A Unifying Semanticsfor Active Databases
Using Non-M ar kovian Theories of Actions

lluju Kiringal

tSchool of Info. Technology and Engineering

University of Ottawa
Ottawa, ON, Canada K1N 6N5
kiringa@site.toronto.edu

Abstract

Over the last fifteen years, database management
systems (DBMSs) have been enhanced by the ad-
dition of rule-based programming to obtain ac-
tive DBMSs. One of the greatest challenges in
this area is to formally account for all the as-
pects of active behavior using a uniform formal-
ism. In this paper, we formalize active relational
databases within the framework of the situation
calculus by uniformly accounting for them using
theories embodying non-Markovian control in the
situation calculus. We call these theories active
relational theories and use them to capture the
dynamics of active databases. Transaction pro-
cessing and rule execution is modelled as a the-
orem proving task using active relational theories
as background axioms. We show that major com-
ponents of an ADBMS may be given a clear se-
mantics using active relational theories.

1 Introduction

Over a large portion of the last thirty years, database man-
agement systems (DBMSs) have generally been passive in
the sense that only users can perform definition and manip-
ulation operations on stored data. In the last fifteen years,
they have been enhanced by the addition of active behav-
ior to obtain active DBMSs (ADBMSs). Here, the sys-
tem itself performs some definition and manipulation op-
erations automatically, based on a suitable representation
of the (re)active behavior of the application domain and the
operations performed during a database transaction.

The concept of rule and its execution are essential to
ADBMSs. An ADBMS has two major components, a rep-
resentational component called the rule language, and an
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executional component called the execution model. The
rule language is used to specify the active behavior of
an application. Typical rules used here are the so-called
EVENT-CONDITION-ACTION (ECA) rules which are a
syntactical construct representing the notion that an action
must be performed upon detection of a specified event, pro-
vided that some specified condition holds. The execution
model is intimately related to the notion of database trans-
action. A database transaction is a (sometimes nested or
detached) sequence of database update operations such as
insert, delete, and update, used to insert tuples into, delete
them from, or update them in a database. The execu-
tion model comes in three flavors: immediate execution,
deferred execution, and detached execution, meaning that
rules are executed interleaved with database update oper-
ations, at the end of user transactions, and in a separate
transaction, respectively.

It has been recognized in the literature that giving a
formal foundation to active databases is a hard challenge
[31, 10, 7, 2]. Different formalisms have been proposed
for modelling parts of the concept of rule and its execu-
tion (See, e.g., [10, 7, 24]). Very often however, differ-
ent parts have been formalized using different formalisms,
which makes it very difficult to globally reason about active
databases.

In this paper, we give a formalization of the concept of
active database within the framework of the situation cal-
culus. Building on [18] and [27], this paper aims to account
formally for active databases as a further extension of the
relational databases formalized as relational theories to ac-
commodate new world knowledge, in this case representa-
tional issues associated with rules, the execution semantics,
and database transactions.

Including dynamic aspects into database formalization
has emerged as an active area of research. In particular,
a variety of logic-based formalization attempts have been
made [30, 13, 5, 27, 4]. Among these, we find model the-
oretic approaches (e.g., [30]), as opposed to syntactic ap-
proaches (e.g., [13, 27]).



Proposals in [27], and [4] use the language of the situ-
ation calculus [21, 28]. This language constitutes a frame-
work for reasoning about actions that relies on an impor-
tant assumption: the execution preconditions of primitive
actions and their effects depend solely on the current sit-
uation. This assumption is what the control theoreticians
call the Markov property. Thus non-Markovian actions are
precluded in the situation calculus used in those propos-
als. However, in formalizing database transactions, one
quickly encounters settings where using non-Markovian
actions and fluents is unavoidable. For example, a transac-
tion model may explicitly execute a Rollback(s) to go back
to a specific database state s in the past; a Commit action
is executable only if the previous database states satisfy a
set of given integrity constraints and there is no other com-
mitting state between the beginning of the transaction and
the current state; and an event in an active database is said
to have occurred in the current database state if, in some
database state in the past, that event had occurred and no ac-
tion changed its effect meanwhile. Thus one clearly needs
to address the issue of non-Markovian actions and fluents
explicitly when formalizing database transactions, and re-
searchers using the situation calculus or similar languages
to account for updates and active rules fail to do that. Our
framework will therefore use non-Markovian control [11].

Though several other similar logics (e.g. dynamic logic,
event calculus, and transaction logic) could have been used
for our purpose, we prefer the situation calculus, due to a
set of features it offers, the most beneficial of which are: the
treatment of actions as first class citizens of the logic, thus
allowing us to remain within the language to reason about
actions; the explicit addressing of the frame problem that
inevitably occurs in the context of the database updates;
and perhaps most important of all, the relational database
log is afirst class citizen in the logic. Without a treatment of
logs as first class citizens, there seems to be no obvious way
of expressing properties about them in the form of logical
sentences.

