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1. Introduction

In this paper, we provide an overview of the Local Part
Model system for the THUMOS 2013: Action Recognition
with a Large Number of Classes1 evaluations. Our system
uses a combination of fast random sampling feature extrac-
tion and local part model feature representation.

Over the last decade, the advances in the area of com-
puter vision and pattern recognition have fuelled a large
amount of research with great progress in human action
recognition. Much of the early progress [1, 5, 14] has been
reported on atomic actions with several categories based
on staged videos captured under controlled settings, such
as KTH [14] and Weizmann [1]. More recently, there are
emerging interests for sophisticated algorithms in recogniz-
ing actions from realistic video. Such interests involve two
prospects: 1) In comparison to image classification evalu-
ating millions of images with over one thousand categories,
action recognition is still at its initial stage. It is important
to develop reliable, automatic methods which scale to large
numbers of action categories captured in realistic settings.
2) With over 100 hours of videos are uploaded to YouTube
every minute2, and millions of surveillance cameras all over
the world, the need for efficient recognition of the visual
events in the video is crucial for real world applications.

Recent studies [5, 10, 11, 21] have shown that lo-
cal spatio-temporal features can achieve remarkable per-
formance when represented by popular bag-of-features
method. A recent trend is the use of dense sampled points
[16, 21] and trajectories [7, 19] to improve the perfor-
mance. Local Part Model [15] achieved state-of-the-art per-
formance on real-life datasets with high efficiency when
combined with random sampling over high density sam-

1http://crcv.ucf.edu/ICCV13-Action-Workshop/index.html
2http://www.youtube.com/yt/press/statistics.html

pling grids. In this paper, we focus on recognize human
action “in the wild” with large number of classes. More
specifically, we aim to improve the state-of-the-art Local
Part Model method on large scale real-life action datasets.

The paper is organized as follows: The next section re-
views the LPM algorithm. Section 3 introduces four differ-
ent descriptors we will use. In section 4, we present some
experimental results and analysis. The paper is completed
with a brief conclusion. The code for computing random
sampling with Local Part Model is available on-line3.

2. LPM algorithm
Inspired by the multiscale, deformable part model [6]

for object classification, we proposed a 3D multiscale part
model in [16]. However, instead of adopting deformable
“parts”, we used “parts” with fixed size and location on the
purpose of maintaining both structural information and lo-
cal events ordering for action recognition. As shown in Fig-
ure 1, the local part model includes both a coarse primi-
tive level root feature covering event-content statistics and
higher resolution overlapping part filters incorporating lo-
cal structural and temporal relations.

More recently, we [15] applied random sampling method
with local part model over a very dense sampling grid
and achieved state-of-the-art performance on realistic large
scale datasets with potential for real-time recognition. Un-
der the local part model, a feature consists of a coarse global
root filter and several fine overlapped part filters. The root
filter is extracted on the video at half the resolution. This
way, a high density grid can be defined with far less sam-
ples. For every coarse root filter, a group of fine part filters
are computed at full video resolution and at locations rela-
tive to their root filter reference position. These part filters

3https://github.com/fshi/actionMBH
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Figure 1: Example of Local Part Model defined with root
filter and overlapping grids of part filters.

contain the fine-grained information required for accurate
recognition.

To improve the efficiency of LPM computation, two in-
tegral videos are computed, one for the root filter at half res-
olution, and another one for the part filters at full resolution.
The descriptor of a 3D patch can then be computed very ef-
ficiently through 8 additions multiplied by the total number
of root and parts. Apart from descriptor quantization and
normalization, most cost associated with feature extraction
is spent on accessing memory through the integral videos.

Because it uses random sampling, the method does
not require feature detection, which greatly improves pro-
cessing speed. One LPM feature includes a root spatial-
temporal(ST) patch and a group of ST part patches. In our
previous paper [15], each of these patches is represent by
a local descriptor (e.g. MBH, HOG3D, HOF etc.) as a his-
togram, and all the histograms are concatenated into one
vector that is 9 (1 root + 8 parts) times the original fea-
ture dimension. Such approach, however, can result in large
codeword quantization errors. It also obscures the discrim-
inative power of independent root filter and parts filters.

In this paper, we make an improvement over our previ-
ous work. Instead of simply concatenating 1 root descriptor
and 8 parts’ descriptors, we treat the root and 8 parts as
two separate channels. For each channel, a standard bag-
of-features approach is applied. The resulting histograms
of visual word occurrences from root and parts are concate-
nated into one histogram for SVM classification. We will
discuss this in details in our experimental section.

