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Abstract

A system that quickly and reliably matches points from
images of a same scene, taken by three different cameras is
presented. The first step consists in the weak calibration of
the camera system. Then feature points are iteratively se-
lected and matched in the first two images, guided by a fun-
damental matrix. Each correspondence is then validated by
computing the position of matches in the third image using
a trifocal tensor, and enforcing a constraint on the disparity
of neighboring matches.

1 Introduction

In some telerobotic applications, an operator must re-
motely manipulate machinery while having access to views
of the work environment taken by a limited number of fixed
cameras. To manipulate his tool more precisely, it would
often be useful for the operator to have access to arbitrary
viewpoints of the work environment, or to have access to a
model of the environment on which measurements could be
taken.

If the position, orientation, and internal parameters of
the fixed cameras are known, and if point correspondences
are established between images taken simultaneously by the
cameras, the position of those points in space can be com-
puted by triangulation. These points could form the basis
for a model of the environment, or be used in the generation
of virtual intermediate viewpoints through interpolation.

A difficulty is that when the environment is constantly
evolving, the point correspondences must be constantly re-
computed to update the model. We thus seek to imple-
mented a fast system for matching feature points between
three views taken from fixed weakly calibrated cameras.

Our system produces a set of matched points between
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images taken from three cameras. It works by first detect-
ing feature points in the first two views. Then it finds candi-
date correspondences among the two sets of points by cor-
relating their image neighborhoods. This search for corre-
spondence is guided by the epipolar geometry of the views.
Next, the obtained pairs of points are verified to be true cor-
respondences using the third image. For each pair, trinoc-
ular geometry is used to determine the expected position
of the corresponding points in the third image. The im-
age pattern at that position can then be compared, through
correlation, to the other ones to determine the validity of
the resulting triplet of points. It is very likely that three
points with highly correlated neighborhoods, and agreeing
with the cameras’ trinocular geometry are all images of the
same scene point. However, it is still possible that they are
not, so an additional constraint requiring that the disparity
of neighboring triplets be similar is imposed.

The goal is to use this system as a starting point for the
development of improved feature point detection and com-
parison techniques that would address the typical problems
of fast matching systems. This work is similar to others
such as [5], where three images are sparsely matched. Their
goal, however, is to calibrate the images. Here, weak cali-
bration is performed offline, and used to increase the speed
of matching.

The next section reviews the concepts of trinocular ge-
ometry. Then, section 3 describes how the camera system’s
trinocular geometry is estimated. Next, section 4 discusses
how feature points are chosen. And finally, section 5 de-
scribes how feature points are matched.

2 Trinocular Geometry

A simplepinhole modelcan be used to represent cameras
(see Figure 1). A point in spaceX is projected onto the
image planeπ, to a pointx, which is the intersection of the
ray joiningX and the camera’s focal pointc [3].

When two cameras look at the same scene, the projection
x, on one camera planeπ, of an unknown point in spaceX,
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Figure 1. Pinhole model

Figure 2. Two-view geometry

can tell us something about where the point will land on
the other camera plane (see Figure 2). More precisely, it is
known that a matching point in the second image, must be
on theepipolar line.

SinceX must be somewhere on the raycx, its projection
onπ′ must be on the projection of that ray. This projection,
l′, is called the epipolar line ofx.

For a pair of cameras, the relation between points in one
view, and their epipolar line in the other, is called theepipo-
lar geometry. It can be represented by a3× 3 matrixF , of
rank 2: itsfundamental matrix. Pointsx in the first image,
are related to their epipolar linesl′ in the second image, by:

Fx = l′ (1)

where the pointx is represented with homogeneous coor-
dinates as(x, y, 1)>, and the epipolar line is the set of
points x′, represented in homogeneous coordinates, such
that l′>x′ = 0. This matrix can be estimated from known
pairs of points between images produced by the two cam-
eras using the fact that:

x′>Fx = 0 (2)

If three cameras are used, and a match(x,x′) is already
known between the first two images, the position of the
matching pointx′′ in the third image can be determined ex-
actly. Indeed, the projection ofX on π′′ should be at the
intersection of the epipolar linesl1′′ and l2′′ of x andx′

respectively.

Figure 3. Three-view geometry

This relationship between points in three images is called
trinocular geometry[6]. In fact, it can be shown that the po-
sition ofx′′ can be determined even if the linesl1′′ andl2′′

are the same and thus have no single point of intersection.
Trinocular geometry can be represented by thetrifocal ten-
sor, a3× 3× 3 tensorT for which:

x′′k = xil′⊥j Tijk (3)

wherel′⊥ is the line going throughx′, and perpendicular to
l′, the epipolar line ofx, and wherei, j, k, andl are indices
of the vectors and tensor. This formula can be used to com-
pute the position ofx′′, but our experiments have shown
that more stable results can be obtained using:

x′′l = x′i

3∑

k=1

xkTkjl − x′j

3∑

k=1

xkTkil (4)

which defines 9 trilinearities fori, j ∈ {1, 2, 3}, 4 of which
are linearly independent.x′′ can then be estimated by solv-
ing the over-constrained system of equations.