The main contributions of the formalization reported in
this paper can succinctly be summarized as follows:

1. We construct logical theories called active relational the-
ories to formalize active databases along the lines set by
the framework in [15]; active relational theories are non-
Markovian theories in which one may explicitly refer to all
past states, and not only to the previous one. They provide
the formal semantics of the corresponding active database
model. They are an extension of the classical relational the-
ories of [26] to the transaction and active database settings.

2. We give a logical tool that can be used to classify various
execution models, and demonstrate its usefulness by clas-
sifying execution models of active rules that are executed
in the context of flat database transactions.

The remainder of this paper is organized as follows.
Section 2 introduces the situation calculus. Section 3 for-
malizes database transactions as non-Markovian theories
of the situation calculus. In Section 4, both the ECA rule

paradigm and the main execution models of active rules
will be given a logical semantics based on an extension of
theories introduced in Section 3. In Section 5, we classify
the execution models. Finally, Section 6 briefly reviews re-
lated work, concludes the paper and mentions future work.

2 The Situation Calculus

The situation calculus [22], [28] is a many-sorted second
order language for axiomatizing dynamic worlds. Its ba-
sic ingredients consist of actions, situations and fluents; its
universe of discourse is partitioned into sorts for actions,
situations, and objects other than actions and situations.

Actions are first order terms consisting of an ac-
tion function symbol and its arguments. In mod-
elling databases, these correspond to the elementary op-
erations of inserting, deleting and updating relational
tuples. For example, in the stock database (Ex-
ample 1, adapted from [29]) that we shall use be-
low, price_insert(stock_id, price,time,trans) denotes
the operation of inserting the tuple (stock_id, price, time)
into the database relation price by the transaction trans.

A situation is a first order term denoting a sequence of
actions. These sequences are represented using a binary
function symbol do: do(«, s) denotes the sequence result-
ing from adding the action « to the sequence s. So do(«, s)
is like LISP’s cons(a, s), or Prolog’s [a | s]. The special
constant Sy denotes the initial situation, namely the empty
action sequence, so Sy is like LISP’s ( ) or Prolog’s [ ].
In modelling databases, situations will correspond to the
database log.t

Relations and functions whose values vary from state
to state are called fluents, and are denoted by predicate or
function symbols with last argument a situation term. In
Example 1 below, price(stock_id, price,time,trans,s)
is a relational fluent, meaning that in that database state
that would be reached by performing the sequence of oper-
ations in the log s, (stock_id, price, time) is a tuple in the
price relation, inserted there by the transaction trans.

Example 1 Consider a stock database (adapted
from [29]) whose schema has the rela-
tions: price(stock_id, price, time, trans, s),

stock(stock_id, price, closingprice, trans, s), and
customer(cust_id, balance, stock_id, trans,s),  which
are relational fluents. The explanation of the attributes
is as follows: stock_id is the identification number of a
stock, price the current price of a stock, time the pricing
time, closingprice the closing price of the previous day,
cust_id the identification number of a customer, balance
the balance of a customer, and trans is a transaction
identifier. O

Notice that, contrary to the presentation in [28], a fluent
now contains a further argument — which officially is its

LIn fact, in the database setting, a situation is a sequence involving
many histories corresponding to as many transactions.



second last argument — specifying which transaction con-
tributed to its truth value in a given log. The domain of this
new argument could be arbitrarily set to, e.g., integers.

In addition to the function do, the language also includes
special predicates Poss, and C. Poss(a(Z), s) means that
the action a(Z) is possible in the situation s; and s C s’
states that the situation s is a prefixing sublog of situation
s'. By stating that s C s’, nothing is said about the possi-
bility of actions that constitute s and s’. For instance,

Poss(price_delete(ST1,$100,4PM,1), So)
and
So C do(price_delete(ST'1,$100,4PM,2), So)

are ground atoms of Poss and L, respectively.

The set 20 of well formed formulas (wffs) of the situ-
ation calculus, together with terms, atomic formulas, and
sentences are defined in the standard way of second order
languages. Additional logical constants are introduced in
the usual way.

In [27], it is shown how to formalize a dynamic rela-
tional database setting in the situation calculus with axioms
that capture change which are: action precondition axioms
stating when database updates are possible, successor state
axioms stating how change occurs, unigue name axioms
that state the uniqueness of update names, and axioms de-
scribing the initial situation. These axioms constitute a ba-
sic action theory, in which control over the effect of the
actions in the next situation depends solely on the current
situation. This was achieved by precluding the use of the
predicate  in the axioms. We extend these theories to
capture active databases by incorporating non-Markovian
control. We achieve this by using the predicate C in the
axioms.

