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Query Processing

high level user query

query 
processor

low level data manipulation
commands
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Query Processing Components

� Query language that is used
➠ SQL: “intergalactic dataspeak”

� Query execution methodology
➠ The steps that one goes through in executing high-

level (declarative) user queries.

� Query optimization
➠ How do we determine the “best” execution plan?
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SELECT ENAME

FROM EMP,ASG

WHERE EMP.ENO = ASG.ENO

AND DUR > 37

Strategy 1
ΠENAME(σDUR>37∧EMP.ENO=ASG.ENO=

(EMP × ASG))
Strategy 2

ΠENAME(EMP ENO (σDUR>37 (ASG)))

Strategy 2 avoids Cartesian product, so is “better”

Selecting Alternatives
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What is the Problem?
Site 1 Site 2 Site 3 Site 4 Site 5

EMP1=σENO≤“E3”(EMP) EMP2=σENO>“E3”(EMP)ASG2=σENO>“E3”(ASG)ASG1=σENO≤“E3”(ASG) Result

Site 5

Site 1 Site 2 Site 3 Site 4

ASG1 EMP1 EMP2ASG2

result2=(EMP1∪=EMP2) ENOσDUR>37(ASG1∪=ASG1)

Site 4

result = EMP1
’∪EMP2

’

Site 3

Site 1 Site 2

EMP2
’=EMP2      ENOASG2

’EMP1
’=EMP1      ENOASG1

’

ASG1
’=σDUR>37(ASG1) ASG2

’=σDUR>37(ASG2)

Site 5

ASG2
’ASG1

’

EMP1
’ EMP2

’



Distributed DBMS Page 7-9. 6© 1998 M. Tamer Özsu & Patrick Valduriez

� Assume:
➠ size(EMP) = 400, size(ASG) = 1000
➠ tuple access cost = 1 unit; tuple transfer cost = 10 units

� Strategy 1
❶ produce ASG': (10+10)∗tuple access cost 20
❷ transfer ASG' to the sites of EMP: (10+10)∗tuple transfer cost    200
❸ produce EMP': (10+10) ∗tuple access cost∗2 40
❹ transfer EMP' to result site: (10+10) ∗tuple transfer cost 200

Total cost 460
� Strategy 2

❶ transfer EMP to site 5:400∗tuple transfer cost 4,000
❷ transfer ASG to site 5 :1000∗tuple transfer cost 10,000
❸ produce ASG':1000∗tuple access cost 1,000
❹ join EMP and ASG':400∗20∗tuple access cost 8,000

Total cost 23,000

Cost of Alternatives
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Minimize a cost function
I/O cost + CPU cost + communication cost

These might have different weights in different distributed 
environments
Wide area networks 

➠ communication cost will dominate
� low bandwidth
� low speed
� high protocol overhead

➠ most algorithms ignore all other cost components
Local area networks

➠ communication cost not that dominant
➠ total cost function should be considered

Can also maximize throughput

Query Optimization Objectives
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� Assume 
➠ relations of cardinality n
➠ sequential scan

Complexity of Relational 
Operations

Operation Complexity

Select
Project

(without duplicate elimination)
O(n)

Project
(with duplicate elimination)

Group
O(nlog n)

Join
Semi-join
Division
Set Operators

O(nlog n)

Cartesian Product O(n2)
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Query Optimization Issues –
Types of Optimizers

� Exhaustive search
➠ cost-based
➠ optimal
➠ combinatorial complexity in the number of relations

� Heuristics
➠ not optimal
➠ regroup common sub-expressions
➠ perform selection, projection first
➠ replace a join by a series of semijoins
➠ reorder operations to reduce intermediate relation size
➠ optimize individual operations
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Query Optimization Issues –
Optimization Granularity

� Single query at a time
➠ cannot use common intermediate results

� Multiple queries at a time
➠ efficient if many similar queries

➠ decision space is much larger
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Query Optimization Issues –
Optimization Timing

� Static
➠ compilation optimize prior to the execution
➠ difficult to estimate the size of the intermediate results  

error propagation
➠ can amortize over many executions
➠ R*

� Dynamic
➠ run time optimization
➠ exact information on the intermediate relation sizes
➠ have to reoptimize for multiple executions
➠ Distributed INGRES

� Hybrid
➠ compile using a static algorithm
➠ if the error in estimate sizes > threshold, reoptimize at 

run time
➠ MERMAID
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Query Optimization Issues –
Statistics

� Relation
➠ cardinality
➠ size of a tuple
➠ fraction of tuples participating in a join with 

another relation
� Attribute

➠ cardinality of domain
➠ actual number of distinct values

� Common assumptions
➠ independence between different attribute values
➠ uniform distribution of attribute values within their 

domain
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Query Optimization Issues –
Decision Sites

� Centralized
➠ single site determines the “best” schedule
➠ simple
➠ need knowledge about the entire distributed 

database
� Distributed

➠ cooperation among sites to determine the schedule
➠ need only local information
➠ cost of cooperation

� Hybrid
➠ one site determines the global schedule
➠ each site optimizes the local subqueries
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Query Optimization Issues –
Network Topology

� Wide area networks (WAN) – point-to-point
➠ characteristics

� low bandwidth
� low speed
� high protocol overhead

➠ communication cost will dominate; ignore all other 
cost factors

➠ global schedule to minimize communication cost
➠ local schedules according to centralized query 

optimization
� Local area networks (LAN)