A trifocal tensor can be estimated from known corre-
sponding point triplets between images taken from three
cameras. Then, when a point correspondence is hypothe-
sized between the first two images, it can be partially ver-
ified by using the tensor totransfer the match to the third
image and check that the obtained point resembles the other
two.

For the experiment described in this work, the setup
shown in Figure 4 was used. It consists of three fixed cam-
eras for which fundamental matrices and trifocal tensors
must be estimated. The next section describes this estima-
tion process.

3 Calibration

To obtain high matching speeds, a fundamental matrix
and trifocal tensor must be used to guide the search for
matches. When given a point in the first image, the search
for its corresponding point in the second image can be re-
stricted to a line using a fundamental matrix relating the
first two cameras, and equation (1). Then using a trifocal



Figure 4. The Experimental Setup

Figure 5. The calibration pattern

tensor with equation (4), the position of the matching point
in the third image can be determined. Practically, since only
an approximation of the camera system’s geometry is avail-
able, the search for the match in the second image is limited
to a band along the computed epipolar line, and the search
for the match in the third image is restricted to a small re-
gion around the computed point location.

The estimation process used to determine the needed
fundamental matrix and trifocal tensor is calledweak cal-
ibration. To perform this estimation, established correspon-
dences between the three views are used. Such point corre-
spondences are determined automatically, in an offline cal-
ibration step that precedes matching. To easily determine
such correspondences, the calibration pattern shown in Fig-
ure 5 is used.

This pattern can be detected by a function from Intel’s
Open Source Computer Vision Library1. This function will
return a list of corner positions on the chessboard pattern on
each image. When the lists of corners for three images taken
simultaneously are aligned, point correspondences are ob-
tained.

One triplet of views of the pattern is however insufficient
for the estimation, as all the resulting detected points are
from a single plane in space, which is a degenerate config-
uration. Thus, at least two shots of the pattern in different

1freely available at developer.intel.com

Figure 6. Detected calibration pattern

positions in space are needed. More shots should however
be used to obtain better estimates. Five shots normally give
good results.

To make the calibration process fast an easy, a user posi-
tions the pattern so that it can be seen by all three cameras.
When the pattern is detected in all views, the system pauses
momentarily to allow the user to reposition the pattern for
the next shot. The pattern should be positioned, over the dif-
ferent shots, to cover as much of the scene viewing volume
as possible. This is to result in an estimate of the camera
system’s geometry which is accurate over all possible re-
gions where points should later be matched.

For many reasons, the pattern can sometimes be incor-
rectly detected. To avoid problems due to the resulting inac-
curate calibration, a visual check of the detected pattern cor-
ners is performed after each shot is taken. Figure 6 shows
the pattern having been detected in all three views, where a
grid of white squares has been overlaid to cover the black
squares and verify that they were detected accurately.

From the obtained correspondences between the corners
of the chessboard pattern, the fundamental matrix and trifo-
cal tensor can be estimated. One approach would be to first
estimate the position, orientation and internal parameters of
the three cameras, and from this information, to compute
the matrix and tensor. However, this approach was found
to be unstable, as small changes in the estimated camera
parameters cause significant changes in the resulting fun-
damental matrix and trifocal tensor. It is thus preferable to
perform weak calibration directly from the point correspon-
dences.

Many different estimation processes using different pa-
rameterizations and minimization methods have been pro-
posed for weak calibration [4, 8]. These can be rather com-
plicated, as the computed matrix and tensor must satisfy
some non-linear constraints which can only be enforced



through an iterative minimization. However, it was found
that such accuracy in the fundamental matrix and trifocal
tensor are not necessarily needed when they are used only
to guide matching.

It was found to be sufficient to perform a direct linear
estimation of the elements of the fundamental matrix and
trifocal tensor using equations (2) and (4). In addition, as
explained in [2], it is necessary to normalize the coordinate
system, before solving the linear system, to ensure improve
the stability.

Another possibility would have been to compute the ten-
sor from the correspondences, and then to extract the funda-
mental matrix from the tensor. However, it was found that
this approach was much less stable, as the error in the ten-
sor translates into large errors in the fundamental matrix. It
seems that although the estimated tensor is useful in guid-
ing matching, it does not necessarily accurately describe the
camera system’s properties. It would be expected to only
approximate transfer well over the common viewing area of
the cameras, which is all that is needed here.

Once the fundamental matrix and trifocal tensor have
been estimated, it was found that it can be useful to visu-
ally check their accuracy. This can be done using the chess-
board pattern. The pattern can be detected in two views,
then, the epipolar lines of corners in the first image can be
drawn in the second one, and the computed position of the
corners in the third image can be used to compute the ex-
pected appearance of the pattern in that image. It can easily
be visually checked that the epipolar lines go through the
corners in the second image, and that the computed chess-
board corresponds to the actual one in the third image. With
this system, the computed position of corners in the third
image are generally closer than a couple of pixels to their
real location, for any position and orientation of the pattern.