For simplicity, we consider only primitive update oper-
ations corresponding to insertion or deletion of tuples into
relations. For each such relation F(Z,t,s), where & is a
tuple of objects, ¢ is a transaction argument, and s is a situ-
ation argument, a primitive internal action is a parameter-
ized primitive action of the situation calculus of the form
F_insert(Z,t) or F_delete(Z,t).

We distinguish the primitive internal actions from prim-
itive external actions, namely Begin(t), Commit(t),
End(t), and Rollback(t), whose meaning will be clear in
the sequel of this paper; these are external as they do not
specifically affect the content of the database.? The argu-
ment ¢ is a unique transaction identifier. Finally, the set
of fluents is partitioned into two disjoint sets, namely a set
of database fluents and a set of system fluents. Intuitively,
the database fluents represent the relations of the database
domain, while the system fluents are used to formalize the
processing of the domain. Usually, any functional fluent in
a relational language will always be a system fluent.

Now, in order to represent relational databases, we need
some appropriate restrictions on the situation calculus.

2The terminology internal versus external action is also used in [20],
though with a different meaning.

Definition 1 A basic relational language is a subset of the
situation calculus whose alphabet 2 is restricted to (1) a fi-
nite number of constants, but at least one, (2) a finite num-
ber of action functions, (3) a finite number of functional
fluents, and (4) a finite number of relational fluents.

3 Specifying Database Transactions

This section introduces a characterization of flat transac-
tions in terms of theories of the situation calculus. These
theories give axioms of flat transaction models that con-
strain database logs in such a way that these logs satisfy
important correctness properties of database transaction,
including the so-called ACID properties[12].

Definition 2 (Flat Transaction) A sequence of database
actions is a flat transaction iff it is of the form [a1, ..., a,),
where the a; must be Begin(t), and a,, must be either
Commit(t), or Rollback(t); a;,i = 2,--- ,n—1, may be
any of the primitive actions, except Begin(t), Rollback(t),
and Commit(t); here, the argument ¢ is a unique identifier
for the atomic transaction.

Notice that we do not introduce a term of a new sort
for transactions, as is the case in [4]; we treat transac-
tions as run-time activities — execution traces — whose
design-time counterparts will be ConGOLOG programs in-
troduced in the next chapter. We refer to transactions by
their names that are of sort object. Notice also that, on
this definition, a transaction is a semantical construct which
will be denotations of situations of a special kind called le-
gal logs in the next section.

The axiomatization of a dynamic relational database
with flat transaction properties comprises the following
classes of axioms:

Foundational Axioms. These are constraints imposed
on the structure of database logs [25]. They characterize
database logs as finite sequences of updates and can be
proved to be valid sentences.

Integrity Constraints. These are constraints imposed on
the data in the database at a given situation s; their set is de-
noted by ZC, for constraints that must be enforced at each
update execution, and by ZC, for those that must be veri-
fied at the end of the flat transaction.

Update Precondition Axioms. There is one for each inter-
nal action A(Z, t), with syntactic form

Poss(A(Z,t), s)

= (3T A(F, 1, s)A
IC. (do(A(%, t @)

), 8)) A running(t, s).

Here, T14(Z,t,s) is a first order formula with free vari-
ables among Z,t, and s. Moreover, the formula on the
right hand side of (1) is uniform in s.> Such an axiom
characterizes the precondition of the update A. Intuitively,

3A formula ¢(s) is uniform in a situation term s if s is the only sit-
uation term that all the fluents occurring in ¢(s) mention as their last
argument.



the conjunct TT 4 (%, ', s) is the part of the right hand side
of (1) that really gives the precondition for executing the
update A(Z,t), IC.(do(A(Z,t), s)) says that the integrity
constraints ZC., are enforced in the situation resulting from
the execution of A(Z,t) in s, and running(t, s) says that
the transaction ¢ has not terminated yet. Formally, IC.(s)
and running(t, s) are defined as follows:

IC.(s) =4 /\ IC(s).
ICezC.
running(t,s) =g (3s').do(Begin(t),s") C sA
(Va, s")[do(Begin(t),s') C do(a,s") C s D
a # Rollback(t) A a # End(t)].
In the stock example, the following states the condition for
deleting a tuple from the customer relation:
Poss(customer_delete(cid, bal, sid, t),s) =

(3t")customer (cid, bal, sid, t', s)A

IC.(do(customer_delete(cid, bal, sid, t), s))A

running(t, s).

