rectification homographies using the fundamental
matrices, minimizing the distortion by adjusting 6 free param-
eters [5]. This method uses a set of three constraints on the

triplet of images which allow the recovery of the three rec-
tifying homographies in a closed form. Sun presents three
methods that compute the projection matrices for the three
images also using pair wise fundamental matrices [6]. The
projection matrix of the reference image is a composition of
4 transformations; the other two are derived from the latter. In
all these cases, the algorithm is designed for three views and
uses three views constraints to achieve its goals.

The method presented here is close to the one used in
[5, 6] but is based on the method presented in [3]. This latter
method uses the fundamental matrix in a similar way as in [1]
but the novel aspect is the distortion reduction. It is a method
developed for stereo. In this paper, we mainly describe how
this 2-view algorithm was adapted to the three view case in
conjunction with intermediate plane transfer by homography.
In other words, we show that considering pair wise constraints
and combining the resulting homographies leads us to satis-
fying rectification results on different sets of images.

2. RECTIFYING TRINOCULAR IMAGES

2.1. Notations

The images will be referred as image i with i varying from 1
to 3. For triplet of images, the indexing order will correspond
to : left, middle and right for a horizontal triplet and up, down
and right for an L-shaped triplet.

The epipoles will be noted eij which means projection
of the camera center of the image j onto image plane i. eij

corresponds to (eijx, eijy, 1)T in the image plane. A plane
containing two rectified images i and j will be noted Pij . Hi

will be used to designate the rectifying homography of image
i.

2.2. Projective rectification from the fundamental matrix

The algorithm presented in this paper is an extension of the
method defined by Mallon and Whelan [3]. Their goal was to
obtain homographies that will simply be applied to each im-
age to obtain its rectified counterpart. The main element and
starting point of the rectification process is the fundamental



matrix between a pair of stereo images as mentioned in [3, 1].
We use the 7 point algorithm presented in [7]. The rectifi-
cation process, which somewhat follows Hartley’s blueprint,
can be summed up as follows:

2.2.1. Fundamental matrix

Recover the fundamental matrix F as mentioned above. Any
other method of fundamental matrix computation could be
suitable as long as the result is fairly accurate. Eight or more
matches are enough to compute the fundamental matrix. The
Projective Vision Toolkit (PVT [8]) developed by Whitehead
and Roth could be used to find automatically matches for a
pair (and also for a triplet) of images.

2.2.2. Epipoles

Recover the epipoles e12 (in left image) and e21 (in right im-
age) from an SVD decomposition of F . This is justified by
the fact that Fe12 = 0 and eT

12F = 0 [9].

2.2.3. Left homography

From the epipoles, compute the rectifying homography H1 on
the left image by forcing the corresponding epipole to infinity
in the horizontal direction (from e12 = [e12xe12y1]T to e12 =
(1, 0, 0)T in projective space) :

H1 =




1 0 0
−e12y/e12x 1 0
−1/e12x 0 1


 (1)

2.2.4. Right homography

Once H1 is found, an additional constraint on the problem
mentioned in [3] is used to solve for H2. As a matter of fact,
the fundamental matrix of the original setup being F , the re-
sulting rectified fundamental matrix should equal to the trivial
matrix Fh

Fh =




0 0 0
0 0 −1
0 1 0


 (2)

This leads to the mathematical constraint:

HT
2 FtH1 = αF (3)

We know F , H1 and Ft. We want to solve for H2 and α
with :

H2 =




1 0 0
h1 h2 h3
h4 h5 h6


 (4)

Equation (3) is transformed to a system of the type AX =
0 where X stands for elements hi of the homography H2 in a
column with α as its last element . The system is then solve
by using the SVD of A and extracting its right singular vector
of least singular value. H2 is then normalized. Steps 2.2.1
to 2.2.4 produce satisfying rectifying homographies. The last
step is the distortion reduction introduced by [3] and summa-
rized in the next section.