3. Local descriptors
For each given sample point (x , y , t , σ, τ), a feature

descriptor is computed for a 3D video patch centred at
(x , y , t). The descriptors are critical for the performance
of the video recognition. In our experiments, four types of
local descriptors are computed to encode local motion pat-
tern and structure information.

HOG descriptor was introduced by Dalal and Triggs
in[3] for human detection. It is based on the popular SIFT
descriptor [12].

HOF descriptor was first used by Laptev et al. [11] to
combined with HOG to incorporate both local motion and
appearance.

HOG3D descriptor was proposed by Kläser [8]. It is
built up on 3D oriented gradients. Although it is very effi-
cient to compute 3D gradients, the orientation quantization
with polyhedron for each sub-blocks is relatively cost con-
sidering a lot of patches sampled.

MBH descriptor was introduced by Dalal et al. in[4] and
used by Wang et al. [19] on action recognition to achieved
state-of-the-art performance. The derivatives are computed
separately for the horizontal and vertical components of the
optical flow, which results in motion compensation. The the
horizontal and vertical MBH descriptors can be computed
based on the derivatives.

3.1. Parameters

We strictly follow the parameter settings as those in [15]:
HOG3D. The parameters are: number of histogram cells

M = 2, N = 2; number of sub-blocks 1× 1× 3; and poly-
hedron type dodecahedron(12) with full orientation; the cut-
off value is c = 0.25. The minimal patch size is 16×16×10.
One HOG3D descriptor for a 3D patch has a dimension of
96, our local part model feature has a dimension of 96 for
root channel and 768 for parts channel (8× 96).

HOG, HOF and MBH. The minimal patch size is 16×
16 × 14 for HOG and 20 × 20 × 14 for HOF and MBH.
Each patch is subdivided into a grid of 2 × 2 × 2. With 8
bins quantization, one descriptor of HOG, HOF , MBHx or
MBHy has a dimension of 64 (2×2×2×8). Our local part
model feature has a dimension of 64 for root channel and
512 for parts channel (8 × 64). In addition, we also treat
MBHx and MBHy as two separate channels.

4. Experiments
To demonstrate the performance of the improved LPM,

we evaluated our method on two large-scale action bench-
marks, the UCF101 [17] and the HMDB51 [9] datasets.
We strictly follow the experimental settings as those in
[15]. For efficiency, we down-sample the UCF101 and
HMDB51 videos to half the spatial resolution for all our
experiments. We randomly sample 3D patches from the



dense grid, and use them to represent a video with a stan-
dard bag-of-features approach. The sampled 3D patches are
represented by descriptors, and the descriptors are matched
to their nearest visual words with Euclidean distance. The
resulting histograms of visual word occurrences are fed into
a non-linear SVM implemented by LIBSVM [2] with his-
togram intersection kernel [18]. For multi-class SVM, we
use one-versus-all approach, which is observed [7] to have
better results than one-against-one multi-class SVM.

To generate codewords, we randomly selected 120,000
training features, and used k-means to cluster them into
2000 visual words for each channel. For each input video,
we set the maximal video length to 160 frames. If the video
is larger than 160 frames, we simply divide it into several
segments, and select features at same rate for each segment.
We randomly sample 10k features. Each feature has 1 root
and 8 parts, which are represented by a descriptor as root
vector and parts vector, respectively. The feature vectors are
matched to nearest visual words with Euclidean distance.
After matching features with codewords for the root chan-
nel and parts channel separately, we concatenate the result-
ing histograms of visual word occurrences.

For better performance, multiple descriptors can be com-
bined to provide complementary information. To combine
multiple channels of different descriptors, we follow [15] by
using histogram intersection kernel weighted with descrip-
tors’ discriminative power:

KIH(xi, xj) =
∑
c

wc

max(wc)
min(xci , x

c
j), (1)

where wc is classification accuracy for the c-th channel,
which can be learnt from the training data. max(wc) is
the maximal value from wc of all channels.

4.1. Datasets

The UCF101 dataset [17] is by far the largest human ac-
tion dataset with 101 classes and 13320 realistic video clips
taken from YouTube. All clips have fixed frame rate and
resolution of 25 FPS and 320× 240 respectively. The clips
of one action class are divided into 25 groups which con-
tain 4-7 clips each. The clips in one group may have similar
background or be played by the same subjects. The dataset
is very large and relatively challenging due to camera mo-
tion, cluttered background, large scale variations, etc. We
report mean accuracy over three train/test splits as author’s
website4. For split 1, split 2 and split 3, , clips from groups
1-7, groups 8-14 and groups 15-21 are selected respectively
as test samples, and the rest for training.