O]

Successor State Axioms. These have the syntactic form
F(Z,t,do(a,s)) =
(31)®r (&, a,t1,5) A —(3t")a = Rollback(t")V
(3t")a = Rollback(t")A
restoreBeginPoint(F, %,t", s),

©)

There is one such axiom for each database relational fluent
F. The formula on the right hand side of (3) is uniform in
s, and ® (&, a, T, s) is a formula with free variables among
#,a,t,s; ®p(&,a,t,s) specifies how changes occur with
respect to internal actions and has the canonical form
V@ ats) V@) A Fats), @

where vi (%, a,t,8) (vp (&, a,t,s)) denotes a first order
formula specifying the conditions that make a fluent F' true
(false) in the situation following the execution of a [28].
Formally, restoreBeginPoint(F, %,t, s) is defined as
follows:
Abbreviation 1
restoreBeginPoint(F, Z,t,s) =af
{(3a1,a2,5', 51, 89,1").
do(Begin(t),s') C do(az, s2) C do(ai,s1) C sA
writes(a1, F, Z,t) A writes(as, F, Z,t')A
[(Va", s").do(as, s2) Cdo(a”,s")Cdo(as, 1) D
—writes(a”, F, %, t)\
[(Va", s").do(a1,s1) Edo(a",s")C s D
=(3t"writes(a”, F, T, t")|AN3")F(Z,t",51)]}V
{(Va*,s*,s').do(Begin(t),s') C do(a*,s*) C s D
—writes(a*, F,Z,t)] A (3t F(Z,t,s)}.

Notice that system fluents have successor state axioms
that do not necessarily have the form (3). Intuitively,
restoreBeginPoint(F, %,t,s) means that the system re-
stores the value of the database fluent F' with arguments
in a particular way that captures the semantics of Rollback:

e The first disjunct in Abbreviation 1 captures the sce-
nario where the transactions ¢ and ¢’ running in paral-
lel, and writing into and reading from F' are such that
t overwrites whatever ¢’ writes before it (¢) rolls back.
Suppose that ¢ and ¢’ are such that ¢ begins, and even-
tually writes into F before rolling back; ¢’ begins after
t has begun, writes into F before the last write action
of ¢, and commits before ¢ rolls back. Now the second
disjunct in 1 says that the value of F' must be set to the
"before image” [3] of the first w(t), that is, the value
the F' had just before the first w(t) was executed.

e The second disjunct in Abbreviation 1 captures the
case where the value F' had at the beginning of the
transaction that rolls back is kept.

Given the actual situation s, the successor state axiom char-
acterizes the truth values of the fluent F in the next sit-
uation do(a, s) in terms of all the past situations. Notice
that Abbreviation 1 captures the intuition that Rollback(t)
affects all tuples within a table. As an example, the
following gives a successor state axiom for the fluent
customer(cid, bal, stid, tr, s).
customer(cid, bal, stid, t,do(a, s)) =
((3t1)a = customer_insert(cid, bal, stid, t1)V
(3t2) customer(cid, bal, stid, ta, s)A
—(3t3)a = customer_delete(cid, bal, stid, t3))\
—(3t")a = Rollback(t')V
(3t').a = Rollback(t')A
restore BeginPoint(customer, (cid, bal, stid),t', s).
In this successor state axiom, the formula

(3t1)a = customer_insert(cid, bal, stid, 1)V
(3t2)customer(cid, bal, stid, ta, s)A
—(3t3)a = customer_delete(cid, bal, stid, t3)
corresponds to the canonical form (4).

Precondition Axioms for External Actions. This is a set
of action precondition axioms for the transaction specific
actions Begin(t), End(t), Commit(t), and Rollback(t).
The external actions of flat transactions have the following
precondition axioms:*

Poss(Begin(t), s) = —(3s')do(Begin(t),s') C s, (5)
Poss(End(t), s) = running(t, s), (6)

41t must be noted that, in reality, a part of rolling back and committing
lies with the user and another part lies with the system. So, we could
in fact have something like Rollbacksys(t) and Commitsys(t) on the
one hand, and Rollbackysr(t) and Commitysr(t) on the other hand.
However, the discussion is simplified by considering only the system’s
role in executing these actions.