2.2.5. Distortion reduction

The distortion mentioned here is not related to lens distor-
tion. It is introduced by the homographies after rectifica-
tion. The reduction step is not mandatory but it makes the
images look more natural. Essentially, these transformations
are Ki = AiHi with i = 1,2. As a matter of fact A1 and A2

will be applied to H1 and H2 to achieve this goal and these
transformations are of the form

Ai =




ai1 ai2 ai3
0 1 0
0 0 1


 (5)

The values of a1 and a2 are found by simplex minimiza-
tion (Nelder-Mead or amoeba algorithm [10]) of the function

f(a1, a2) =
n∑

i=1

[(σ1(J(K,pi))− 1)2 + (σ2(J(K,pi))− 1)2]

(6)
Where J is the jacobian of the transformation Ki = AiHi

at a point pi contained in a grid over the image plane and
σi are its singular values. Interestingly enough the jacobian
describes ”the creation and loss of pixels as a result of the
application of K” [3]. The value of a3 is left to the user for
flexibility in centering the resulting image.

2.3. Extension to a ”vertical” pair

This section describes one of the extensions we added to the
method presented in [3]. For a vertical pair, the process is
very similar. The differences in each step are justified by the
difference of configuration. The fundamental matrix Fv for
such a configuration is given by [9]:

Fv =




0 0 1
0 0 0
−1 0 0




This changes the steps but the idea remains the same:

a. Recover the fundamental matrix

b. Recover the epipoles



c. Recover the homography H1 corresponding to the top
image. Applying this transformation to the image sends
the epipole e12 to infinity in the vertical direction : from
e12 = (e12x, e12y, 1)T to e12 = (0, 1, 0)T in projec-
tive space). Thus :

H1 =




1 −e12x/e12y 0
0 1 0
0 −1/ey 1


 (7)

d. Using the same type of constraint as in the horizontal
case (2.2.4), we obtain a linear system that is solved the
same way using the same formulas but with H1 and Ft

replaced by H1 of Equation (7) and Fv . This allows us
to recover H2 which in this case is of the form :

H2 =




h1 h2 h3
0 1 0
h4 h5 h6


 (8)

e. The distortion reduction step is exactly the same except
the transformations are of the type Ai:

Ai =




1 0 0
ai1 ai2 ai3
0 0 1


 (9)

This reflects the fact that the distortion and centering
steps will affect the vertical coordinate and the user-
defined value of a3 corresponds to a translation on the
vertical axis of the rectified image.

3. RECTIFICATION OF 3 VIEWS

The extension to triplets of images is different conceptually
but uses the horizontal and vertical rectification at different
stages. The concept is illustrated in Figure 1. The triplet is
processed pair by pair. The images are denoted 1,2 and 3.
For 1 and 2, the rectification without the distortion step gives
us H1 and H2. Similarly, for images 2 and 3 the rectifica-
tion without distortion gives us H ′

2 and H3. The rectification
does not include the distortion since we want to stay consis-
tent on the type of images we are working on : they are all
affected by the same type of effects. The distortion reduction
will therefore be the last phase of this process.

3.1. Horizontal triplets

The middle image 2 is common to the two pairs so we have
H2 and H ′

2. Each of the computed homographies ’sends’ the
image plane 2 on two different planes containing respectively

Fig. 1. Rectification principle for a triplet of images.

the rectified image 1 i.e P12 and the rectified image 3 i.e P23

(see Figure 1).
Our goal here is to find a way to transfer the plane P23

to P12; as a matter of fact we want to find the homography h
between these two planes. This is done as follows:

• Image 2 is transferred to plane P12 with H2

• Image 2 is transferred to plane P23 with H ′
2

• Image 3 is transferred to plane P23 with H3

• h betweenP12 andP23 is therefore given by h = H2H
′
2
−1

• Image 3 is therefore transferred to plane P12 with H ′
3

given by :

H ′
3 = hH3 = H2H

′
2
−1H3 (10)

Finally, distortion reduction for the horizontal configura-
tion is applied to each homography H1, H2 and H ′

3. An ex-
ample of result is displayed in Figure 2.

3.2. ”L-triplets”

The case of ’L’-shaped triplets is a combination of a vertical
pair and a horizontal pair. All steps in the horizontal triplet
procedure are repeated except for what follows:

• The pair 1, 2 is rectified using the vertical pair approach
without the distortion reduction procedure (Section 2.3).