➠ communication cost not that dominant
➠ total cost function should be considered
➠ broadcasting can be exploited (joins)
➠ special algorithms exist for star networks
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Distributed Query 
Processing Methodology

Calculus Query on Distributed
Relations

CONTROL
SITE

LOCAL
SITES

Query
Decomposition

Query
Decomposition

Data
Localization

Data
Localization

Algebraic Query on Distributed
Relations

Global
Optimization

Global
Optimization

Fragment Query

Local
Optimization

Local
Optimization

Optimized Fragment Query
with Communication Operations

Optimized Local
Queries

GLOBAL
SCHEMA

GLOBAL
SCHEMA

FRAGMENT
SCHEMA

FRAGMENT
SCHEMA

STATS ON
FRAGMENTS
STATS ON

FRAGMENTS

LOCAL
SCHEMAS
LOCAL

SCHEMAS
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Step 1 – Query Decomposition
Input :  Calculus query on global relations
� Normalization

➠ manipulate query quantifiers and qualification
� Analysis

➠ detect and reject “incorrect” queries
➠ possible for only a subset of relational calculus

� Simplification
➠ eliminate redundant predicates

� Restructuring
➠ calculus query Τalgebraic query
➠ more than one translation is possible
➠ use transformation rules
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� Lexical and syntactic analysis
➠ check validity (similar to compilers)
➠ check for attributes and relations
➠ type checking on the qualification

� Put into normal form
➠ Conjunctive normal form

(p11∨p12∨…∨p1n) ∧…∧ (pm1∨pm2∨…∨pmn)
➠ Disjunctive normal form

(p11∧p12 ∧…∧p1n) ∨…∨ (pm1 ∧pm2∧…∧Τpmn)
➠ OR's mapped into union
➠ AND's mapped into join or selection

Normalization
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� Refute incorrect queries
� Type incorrect

➠ If any of its attribute or relation names are not defined in 
the global schema

➠ If operations are applied to attributes of the wrong type
� Semantically incorrect

➠ Components do not contribute in any way to the 
generation of the result

➠ Only a subset of relational calculus queries can be tested 
for correctness

➠ Those that do not contain disjunction and negation
➠ To detect

� connection graph (query graph)
� join graph

Analysis
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SELECT ENAME,RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND PNAME = "CAD/CAM"
AND DUR ≥ 36
AND TITLE = "Programmer"

Query graph Join graph

Analysis – Example

DUR≥36

PNAME=“CAD/CAM”
ENAME

EMP.ENO=ASG.ENO ASG.PNO=PROJ.PNO

RESULT

TITLE =
“Programmer” RESP

ASG.PNO=PROJ.PNOEMP.ENO=ASG.ENO
ASG

PROJEMP EMP PROJ

ASG
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If the query graph is not connected, the query is 
wrong.

SELECT ENAME,RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND PNAME = "CAD/CAM"
AND DUR ≥ 36
AND TITLE = "Programmer"

Analysis

PNAME=“CAD/CAM”
ENAME RESULT

RESP

ASG

PROJEMP
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� Why simplify?
➠ Remember the example

� How? Use transformation rules
➠ elimination of redundancy

� idempotency rules
p1 ∧ ¬( p1) ⇔ false
p1 ∧ (p1 ∨ p2) ⇔ p1

p1 ∨ false ⇔ p1

…

➠ application of transitivity
➠ use of integrity rules

Simplification
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SELECT TITLE
FROM EMP

WHERE EMP.ENAME = “J. Doe”

OR (NOT(EMP.TITLE = “Programmer”)

AND (EMP.TITLE = “Programmer”

OR EMP.TITLE = “Elect. Eng.”)

AND NOT(EMP.TITLE = “Elect. Eng.”))

SELECT TITLE

FROM EMP

WHERE EMP.ENAME = “J. Doe”

Simplification – Example
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� Convert relational calculus to 
relational algebra

� Make use of query trees
� Example

Find the names of employees other than 
J. Doe who worked on the CAD/CAM 
project for either 1 or 2 years.
SELECT ENAME
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND ENAME ≠ “J. Doe”
AND PNAME = “CAD/CAM”
AND (DUR = 12 OR DUR = 24)

Restructuring
ΠENAME

σDUR=12 OR DUR=24

σPNAME=“CAD/CAM”

σENAME≠“J. DOE”

PROJ ASG EMP

Project

Select

Join

PNO

ENO
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� Commutativity of binary operations
➠ R × S ⇔ S × R
➠ R S ⇔ S R
➠ R ∪ S ⇔ S ∪ R

� Associativity of binary operations
➠ ( R × S ) × T ⇔ R × (S × T)
➠ ( R S )    T ⇔ R (S T )

� Idempotence of unary operations
➠ ΠA’(ΠA’(R)) ⇔ΤΠA’(R)
➠ σp1(A1)(σp2(A2)(R)) = σp1(A1) ∧ p2(A2)(R)
where R[A] and A' ⊆ A, A" ⊆ A and A' ⊆ A" 

� Commuting selection with projection

Restructuring –
Transformation Rules
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� Commuting selection with binary operations
➠ σp(A)(R × S) ⇔ (σp(A) (R)) × S

➠ σp(Ai)(R (Aj,Bk) S) ⇔ (σp(Ai) (R))    (Aj,Bk) S

➠ σp(Ai)(R ∪ T) ⇔ σp(Ai) (R) ∪ σp(Ai) (T)
where Ai belongs to R and T

� Commuting projection with binary operations
➠ ΠC(R × S) ⇔ ΠΤA’(R) × ΠΤB’(S)
➠ ΠC(R (Aj,Bk) S) ⇔ ΠΤA’(R)    (Aj,Bk) ΠΤB’(S)
➠ ΠC(R ∪ S) ⇔ ΠΤC (R) ∪ ΠΤC (S)
where R[A] and S[B]; C = A' ∪ B' where  A' ⊆ A, B' ⊆ B

Restructuring –
Transformation Rules
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Example
Recall the previous example:

Find the names of employees other 
than J. Doe who worked on the 
CAD/CAM project for either one or 
two years.