Poss(Commit(t), s) = (3s').s = do(End(t),s')A
/\ IC(s) A (Vt')[sc-dep(t,t',5) D @)
ICEIC,
(3s"Ydo(Commit(t'),s") C s],
Poss(Rollback(t), ) ( "Y[s = do(End(t),s")A
A ICEIV G rdepttsn g

1C€e1C,
do(Rollback(t'), s"

Notice that our axioms (5)—(8) assume that the user will
only use internal actions Begin(t) and End(t) and the sys-
tem will execute either Commit(t) or Rollback(t). In-
tuitively, the predicates sc_dep(t,t',s) and r_dep(t,t', s)
means that transaction ¢ is is strong commit dependent on
transaction ¢', and that transaction ¢ is is rollback depen-
dent on transaction ¢/, respectively.®

Dependency axioms. These are the following transaction
model-dependent axioms:

r_dep(t,t',s) =transConflictlt,t', s), 9)
sc_dep(t,t', s)=readsFrom(t,t',s). (10)

) E -

The defined predicates r_dep(t,t', s), sc_dep(t,t',s) are
called dependency predicates. The first axiom says that a
transaction conflicting with another transaction generates a
rollback dependency, and the second says that a transaction
reading from another transaction generates a strong com-
mit dependency.

Unique Names Axioms. These state that the primitive up-
dates and the objects of the domain are pairwise unequal.

Initial Database. This is a set of first order sentences spec-
ifying the initial database state. They are completion ax-
ioms of the form

(VZ,t).F(Z,t,5) =2=CDv..vz=C", (11)

one for each (database or system) fluent F'. Here, the Ci
are tuples of constants. Also, Dg, includes unique name
axioms for constants of the database. Axioms of the form
(11) say that our theories accommaodate a complete initial
database state, which is commonly the case in relational
databases as unveiled in [26]. This requirement is made to
keep the theory simple and to reflect the standard practise
in databases. It has the theoretical advantage of simplify-
ing the establishment of logical entailments in the initial
database; moreover, it has the practical advantage of facil-
itating rapid prototyping of the ATMs using Prolog which
embodies negation by failure, a notion close to the comple-
tion axioms used here.

Definition 3 (Basic Relational Theory) Suppose R =
(A, 20) is a basic relational language. Then a theory
D C 20 that comprises the axioms of the form described
above is a basic relational theory.

5A transaction ¢ is rollback depend on transaction ¢’ iff, whenever ¢’
rolls back in a log, then ¢ must also roll back in that log; ¢ is strong commit
depend on ¢’ iff, whenever ¢ commits in s, then ¢ must also commit in s.

4 Formalizing Active Databases
4.1 GOLOG

GOLOG [18] is a situation calculus-based programming
language for defining complex actions in terms of a set of
primitive actions axiomatized in the situation calculus ac-
cording to Section 2. It has the standard — and some not
so standard — control structures found in most Algol-like
languages: Sequence ([a; (]; Do action «, followed by ac-
tion B3); Test actions (p?; Test the truth value of expression
p in the current situation); Nondeterministic action choice
(a | B; Do a or B); Nondeterministic choice of arguments
((m z)c; nondeterministically pick a value for x, and for
that value of z, do action «); Conditionals and while loops;
and Procedures, including recursion.

In [8], GOLOG has been enhanced with parallelism to
obtain ConGOLOG.

With the ultimate goal of capturing active databases as
theories extending basic relational theories, it is appropri-
ate to adopt an operational semantics of GOLOG programs
based on a single-step execution of these programs; such
a semantics is introduced in [8]. First, two special predi-
cates Trans and Final are introduced. Trans(d, s, d', s')
means that program ¢ may perform one step in situation s,
ending up in situation s’, where program &' remains to be
executed. Final(d, s) means that program § may terminate
in situation s. A single step here is either a primitive or a
testing action. Then the two predicates are characterized by
appropriate axioms.

Program execution is captured by using the abbreviation
Do(4, s, s") [28]. Single-stepping a given program § means
executing the first primitive action of §, leaving a remain-
ing fragment ¢’ of § to be executed. Do(4, s, s') intuitively
means that, beginning in a given situation s, program ¢ is
single-stepped until the ultimate remainder of program §
may terminate in situation s'.

Formally, we have [8]:

Do(8,s,s") =g (30").Trans*(4,s,d',s") A Final(§',s'),

where T'rans* denotes the transitive closure of Trans.

In the sequel, we shall develop a syntax for capturing
the concept of ECA rule in our framework. After that,
we shall model some of the various execution semantics of
ECA rules using the interaction of the execution semantics
of transaction programs written in (Con)GOLOG — via the
Do predicate — with the relational theories developed so
far for database transactions.