The HMDB51 dataset [9] contains 51 action categories,
with at least 101 clips for each category. It is perhaps

4http://crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-
RecognitionTask.zip

Method HMDB51 UCF101
HMDB51 [9] 23.2% –
ActionBank [13] 26.9% –
Random sampling [15] 47.6%∗ –
Dense trajectories [20] 46.6%∗ –
DCS descriptor [7] 52.1%∗ –
UCF101 [17] – 43.9%

O
ur

s

HOG 23.7% 48.7%
HOF 35.3% 59.6%
HOG3D 36.0% 59.0%
MBH 50.6% 76.3%
Combined 55.2%∗ 78.9%∗

Table 1: Comparison of average accuracy on UCF101 and
HMDB51 with state-of-the-art methods in the literature.
Those marked with ∗ are results with combined descriptors.

the most realistic and challenging dataset. The dataset in-
cludes a total of 6,766 video clips extracted from Movies,
the Prelinger archive, Internet, Youtube and Google videos.
Three distinct training and testing splits have been selected
from the dataset, with 70 training and 30 testing clips for
each category. We used the original non-stabilized videos
with the same three train-test splits as the authors [9], and
report the mean accuracy over the three splits in all experi-
ments.

4.2. Results

Table 1 shows the results and comparison of our method
on HMDB51 and UCF101 with the state-of-the-art. For
efficiency, we use 2000 codewords for root channel and
parts channel on all descriptors. For multiple descriptors
(as shown in Table 1), we combined all 4 channels with
Equation 1. On HMDB51, the results show consistently
good performance on all descriptors. Our method outper-
forms all previous results in the literature for both single
descriptor and combined descriptors. In particular, we ob-
tained 50.0% average accuracy with MBH descriptor, which
is 6.7% more than the best single descriptor approach [20].
With multi-channel approaches, our method shows a perfor-
mance of 55.2%, which exceeds the best reported results in
[7] (52.1%).

On UCF101, we are the first to report the evaluation,
and our results are obtained with three distinct training and
testing splits as described in Section 4.1. We achieved
76.3% with MBH descriptor and 78.9% with four descrip-
tors. The confusion matrix for all 101 actions is shown in
Figure 2. Our results significantly outperform the baseline
results (43.9%) of the UCF101 [7].



Dataset BoF matching method
Speed (frames per second)

Mean accuracy
Integral video Sampling BoF matching Total fps

HMDB51
FLANN 36.8 114.1 118.2 23.1 48.2%

Brute Force 34.2 115.9 15.6 9.8 50.6%

UCF101
FLANN 51.2 170.0 185.9 32.5 75.7%

Brute Force 45.4 167.4 22.6 13.8 76.3%

Table 2: Average computation speed with single core at different stages in frames per second. The MBH descriptor is used
with 2000 words per channel, and 10K features are sampled in the experiment. The optical flow computation is included in
“Integral video”.

4.3. Computational efficiency

Table 2 summarizes the efficiency comparison at differ-
ent stages for HMDB51 and UCF101 dataset when using
MBH descriptor. Brute Force and FLANN methods are
evaluated and compared. Except for codewords matching,
all other stages are same. There are small speed differ-
ences between HMDB51 and UCF101. One explanation
is that HMDB51 videos have variable resolution. Also, it
has fewer frames per video which results in overhead for
the computation. The computation time was estimated on
an Intel i7-3770K PC. We did not parallelize our code and
only used a single core of the CPU.

Note that for computational efficiency, we down-sample
the UCF101 and HMDB51 videos to half the spatial res-
olution for all our experiments. We also use 2000 code-
words for all our experiments. We observed improved per-
formance for standard 4000 codewords or by using full spa-
tial resolution with parameter tuning.

5. Conclusions
This paper introduced multi-channel approach for LPM

algorithm for efficient action recognition. Compared to
the standard representation, the multi-channel approach im-
proves the performance with less codewords. Our re-
sults achieved state-of-the-art on two realistic large scale
datasets, UCF101 and HMDB51.
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Figure 2: Confusion matrix for UCF101 dataset using 4 descriptors combined and PCA96 BoF matching. The test results of
training/testing split 3 (Section 4.1) are used to generate the matrix.
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