SELECT ENAME

FROM PROJ, ASG, EMP

WHERE ASG.ENO=EMP.ENO

AND ASG.PNO=PROJ.PNO
AND ENAME≠“J. Doe”

AND PROJ.PNAME=“CAD/CAM”

AND (DUR=12 OR DUR=24)

ΠENAME

σDUR=12 OR DUR=24

σPNAME=“CAD/CAM”

σENAME≠“J. DOE”

PROJ ASG EMP

Project

Select

Join

PNO

ENO
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Equivalent Query
ΠENAME

σPNAME=“CAD/CAM” ∧(DUR=12 ∨ DUR=24) ∧=ENAME≠“J. DOE”

×

PROJASG EMP

PNO ∧ENO 
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EMP

ΠENAME

σENAME ≠ "J. Doe"

ASGPROJ

ΠPNO,ENAME

σPNAME = "CAD/CAM"

ΠPNO

σDUR =12 ∧ΟDUR=24

ΠPNO,ENO

ΠPNO,ENAME

Restructuring

PNO

ENO
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Step 2 – Data Localization

Input:  Algebraic query on distributed relations
� Determine which fragments are involved
� Localization program

➠ substitute for each global query its materialization 
program

➠ optimize
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Example
Assume 

➠ EMP is fragmented into EMP1, EMP2, 
EMP3 as follows:

� EMP1=σENO≤“E3”(EMP)
� EMP2= σ“E3”<ENO≤“E6”(EMP)
� EMP3=σENO≥“E6”(EMP)

➠ ASG fragmented into ASG1 and ASG2 as 
follows:

� ASG1=σENO≤“E3”(ASG)
� ASG2=σENO>“E3”(ASG)

Replace EMP by (EMP1∪EMP2∪EMP3 )  and     
ASG by (ASG1 ∪ ASG2) in any query 

ΠENAME

σDUR=12 OR DUR=24

σPNAME=“CAD/CAM”

σENAME≠“J. DOE”

PROJ ∪ ∪

EMP1 EMP2 EMP3 ASG1 ASG2

PNO

ENO
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Provides Parallellism

EMP3 ASG1EMP2 ASG2EMP1 ASG1

∪

EMP3 ASG2

ENO ENO ENO ENO
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Eliminates Unnecessary Work

EMP2 ASG2EMP1 ASG1

∪

EMP3 ASG2

ENO ENO ENO
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� Reduction with selection
➠ Relation R and FR={R1,  R2, …, Rw} where Rj=σ pj

(R)

σ pi
(Rj)= φ if ∀x in R: ¬(pi(x) ∧Τpj(x))

➠ Example
SELECT *
FROM EMP

WHERE ENO=“E5”

Reduction for PHF

σ ENO=“E5” 

∪

EMP1 EMP2 EMP3 EMP2

σ ENO=“E5” 
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� Reduction with join
➠ Possible if fragmentation is done on join attribute

➠ Distribute join over union

(R1 ∪ΤR2)    S ⇔ (R1      S) ∪Τ(R2      S)

➠ Given Ri = σpi
(R) and Rj = σpj

(R)

Ri      Rj = φΤif ∀x in Ri, ∀y in Rj: ¬(pi(x) ∧Τpj(y))

Reduction for PHF
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� Reduction with join - Example
➠ Assume EMP is fragmented as before and

ASG1: σENO ≤ "E3"(ASG)
ASG2: σENO > "E3"(ASG)

➠ Consider the query
SELECT*

FROM EMP, ASG

WHERE EMP.ENO=ASG.ENO

Reduction for PHF

∪ ∪

EMP1 EMP2 EMP3 ASG1 ASG2

ENO
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� Reduction with join - Example 
➠ Distribute join over unions
➠ Apply the reduction rule

Reduction for PHF

∪

EMP1 ASG1 EMP2 ASG2 EMP3 ASG2

ENO ENO ENO
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� Find useless (not empty) intermediate relations
Relation R defined over attributes A = {A1, ..., An} vertically 
fragmented as Ri = ΠA' (R) where A' ⊆ A:

ΠD,K(Ri) is useless if the set of projection attributes D is not in A'
Example: EMP1= ΠENO,ENAME (EMP); EMP2= ΠENO,TITLE (EMP)

SELECT ENAME

FROM EMP

Reduction for VF

ΠENAME

EMP1EMP1 EMP2

ΠENAME

�ENO
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� Rule :
➠ Distribute joins over unions
➠ Apply the join reduction for horizontal fragmentation

� Example
ASG1: ASG     ENO EMP1
ASG2: ASG     ENO EMP2
EMP1: σ TITLE=“Programmer” (EMP)
EMP2: σ TITLE=“Programmer” (EMP)

Query
SELECT *

FROM EMP, ASG

WHERE ASG.ENO = EMP.ENO

AND EMP.TITLE = “Mech. Eng.”