• The distortion rectification step uses the vertical distor-
tion reduction approach for the rectified images 1 and
2. For image 3, the distortion reduction is also applied
with the vertical approach described in section 2.2.5 to
level the images 2 and 3 along the vertical axis.



3.3. Results and Observations

Examples of results are displayed in figures 3 and 3. All
epipolar lines associated to the rectified triplets are either ver-
tical or horizontal. The rectification was also effective on oth-
ers sets of images not shown here. An important observation
that is also mentioned in [3] is the fact that the rectification is
ineffective for images where the epipoles appear in the image
plane.

Another observation, that is rather obvious, is that a pair
or triplet of images has to be taken close to the ideal configu-
ration before using the corresponding rectification algorithm:
i.e. it is impossible to rectify a vertical stereo pair of images
with the horizontal stereo rectification approach.

An important source of error is clearly the fundamental
matrix approximation. It is therefore a very important step
that should be handled with care and carried out following
one of the many existing techniques. For a set of algorithms,
we suggest the reader to refer to [7].

Fig. 2. Rectified triplet of images : horizontal configuration

Fig. 3. Rectified triplet of images : L configuration

4. CONCLUSION

This paper presented an extension to a recent image pair rec-
tification method based on fundamental matrix. This method
has the advantage of being suitable for uncalibrated environ-
ments as well as producing a pair of rectifying homographies

with a low distortion effect. The fact that it is based on the
fundamental matrix justifies our choice of this method since
the fundamental matrix approximation is well documented.

Extensions to different three-view configurations were in-
troduced in Section 3. Our approach uses homography com-
position in order to rectify all images on a common plane with
the constraint of epipoles to infinity in the destination image
plane. Good results were obtained on different sets of im-
ages and these are further visually improved when the proper
distortion reduction is applied as the final step.

5. ACKNOWLEDGEMENT

The authors would like to thank John Mallon for his help in
understanding the rectification from the fundamental matrix.

6. REFERENCES

[1] R. Hartley, “Theory and practice of projective rectifica-
tion,” Int. Journal Computer Vision, vol. 35, no. 2, pp.
115–127, 1999.

[2] C. Loop and Z. Zhang, “Computing rectifying homo-
graphies for stereo vision,” in in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, pp. 125–131.

[3] J. Mallon and P.F. Whelan, “Projective rectification
from the fundamental matrix,” Image and Vision Com-
puting, vol. 23, no. 7, pp. 643–650, July 2005.

[4] L. An, Y. Jia, J. Wang, X. Zhang, and M. Li, “An effi-
cient rectification method for trinocular stereovision,” in
Int. Conf. on Pattern recognition, 2004, pp. IV: 56–59.

[5] H. Zhang, J. Cech, R. Sara, F. Wu, and Z. Hu, “A linear
trinocular rectification method for accurate stereoscopic
matching,” in British Machine Vision Conf., 2003, pp.
281–290.

[6] C. Sun, “Uncalibrated three-view image rectification,”
Image and Vision Computing, vol. 21.

[7] Zhengyou Zhang, “Determining the epipolar geometry
and its uncertainty: A review,” Tech. Rep. 2927, Sophia-
Antipolis Cedex, France, 1996.

[8] A. Whitehead and G. Roth, “The projective vision
toolkit,” in in Proceedings, Modelling and Simulation.,
2000, pp. 204–209.

[9] R. I. Hartley and A. Zisserman, Multiple View Geometry
in Computer Vision, Cambridge University Press, ISBN:
0521540518, second edition, 2004.

[10] J-P. Moreau, “Functional approximations in c/c++ : ta-
moeba.cpp,” .