4.2 Rule Language
An ECA rule is a construct of the following form:

<t:R:7:{(Z) — aly)>. (12)

In this construct, ¢ specifies the transaction that fires
the rule, 7 specifies events that trigger the rule, and
R is a constant giving the rule’s identification number
(or name). A rule is triggered if the event specified



in its event part occurred since the beginning of the
open transaction in which that event part is evaluated.
Events are one of the predicates F_inserted(r,t,s) and
F _deleted(r,t,s), or a combination thereof using log-
ical connectives. The ( part specifies the rule’s con-
dition; it mentions predicates F _inserted(r,%,t,s) and
F _deleted(r, %, t, s) called transition fluents, which denote
the transition tables [29] corresponding to insertions into
and deletions from the relation F'. In (12), arguments ¢, R,
and s are suppressed from all the fluents; the first two ones
are restored when (12) is translated to a GOLOG program,
and s is restored at run time. Finally, o gives a GOLOG
program which will be executed upon the triggering of the
rule once the specified condition holds. Actions also may
mention transition fluents. Notice that Z are free variables
mentioned by ¢ and contain all the free variables 4 men-
tioned by a.

Example 2 Consider the following active behavior for Ex-
ample 1. For each customer, his stock is updated when-
ever new prices are notified. When current prices are be-
ing updated, the closing price is also updated if the cur-
rent notification is the last of the day; moreover, suitable
trade actions are initiated if some conditions become true
of the stock prices, under the constraint that balances can-
not drop below a certain amount of money. Two rules for

our example are shown in Figure 1. 0
To characterize the notion of transition tables and

events, we introduce the fluent considered(r,t, s) which
intuitively means that the rule » can be considered for exe-
cution in situation s with respect to the transaction ¢. The
following gives an abbreviation for considered(r, t, s):

considered(r,t,s) =g (3t').running(t',s).  (13)

Intuitively, this means that, as long as ¢ is running, any rule
r may be considered for execution. In actual systems this
concept is more sophisticated than this scheme.®

For each database fluent F(Z,t,s), we intro-
duce the transition fluents F'_inserted(r,Z,t,s) and
F _deleted(r, Z,t,s). The following successor state axiom
characterizes F'_inserted(r, Z,t, s) :

F_inserted(r, Z,t,do(a, s)) =
considered(r,t,s) A a = Fnsert(Z,t)]V  (14)
F_inserted(r, Z,t,s) A ~a = F_delete(Z,1).

Definition (14) means that a tuple Z is considered inserted
in situation do(a, s) iff the internal action F_insert(Z,t)
was executed in the situation s while the rule r was con-
sidered, or it was already inserted and « is not the internal
action F'_delete(Z,t). This captures the notion of net ef-
fects [29] of a sequence of actions. Such net effects are
accumulating only changes that really affect the database;
in this case, if a record is deleted after being inserted, this

6For example, in Starburst [29], r will be considered in the future
course of actions only from the time point where it last stopped being
considered.

amounts to nothing having happened. Further net effect
policies can be captured in this axiom. The transition flu-
ent F'_deleted(r, Z,t, s) is characterized in a similar way.

Finally, for each database fluent F(Z,¢,s), we
introduce the event fluents F_inserted(r,t,s) and
F _deleted(r,t,s). The event fluent F_inserted(r,t,s)
corresponding to an insertion into the relation F' has the
following successor state axiom:

F_inserted(r,t,do(a, s)) =
a = F_insert(&,t') A considered(r,t,s)V (15)
F _inserted(r,t,s).

The event fluent F'_deleted(r, t, s) corresponding to a dele-
tion from the relation F' has a similar successor state axiom.

4.3 Active Relational Theories

An active relational language is a relational language
extended in the following way: for each n-+2-ary flu-
ent F(Z,t,s), we introduce two n + 3-ary transition
fluents F_inserted(r,Z,t,s) and F _deleted(r,Z,t,s),
and two 3-ary event fluents F_inserted(r,t,s) and
F _deleted(r,t, s).

Definition 4 (Active Relational Theory for flat transac-
tions) A theory D C 20 is an active relational theory iff it
is of the form

D = Dyri UDys U Dey,
where
1. Dy, is a basic relational theory.
2. Dyy is the set of axioms for transition fluents.

3. D, isthe set of axioms for event fluents which capture
simple events. Complex events are defined by combin-
ing the event fluents using — and A.

4.4 Execution Models

In this section, we specify the execution models of ac-
tive databases by assuming that the underlying transaction
model is that of flat transactions.

4.4.1 Classification

The three components of the ECA rule — i.e. Event,
Condition, and Action — are the main dimensions of the
representational component of active behavior. Normally,
either an indication is given in the rule language as to how
the ECA rules are to be processed, or a given process-
ing model is assumed by default for all the rules of the
ADBMS. To ease our presentation, we assume the execu-
tion models by default.