Reduction for DHF
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Generic query

Selections first

Reduction for DHF

∪ ∪

ASG1

σΟTITLE=“Mech. Eng.”

ASG2 EMP1 EMP2

∪

ASG1 ASG2 EMP2

σΟTITLE=“Mech. Eng.”

ENO

ENO
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Joins over unions

Elimination of the empty intermediate relations 
(left sub-tree)

Reduction for DHF
∪

ASG1 EMP2 EMP2

σΟTITLE=“Mech. Eng.”

ASG2

σΟTITLE=“Mech. Eng.”

ASG2 EMP2

σΟTITLE=“Mech. Eng.”

ENO

ENO ENO
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� Combine the rules already specified:
➠ Remove empty relations generated by contradicting 

selections on horizontal fragments;

➠ Remove useless relations generated by projections 
on vertical fragments;

➠ Distribute joins over unions in order to isolate and 
remove useless joins.

Reduction for HF
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Example
Consider the following hybrid 
fragmentation:

EMP1=σENO≤"E4" (ΠENO,ENAME (EMP))

EMP2=σENO>"E4" (ΠENO,ENAME (EMP))

EMP3= ΠENO,TITLE (EMP)

and the query
SELECT ENAME

FROM EMP

WHERE ENO=“E5”

Reduction for HF

EMP1 EMP2

∪

EMP3

σΟENO=“E5”

ΠENAME

EMP2

σΟENO=“E5”

ΠENAME

ENO
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Step 3 – Global Query Optimization
Input:  Fragment query
� Find the best (not necessarily optimal) global 

schedule
➠ Minimize a cost function
➠ Distributed join processing

� Bushy vs. linear trees
� Which relation to ship where?
� Ship-whole vs ship-as-needed

➠ Decide on the use of semijoins
� Semijoin saves on communication at the expense of 

more local processing.
➠ Join methods

� nested loop vs ordered joins (merge join or hash join)
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Cost-Based Optimization
� Solution space

➠ The set of equivalent algebra expressions (query trees).

� Cost function (in terms of time) 
➠ I/O cost + CPU cost + communication cost
➠ These might have different weights in different distributed 

environments (LAN vs WAN).
➠ Can also maximize throughput 

� Search algorithm
➠ How do we move inside the solution space?
➠ Exhaustive search, heuristic algorithms (iterative 

improvement, simulated annealing, genetic,…)
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Query Optimization Process

Search Space
Generation

Search
Strategy

Equivalent QEP

Input Query

Transformation
Rules

Cost Model

Best QEP
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Search Space
� Search space characterized by  

alternative execution plans
� Focus on join trees
� For N relations, there are O(N!) 

equivalent join trees that can be 
obtained by  applying 
commutativity and associativity 
rules
SELECT ENAME,RESP
FROM EMP, ASG, PROJ

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=PROJ.PNO

PROJ

ASGEMP

PROJ ASG

EMP

PROJ

ASG

EMP

×

ENO

ENO

PNO

PNO

ENO,PNO
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Search Space
� Restrict by means of heuristics

➠ Perform unary operations before binary operations
➠ …

� Restrict the shape of the join tree
➠ Consider only linear trees, ignore bushy ones

R2R1

R3

R4

Linear Join Tree

R2R1 R4R3

Bushy Join Tree
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Search Strategy
� How to “move” in the search space.
� Deterministic

➠ Start from base relations and build plans by adding one 
relation at each step

➠ Dynamic programming: breadth-first
➠ Greedy: depth-first

� Randomized
➠ Search for optimalities around a particular starting point
➠ Trade optimization time for execution time
➠ Better when > 5-6 relations
➠ Simulated annealing
➠ Iterative improvement
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Search Strategies
� Deterministic

� Randomized
R2R1

R3

R4

R2R1 R2R1

R3

R2R1

R3

R3R1

R2
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� Total Time (or Total Cost)
➠ Reduce each cost (in terms of time) component 

individually
➠ Do as little of each cost component as possible
➠ Optimizes the utilization of the resources

Increases system throughput

� Response Time
➠ Do as many things as possible in parallel
➠ May increase total time because of increased total activity

Cost Functions
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Summation of all cost factors

Total cost = CPU cost + I/O cost + communication cost

CPU cost = unit instruction cost ∗ no.of instructions

I/O cost = unit disk I/O cost ∗ no. of disk I/Os

communication cost = message initiation + transmission

Total Cost
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� Wide area network 
➠ message initiation and transmission costs high

➠ local processing cost is low (fast mainframes or 
minicomputers)

➠ ratio of communication to I/O costs = 20:1

� Local area networks
➠ communication and local processing costs are more 

or less equal

➠ ratio = 1:1.6

Total Cost Factors
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Elapsed time between the initiation and the completion of 
a query

Response time = CPU time + I/O time + communication time

CPU time = unit instruction time ∗ no. of sequential
instructions

I/O time = unit I/O time ∗ no. of sequential I/Os

communication time = unit msg initiation time ∗
no. of sequential msg + unit transmission time ∗
no. of sequential bytes

Response Time
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Assume that only the communication cost is considered
Total time = 2 ∗ message initialization time + unit 

transmission time ∗ (x+y)
Response time = max {time to send x from 1 to 3, time to 

send y from 2 to 3}
time to send x from 1 to 3 = message initialization time + 

unit transmission time ∗ x
time to send y from 2 to 3 = message initialization time + 

unit transmission time ∗ y

Example
Site 1

Site 2

x units

y units

Site 3
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� Primary cost factor: size of intermediate relations
� Make them precise more costly to maintain