4 Feature Point Detection

It would be too costly to attempt matching every point in
the three images. In fact, it is even too costly to compare
points in the first image with every possible matching point
along their epipolar line in the second image. Thus, the
matching process is limited to a small number of selected
feature points. Feature points in the first image are only
compared to feature points along their epipolar line in the
second image. The selection of feature points in the third
image is not needed however, as the search for correspon-
dence there is limited to one point’s neighborhood.

Only points for which a corresponding point is likely to
be easily distinguishable from its neighbors should be used
as feature points. These points should also, as much as pos-
sible, represent significant scene features, to result in a good
model of the environment. Points of high curvature on im-
age edges are good candidates for this. These point’s neigh-

borhoods should have a high information content and often
correspond to scene corners.

To select high curvature points, a Harris-like detector
was used [1]. This detector can be implemented to run effi-
ciently. It selects points in a relatively stable way, meaning
that points corresponding to the same scene feature are of-
ten detected in different views of the scene [7]. This feature
point detector finds points where the image intensity gradi-
ent has a high magnitude in more than one direction using
the gradient’s autocorrelation matrix:

C(x, y) = S ∗ (5I · 5IT ) = S ∗
[

I2
x IxIy

IxIy I2
y

]
(5)

whereS is a smoothing operator. At the point where it is
computed, this matrix’s greatest eigenvalue corresponds to
the image’s rate of change in the direction of highest vari-
ation, while its least eigenvalue corresponds to the rate of
change in the perpendicular direction. If the least eigen-
value has a high magnitude, it means that, at the considered
point, the image has a high rate of variation in at least two
directions, and thus, that the point is in a high curvature re-
gion.

Figure 7 shows some feature points that were detected
on images produced by the first two cameras.

5 Matching

As described before, feature points from the first image
are compared to the feature points found along their epipo-
lar line in the second image. The comparison is done using
variance normalized correlation (VNC), which is designed
to produce reliable results over a wide range of viewing con-
ditions. VNC is defined for a candidate match(x,x′) as:

V NC(x,x′) =

∑
n,n′ [I(n)− I(x)][I ′(n′)− I ′(x′)]

N
√

σ2
I (x)σ2

I′(x′)
(6)

where the sum is taken over the pointsn andn′ in the neigh-
borhoods ofx andx′ of sizeN , and whereI(x) andσ2

I (x)
are respectively the mean and the variance of the pixel in-
tensities over a neighborhood of pointx.

However, the pairs of points found through correlation
along the epipolar lines are not necessarily accurate cor-
respondences. This is why a third image is used. Using
a trifocal tensor, the pair is transferred to the third image,
and correlation is applied between the neighborhood of the
found point, and the neighborhood of the point in the pair
from the image closest to the third one. It becomes very un-
likely that a mismatched pair of points between the first two
images be transferred to a point exhibiting high correlation
to them.

After having kept only triplets having high correlation,
some mismatches might still be present. Thus, a final con-



Figure 7. Detected feature points

straint is applied to eliminate them. The disparity gradient
is used, as in [9]. The disparity gradient is a measure of the
compatibility of two pairs. For two pairs(x,x′) and(y,y′),
having disparitiesd(x,x′) andd(y,y′) respectively, the cy-
clopean separation,dcs(x,x′;y,y′), is the vector joining
the midpoints of the line segmentsxx′ andyy′, and, their
disparity gradient is defined as:

∆d(x,x′;y,y′) =
|d(x,x′)− d(y,y′)|
|dcs(x,x′;y,y′)| (7)

This compatibility measure is used in a constraint that
accepts pairs that share a disparity gradients below some
threshold value, with at least 2 of their 3 closest neighbors.
This eliminates false matches as long as they are not sur-
rounded by other similar false matches.

Figure 8 shows the result of applying this matching
scheme to one frame taken by the three cameras of the ex-
perimental setup. In the first image, the lines join the coor-
dinate of feature points there, to their coordinate in the sec-
ond image, and thus represent the disparity between the first
two views. Similarly, the lines in the second image indicate
the disparity between that one and the third image. It can be
seen that in this frame, there were no mismatches, and that
matches were found over the important regions common to
the three images, and were feature points can be found.

6 Conclusion

A matching scheme has been presented which is used to
find several matches between three images at a frame rate
higher than 1 Hz, when running on very common hardware
(333 MHz Pentium). This scheme incorporates many well
known tools, including a Harris feature point detector, vari-
ance normalized correlation, disparity gradients, epipolar
and trinocular geometry, and weak calibration from a test
pattern.

Many interesting constatation were made. These include
the fact that it was sufficient to use a linear method for the
tensor estimation. It was also noticed that solving equation
(4) gave more stable results for transferring points. Also
interesting was that false matches were still found among
triplets agreeing with the trinocular geometry and having
high correlation, necessitating additional constraints.

Some weak points of the described method are its use
of correlation, which is costly, and gives quickly degrad-
ing results as the difference between viewpoints increases.
Another important weakness is the reliance on Harris fea-
ture points. It was found that these feature points, although
widely used by many authors, are often poorly distributed in
the images, resulting in a poor distribution of matches. This
is always the case for scenes that do not contain many well
defined corners, a situation that is common, especially when



Figure 8. matched points

relatively low resolution cameras are used. Some solutions
to these problems are now being investigated.
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