An execution model is tightly related to the coupling
modes specifying the timing constraints of the evaluation



Figure 1: Rules for updating stocks and buying shares

<trans : Update_stocks : price_inserted :

(Je, time, bal, price’)[price_inserted(s_id, price, time) Acustomer(c, bal, s_id) A stock(s_id, price’, clos_pr)]

—
stock_insert(s_id, price, clos_pr) >

<trans : Buy_100shares : price_inserted :

(3 new_price, time, bal, pr, clos_pr)[price_inserted(s_id, new_price, time) A

customer(c, bal, s_id) A stock(s_id, pr,clos_pr) A new_price < 50 A clos_pr > 70]

—
buy(c, s—id,100) >

of the rule’s condition and the execution of the rule’s ac-
tion relative to the occurrence of the event that triggers the
rule. We consider the following coupling modes: *

1. EC coupling modes:

Immediate: Evaluate C immediately after the ECA
rule is triggered.

Delayed: Evaluate C at some delayed time point, usu-
ally after having performed many other database oper-
ations since the time point at which the rule has been
triggered.

2. CA coupling modes:

Immediate: Execute A immediately after C' has been
evaluated.

Delayed: Execute A at some delayed time point, usu-
ally after having performed many other database oper-
ations since the time point at which C' has been evalu-
ated.

The execution model is also tightly related to the con-
cept of transaction. In fact, the question of determining
when to process the different components of an ECA rule
is also answered by determining the transactions within
which — if any — the C' and A components of the ECA rule
are evaluated and executed, respectively. In other words,
the transaction semantics offer the means for controlling
the coupling modes by allowing one the flexibility of pro-
cessing the rule components in different, well-chosen trans-
actions. In the sequel, the transaction triggering a rule will
be called triggering transaction and any other transaction
launched by the triggering transaction will be called trig-
gered transaction. We assume that all database operations
are executed within the boundaries of transactions. From
this point of view, we obtain the following refinement for
the delayed coupling mode:

70ur presentation is slightly more general than the original one in [14],
in which the relationships between coupling modes and execution models,
and those between transactions and execution models were not conceptu-
ally separated.

1. Delayed EC coupling mode: Evaluate C at the end of
the triggering transaction 7', after having performed
all the other database operations of 7', but before 7"s
terminal action.

2. Delayed CA coupling mode: Execute A at the end of
the triggering transaction 7', after having performed
all the other database operations of 7" and after having
evaluated C', but before T"’s terminal action.

In presence of flat transactions, we also obtain the fol-
lowing refinement of the immediate coupling mode:

1. Immediate EC coupling mode: Evaluate C within the
triggering transaction immediately after the ECA rule
is triggered.

2. Immediate CA coupling mode: Execute A within the
triggering transaction immediately after evaluating C'.

Notice that the semantics of flat transactions rules out the
possibility of nested transactions. For example, we can not
process C' in a flat transaction and then process A in a fur-
ther flat transaction, since we quickly encounter the neces-
sity of nesting transactions whenever the execution of a rule
triggers further rules. Also, we can not have a delayed CA
coupling mode such as: Execute A at the end of the trigger-
ing transaction 7" in a triggered transaction 7", after having
performed all the other database operations of T', after T"’s
terminal action, and after the evaluation of C'. The reason
is that, in the absence of nesting of transactions, we will
end up with a large set of flat transactions which are in-
dependent from each other. This would make it difficult
to relate these independent flat transactions as belonging to
the processing of a few single rules.

The refinements above yield for each of the EC and CA
coupling modes two possibilities: (1) immediate, and (2)
delayed. There are exactly 4 combinations of these modes.
We will denote these combinations by pairs (4, 7) where 4
and j denote an EC and a CA coupling modes, respectively.
For example, (1, 2) is a coupling mode meaning a combina-
tion of the immediate EC and delayed CA coupling modes.



Moreover, we will call the pairs (%, §) interchangeably cou-
pling modes or execution models. The context will be clear
enough to determine what we are writing about. However,
we have to consider these combinations with respect to the
constraint that we always execute A strictly after C'is eval-
uated.® The following combinations satisfy this constraint:
(1,1),(1,2),and (2, 2); the combination (2, 1), on the con-
trary, does not satisfy the constraint.

4.4.2 Immediate Execution Model

Here, we specify the execution model (1,1). This can be
formulated as: Evaluate C' immediately after the ECA
rule is triggered and execute A immediately after eval-
uating C within the triggering transaction.