➠ For each relation R[A1, A2, …, An] fragmented as R1, …, Rr
� length of each attribute: length(Ai) 
� the number of distinct values for each attribute in each fragment: 

card(∏Ai
Rj)

� maximum and minimum values in the domain of each attribute: 
min(Ai), max(Ai)

� the cardinalities of each domain: card(dom[Ai])
� the cardinalities of each fragment: card(Rj)

➠ Selectivity factor of each operation for relations
� For joins

Optimization Statistics

SF (R,S) = card(R S)
card(R)Τ∗Τcard(S)
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Selection
size(R) = card(R) ∗Τlength(R)
card(σF (R)) = SFσ (F) ∗Τcard(R)

where

Intermediate Relation Sizes

S Fσ(A = value) = 
card(∏A(R))

1

S Fσ(A > value) = 
max(A) – min(A) 
max(A) – value

S Fσ(A < value) = 
max(A) – min(A) 
value  – max(A)

SFσ(p(Ai) ∧Τp(Aj)) = SFσ(p(Ai)) ∗ SFσ(p(Aj))

SFσ(p(Ai) ∨Τp(Aj)) = SFσ(p(Ai)) + SFσ(p(Aj)) – (SFσ(p(Ai)) ∗ SFσ(p(Aj)))
SFσ(A ∈ value) = SFσ(A= value) ∗ card({values})
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Projection
card(ΠA(R))=card(R)

Cartesian Product
card(R × S) = card(R) ∗=card(S)

Union
upper bound: card(R ∪ S) = card(R) + card(S)
lower bound: card(R ∪ S) = max{card(R), card(S)}

Set Difference
upper bound: card(R–S) = card(R)
lower bound: 0

Intermediate Relation Sizes
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Join
➠ Special case: A is a key of R and B is a foreign key of 

S;

card(R A=B S) = card(S)
➠ More general:

card(R S) = SF ∗Τcard(R) ∗Τcard(S)

Semijoin
card(R A S) = SF (S.A) ∗Τcard(R)

where
SF (R A S)= SF (S.A) =

Intermediate Relation Size

card(∏A(S))
card(dom[A])
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� INGRES
➠ dynamic

➠ interpretive

� System R
➠ static

➠ exhaustive search

Centralized Query Optimization
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❶ Decompose each multi-variable query into a 
sequence of mono-variable queries with a 
common variable

❷ Process each by a one variable query processor
➠ Choose an initial execution plan (heuristics)
➠ Order the rest by considering intermediate relation 

sizes

No statistical information is maintained

INGRES Algorithm
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� Replace an n variable query q by a series of 
queries

q1 → q2 → … → qn

where qi uses the result of qi-1.
� Detachment

➠ Query q decomposed into q' → q" where q' and q"
have a common variable which is the result of q'

� Tuple substitution
➠ Replace the value of each tuple with actual values 

and simplify the query
q(V1, V2, ... Vn) → (q' (t1, V2, V2, ... , Vn), t1 ∈ R)

INGRES Algorithm–Decomposition
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q: SELECT V2.A2,V3.A3, …,Vn.An
FROM R1 V1, …,Rn Vn
WHERE P1(V1.A1

’) AND P2(V1.A1,V2.A2,…, Vn.An)

q': SELECT V1.A1 INTO R1'

FROM R1 V1
WHERE P1(V1.A1)

q": SELECT V2.A2, …, Vn.An
FROM R1' V1, R2 V2, …, Rn Vn
WHERE P2(V1.A1, V2.A2, …, Vn.An)

Detachment
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Names of employees working on CAD/CAM project
q1: SELECT EMP.ENAME

FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO
AND PROJ.PNAME="CAD/CAM"

q11: SELECT PROJ.PNO INTO JVAR
FROM PROJ
WHERE PROJ.PNAME="CAD/CAM"

q': SELECT EMP.ENAME
FROM EMP,ASG,JVAR
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=JVAR.PNO

Detachment Example
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q': SELECT EMP.ENAME

FROM EMP,ASG,JVAR

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=JVAR.PNO

q12: SELECT ASG.ENO INTO GVAR

FROM ASG,JVAR

WHERE ASG.PNO=JVAR.PNO

q13: SELECT EMP.ENAME

FROM EMP,GVAR

WHERE EMP.ENO=GVAR.ENO

Detachment Example (cont’d)



Distributed DBMS Page 7-9. 65© 1998 M. Tamer Özsu & Patrick Valduriez

q11 is a mono-variable query
q12 and q13 is subject to tuple substitution
Assume GVAR has two tuples only: <E1> and <E2>
Then q13 becomes

q131: SELECT EMP.ENAME
FROM EMP

WHERE EMP.ENO="E1"

q132: SELECT EMP.ENAME
FROM EMP

WHERE EMP.ENO="E2"

Tuple Substitution
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❶ Simple (i.e., mono-relation) queries are 
executed according to the best access path

❷ Execute joins
2.1 Determine the possible ordering of joins

2.2 Determine the cost of each ordering

2.3 Choose the join ordering with minimal cost

System R Algorithm



Distributed DBMS Page 7-9. 67© 1998 M. Tamer Özsu & Patrick Valduriez

For  joins, two alternative algorithms :
� Nested loops

for each tuple of external relation (cardinality n1)
for each tuple of internal relation (cardinality n2)

join two tuples if the join predicate is true
end

end
➠ Complexity: n1∗n2

� Merge join
sort relations 
merge relations

➠ Complexity: n1+ n2 if relations are previously sorted and 
equijoin

System R Algorithm
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Names of employees working on the CAD/CAM project
Assume

➠ EMP has an index on ENO,
➠ ASG has an index on PNO,
➠ PROJ has an index on PNO and an index on PNAME

System R Algorithm – Example

PNOENO

PROJ

ASG

EMP
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❶ Choose the best access paths to each relation
➠ EMP: sequential scan (no selection on  EMP)
➠ ASG: sequential scan (no selection on  ASG)
➠ PROJ: index on PNAME (there is a  selection on

PROJ based on PNAME)
❷ Determine the best join ordering

➠ EMP    ASG    PROJ
➠ ASG    PROJ    EMP
➠ PROJ    ASG     EMP
➠ ASG     EMP     PROJ
➠ EMP × PROJ    ASG
➠ PROJ × EMP     ASG
➠ Select the best ordering based on the join costs 

evaluated according to the two methods

System R Example (cont’d)
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Best total join order is one of
((ASG    EMP)    PROJ)
((PROJ    ASG)    EMP)

System R Algorithm

EMP  ASG
pruned

ASGEMP PROJ

(PROJ ASG) EMP 

EMP ×=PROJ
pruned

ASG  EMP PROJ ×=EMP
pruned

PROJ ASG

(ASG EMP) PROJ 

ASG  PROJ
pruned

Alternatives
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� ((PROJ    ASG)    EMP) has a useful index on 
the select attribute and direct access to the 
join attributes of ASG and EMP

� Therefore, chose it with the following access 
methods:

➠ select PROJ using index on PNAME

➠ then join with ASG using index on PNO

➠ then join with EMP using index on ENO

System R Algorithm
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� Ordering joins
➠ Distributed INGRES

➠ System R*

� Semijoin ordering
➠ SDD-1

Join Ordering in Fragment Queries
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� Consider two relations only

� Multiple relations more difficult because too 
many alternatives.

➠ Compute the cost of all alternatives and select the 
best one.

� Necessary to compute the size of intermediate 
relations which is difficult.

➠ Use heuristics

Join Ordering

R
if size (R) < size (S)

if size (R) > size (S)
S
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Consider
PROJ    PNOASG    ENOEMP

Join Ordering – Example

Site 2

Site 3Site 1

PNOENO

PROJ

ASG

EMP
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Execution alternatives:
1. EMP → Site 2 2. ASG → Site 1

Site 2 computes EMP'=EMP    ASG Site 1 computes EMP'=EMP     ASG
EMP' → Site 3 EMP' → Site 3
Site 3 computes EMP’    PROJ Site 3 computes EMP’     PROJ

3. ASG → Site 3 4. PROJ → Site 2
Site 3 computes ASG'=ASG     PROJ Site 2 computes PROJ'=PROJ     ASG
ASG' → Site 1 PROJ' → Site 1
Site 1 computes ASG'     EMP Site 1 computes PROJ'      EMP

5. EMP → Site 2
PROJ → Site 2
Site 2 computes EMP     ��PROJ     ASG

Join Ordering – Example



Distributed DBMS Page 7-9. 76© 1998 M. Tamer Özsu & Patrick Valduriez

� Consider the join of two relations: 
➠ R[A]  (located at site 1)
➠ S[A] (located at site 2)

� Alternatives:
1 Do the join R A S

2 Perform one of the semijoin equivalents
R A S ⇔ (R A S)     A S

⇔ R     A (S A R)
⇔ (R A S)     A (S A R)

Semijoin Algorithms
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� Perform the join
➠ send R to Site 2
➠ Site 2 computes R A S

� Consider semijoin (R   A S)   A S
➠ S' ←Τ∏A(S)
➠ S'  → Site 1
➠ Site 1 computes R' = R    A S'
➠ R' → Site 2
➠ Site 2 computes R' A S

Semijoin is better if
size(ΠA(S)) + size(R A S)) < size(R)

Semijoin Algorithms
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Distributed Query 
Processing

Algorithms Opt.
Timing

Objective
Function

Opt.
Factors

Network
Topology

Semijoin Stats Fragments

Dist.
INGRES

Dynamic Resp.
time or

Total time

Msg. Size,
Proc. Cost

General or
Broadcast

No 1 Horizontal

R* Static Total time No. Msg.,
Msg. Size,
IO, CPU

General or
Local

No 1, 2 No

SDD-1 Static Total time Msg. Size General Yes 1,3,4,
5

No

1: relation cardinality; 2: number of unique values per attribute; 3: join selectivity factor; 4: size
of projection on each join attribute; 5: attribute size and tuple size
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Same as the centralized version except

� Movement of relations (and fragments) need to 
be considered

� Optimization with respect to communication 
cost or response time possible

Distributed INGRES Algorithm
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� Cost function includes local processing as well 
as transmission

� Considers only joins

� Exhaustive search

� Compilation

� Published papers provide solutions to handling 
horizontal and vertical fragmentations but the 
implemented prototype does not

R* Algorithm
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Performing joins
� Ship whole

➠ larger data transfer
➠ smaller number of messages
➠ better if relations are small

� Fetch as needed
➠ number of messages = O(cardinality of external 

relation)
➠ data transfer per message is minimal
➠ better if relations are large and the selectivity is 

good

R* Algorithm
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1. Move outer relation tuples to the site of the inner 
relation
(a)Retrieve outer tuples

(b)Send them to the inner relation site

(c) Join them as they arrive

Total Cost = cost(retrieving qualified outer tuples) 

+ no. of outer tuples fetched ∗
cost(retrieving qualified inner tuples)

+ msg. cost ∗ (no. outer tuples fetched ∗Τ
ΤΤΤΤΤ ΤΤΤΤavg. outer tuple size) / msg. size

R* Algorithm –
Vertical Partitioning & Joins
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2. Move inner relation to the site of outer relation
cannot join as they arrive; they need to be stored

Total Cost = cost(retrieving qualified outer tuples)

+ no. of outer tuples fetched ∗
cost(retrieving matching inner tuples 
from temporary storage)

+ cost(retrieving qualified inner tuples)

+ cost(storing all qualified inner tuples 
in temporary storage) 

+ msg. cost ∗ (no. of inner tuples fetched ∗
avg. inner tuple size) / msg. size

R* Algorithm –
Vertical Partitioning & Joins
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3. Move both inner and outer relations to another 
site 

Total cost = cost(retrieving qualified outer tuples)
+ cost(retrieving qualified inner tuples)
+ cost(storing inner tuples in storage)
+ msg. cost ∗ (no. of outer tuples fetched ∗

avg. outer tuple size) / msg. size
+ msg. cost ∗ (no. of inner tuples fetched ∗

avg. inner tuple size) / msg. size
+ no. of outer tuples fetched ∗

cost(retrieving inner tuples from 
temporary storage)

R* Algorithm –
Vertical Partitioning & Joins
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4. Fetch inner tuples as needed
(a)Retrieve qualified tuples at outer relation site
(b)Send request containing join column value(s) for outer 

tuples to inner relation site
(c) Retrieve matching inner tuples at inner relation site
(d)Send the matching inner tuples to outer relation site
(e) Join as they arrive 

Total Cost = cost(retrieving qualified outer tuples)
+ msg. cost ∗ (no. of outer tuples fetched)
+ no. of outer tuples fetched ∗ (no. of 

inner tuples fetched ∗ avg. inner tuple 
size ∗ msg. cost / msg. size)

+ no. of outer tuples fetched ∗
cost(retrieving matching inner tuples 
for one outer value)

R* Algorithm –
Vertical Partitioning & Joins
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� Based on the Hill Climbing Algorithm 
➠ Semijoins

➠ No replication

➠ No fragmentation

➠ Cost of transferring the result to the user site from 
the final result site is not considered

➠ Can minimize either total time or response time

SDD-1 Algorithm
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Assume join is between three relations.
Step 1: Do initial processing
Step 2: Select initial feasible solution (ES0)

2.1 Determine the candidate result sites - sites 
where a relation referenced in the query exist

2.2 Compute the cost of transferring all the other 
referenced relations to each candidate site

2.3 ES0 = candidate site with minimum cost
Step 3: Determine candidate splits of ES0 into 

{ES1, ES2}
3.1 ES1 consists of sending one of the relations 

to the other relation's site
3.2 ES2 consists of sending the join of the 

relations to the final result site

Hill Climbing Algorithm



Distributed DBMS Page 7-9. 88© 1998 M. Tamer Özsu & Patrick Valduriez

Step 4: Replace ES0 with the split schedule 
which gives

cost(ES1) + cost(local join) + cost(ES2) < cost(ES0)

Step 5: Recursively apply steps 3–4 on ES1 and 
ES2 until no such plans can be found

Step 6: Check for redundant transmissions in the 
final plan and eliminate them.

Hill Climbing Algorithm
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What are the salaries of engineers who work on the 
CAD/CAM project?

ΠSAL(PAY     TITLE(EMP     ENO(ASG     PNO(σPNAME=“CAD/CAM”(PROJ)))))

Relation Size Site
EMP 8 1
PAY 4 2
PROJ 4 3
ASG 10 4

Assume:
➠ Size of relations is defined as their cardinality
➠ Minimize total cost
➠ Transmission cost between two sites is 1
➠ Ignore local processing cost

Hill Climbing Algorithm –
Example
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Step 1:
Selection on PROJ; result has cardinality 1

Relation Size Site
EMP 8 1
PAY 4 2
PROJ 1 3
ASG 10 4

Hill Climbing Algorithm –
Example



Distributed DBMS Page 7-9. 91© 1998 M. Tamer Özsu & Patrick Valduriez

Step 2: Initial feasible solution
Alternative 1: Resulting site is Site 1

Total cost = cost(PAY→Site 1) + cost(ASG→Site 1) + cost(PROJ→Site 1) 
= 4 + 10 + 1 = 15

Alternative 2: Resulting site is Site 2
Total cost = 8 + 10 + 1 = 19

Alternative 3: Resulting site is Site 3
Total cost = 8 + 4 + 10 = 22

Alternative 4: Resulting site is Site 4
Total cost = 8 + 4 + 1 = 13

Therefore ES0 = {EMP → Site 4; S → Site 4; PROJ → Site 4}

Hill Climbing Algorithm –
Example
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Step 3: Determine candidate splits
Alternative 1: {ES1, ES2, ES3} where

ES1: EMP → Site 2
ES2: (EMP PAY) → Site 4
ES3: PROJ → Site 4

Alternative 2: {ES1, ES2, ES3} where
ES1: PAY → Site 1
ES2: (PAY EMP) → Site 4
ES3: PROJ → Site 4

Hill Climbing Algorithm –
Example
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Step 4: Determine costs of each split alternative
cost(Alternative 1) = cost(EMP→Site 2) + cost((EMP PAY)→Site 4) +

cost(PROJ → Site 4)

= 8 + 8 + 1 = 17
cost(Alternative 2) = cost(PAY→Site 1) + cost((PAY EMP)→Site 4) + 

cost(PROJ → Site 4)

= 4 + 8 + 1 = 13
Decision : DO NOT SPLIT

Step 5: ES0 is the “best”.
Step 6: No redundant transmissions.

Hill Climbing Algorithm –
Example
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Problems :
❶ Greedy algorithm → determines an initial feasible 

solution and iteratively tries to improve it
❷ If there are local minimas, it may not find global 

minima
❸ If the optimal schedule has a high initial cost, it 

won't find it since it won't choose it as the initial 
feasible solution

Example : A better schedule is 
PROJ → Site 4
ASG' = (PROJ    ASG) → Site 1
(ASG'     EMP) → Site 2
Total cost = 1 + 2 + 2 = 5

Hill Climbing Algorithm
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Initialization
Step 1: In the execution strategy (call it ES), 

include all the local processing
Step 2: Reflect the effects of local processing on 

the database profile
Step 3: Construct a set of beneficial semijoin 

operations (BS) as follows :
BS = Ø
For each semijoin SJi

BS ← BS ∪ SJi if cost(SJi ) < benefit(SJi)

SDD-1 Algorithm
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Consider the following query
SELECT R3.C

FROM R1, R2, R3

WHERE R1.A = R2.A

AND R2.B = R3.B

which has the following query graph and statistics:

SDD-1 Algorithm – Example

R1

Site 3Site 1

R2 R3

Site 2
A B

attribute
R1.A
R2.A
R2.B
R3.B

0.3
0.8
1.0
0.4

36
320
400

80

relation card tuple size relation
size

R1
R2

30 50 1500
100 30 3000

R3 50 40 2000
size(Πattribute)SF



Distributed DBMS Page 7-9. 97© 1998 M. Tamer Özsu & Patrick Valduriez

� Beneficial semijoins:
➠ SJ1 = R2    R1, whose benefit is 

2100 = (1 – 0.3)∗3000 and cost is 36
➠ SJ2 = R2    R3, whose benefit is 

1800 = (1 – 0.4) ∗3000 and cost is 80

� Nonbeneficial semijoins:
➠ SJ3 = R1    R2 , whose benefit is 

300 = (1 – 0.8) ∗1500 and cost is 320
➠ SJ4 = R3     R2 , whose benefit is 0 and cost is 400

SDD-1 Algorithm – Example
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Iterative Process

Step 4: Remove the most beneficial SJi from BS
and append it to ES

Step 5: Modify the database profile accordingly

Step 6: Modify BS appropriately
➠ compute new benefit/cost values

➠ check if any new semijoin need to be 
included in BS

Step 7: If BS ≠ Ø, go back to Step 4.

SDD-1 Algorithm
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� Iteration 1:
➠ Remove SJ1 from BS and add it to ES.
➠ Update statistics

size(R2) = 900 (= 3000∗0.3)
SF (R2.A) = ~0.8∗0.3 = ~0.24

� Iteration 2:
➠ Two beneficial semijoins:

SJ2 = R2’    �R3, whose benefit is 540 = (1–0.4) ∗900 and cost is 
200
SJ3 = R1     R2', whose benefit is 1140=(1–0.24)∗1500 and cost is 96

➠ Add SJ3 to ES
➠ Update statistics

size(R1) = 360 (= 1500∗0.24)
SF (R1.A) = ~0.3∗0.24 = 0.072

SDD-1 Algorithm – Example
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� Iteration 3:
➠ No new beneficial semijoins.
➠ Remove remaining beneficial semijoin SJ2 from 

BS and add it to ES.
➠ Update statistics

size(R2) = 360 (= 900*0.4)
Note: selectivity of R2 may also change, but not 
important in this example.

SDD-1 Algorithm – Example



Distributed DBMS Page 7-9. 101© 1998 M. Tamer Özsu & Patrick Valduriez

Assembly Site Selection
Step 8: Find the site where the largest amount of  data 

resides and select it as the assembly site

Example: 
Amount of data stored at sites:

Site 1: 360
Site 2: 360
Site 3: 2000

Therefore, Site 3 will be chosen as the assembly site.

SDD-1 Algorithm
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Postprocessing
Step 9: For each Ri at the assembly site, find the 

semijoins of the type
Ri     Rj

where the total cost of ES without this semijoin
is smaller than the cost with it and remove the 
semijoin from ES. 
Note : There might be indirect benefits.
➠ Example: No semijoins are removed.

Step 10: Permute the order of semijoins if doing so 
would improve the total cost of ES. 
➠ Example: Final strategy:

Send (R2      R1)      R3 to Site 3
Send R1       R2 to Site 3

SDD-1 Algorithm
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Step 4 – Local Optimization

Input:  Best global execution schedule

� Select the best access path

� Use the centralized optimization techniques
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Distributed Query Optimization 
Problems

� Cost model
➠ multiple query optimization
➠ heuristics to cut down on alternatives

� Larger set of queries
➠ optimization only on select-project-join queries
➠ also need to handle complex queries (e.g., unions, 

disjunctions, aggregations and sorting)
� Optimization cost vs execution cost tradeoff

➠ heuristics to cut down on alternatives
➠ controllable search strategies

� Optimization/reoptimization interval
➠ extent of changes in database profile before 

reoptimization is necessary