Suppose we have a set R of n ECA rules of the
form (12). Then the following GOLOG procedure captures
the immediate execution model (1, 1):

proc Rules(t)
(@1, 1) [ [Ra, 2]?7 5 G(@1)[Ra, t]7 5 an(§h)[Ra, ]|

(T ) [Tn [B, 8] 7 5 Co(@n)[Rn, t]7 5 an(Fn) [ R, 1]
~[(321) (11 [Ry, t]A G () [Ra, )V
-V (3Z,) (Th [Rn, A G (Bn) [Rn, t])] 7
endProc .
(16)

The notation 7[r,t] means the result of restoring the ar-
guments = and ¢ to all event fluents mentioned by 7, and
¢(&)[r, t] means the result of restoring the arguments r and
t to all transition fluents mentioned by {. For example, if 7
is the complex event

price_inserted A\ customer _inserted,
then 7[r,¢] is

price_inserted(r,t) A customer_inserted(r,t).

Notice that the procedure (16) above formalizes how
rules are processed using the immediate model examined
here: the procedure Rules(t) nondeterministically selects
arule R; (hence the use of |), tests if an event = [R;, t] oc-
curred (hence the use of ?), in which case it immediately
tests whether the condition ¢;(#;)[R;, t] holds (hence the
use of ;), at which point the action part «;(%;) is executed.
The last test condition of (16) permits to exit from the rule
procedure when none of the rules is triggered.

4.4.3 Delayed Execution Model

Now, we specify the execution model (2, 2) that has both
EC and CA coupling being delayed modes. This asks to
evaluate C' and execute A at the end of a transaction

8This constraint is in fact stricter than a similar constraint found in
[14], where it is stated that “A cannot be executed before C'is evaluated”.
The formulation of [14], however, does not rule out simultaneous action
executions and condition evaluations, a situation that obviously can lead
to disastrous behaviors.

between the transaction’s last action and either its com-
mitment or its failure. However, notice that the constraint
of executing A after C' has been evaluated must be en-
forced.

Let the interval between the end of a transaction
(i.e., the situation do(End(t),s), for some s) and
its termination (i.e., the situation do(Commit(t),s) or
do(Rollback(t), s), for some s) be called assertion inter-
val. We use the fluent assertionInterval(t, s) to capture
the notion of assertion interval. The following successor
state axiom characterizes this fluent:

assertionInterval(t,do(a, s)) = a = End(t)V

assertionInterval(t,s) A —termAct(a,t).

7)

Now, the following GOLOG procedure captures the de-
layed execution model (2, 2):
proc Rules(t)
(rZy, g1) [ [Ra,8]7 5
(C1(Z1)[Ra, t] A assertionInterval(t))? ; a1 (91)]]

(&, G) [0 R, )7 5
(Cn(Zn)[rn, t]AassertionInterval (¢))? 5 an ()]
~{[(3%1) (11 [R1, )AL (£)[ Ry, t]) V. ..
V (3Z5) (Tn [, t] A G (Zn) [Bn, t])]A
assertionInterval(t)} ?
endProc.
(18)

Here, both the C' and A components of triggered rules are
executed at assertion intervals.

4.4.4 Mixed Execution Model

Here, we specify the execution model (1, 2) that mix both
immediate EC and delayed CA coupling modes. This ex-
ecution model asks to evaluate C' immediately after the
ECA rule is triggered and to execute A after evaluating
C'in the assertion interval. This model has the semantics

proc Rules(t)

(r&y, §1) [ [Ra,2]? 5

G (#1)[R1,1]? ; assertionInterval(t)? ; ai(y1)]|

(7%, Gn)[Tn[Rn, t]7 ;
Cn(Bn)[rn, t]? ; assertionInterval(t))? ; an(¥n)]|
{[321) (11 [R1, ]AG(F)[R, 8] V. ..
V (3Zn) (Tn[Bn, ] A G (Zn) [ R, £])]A
assertionInterval(t)} 7
endProc.
(19)

Here, only the A components of triggered rules are exe-
cuted at assertion intervals.



4,45 Abstract Execution of Rule Programs

We “run” a GOLOG program T' embodying an active be-
havior by establishing that

D = (3s) Do(T, So, s), (20)

where S is the initial, empty log, and D is the active rela-
tional theory for flat transactions. This exactly means that
we look for some log that is generated by the program T',
and pick any instance of s resulting from the proof obtained
by establishing this entailment.

5 Classifi cation Theorems

There is a natural question which arises with respect to
the different execution models whose semantics have been
given above: what (logical) relationship may exist among
them? To answer this question, we must develop a (logical)
notion of equivalence between two given execution models.
Suppose that we are given two programs Rules (/) (t) and
Rules™™b(t) corresponding to the execution models (i, j)
and (k,1), respectively.

Definition 5 (Database versus system queries) Suppose
@ is a situation calculus query. Then @ is a database query
iff the only fluents it mentions are database fluents. A sys-
tem query is one that mentions at least one system fluent.

Establishing an equivalence between the programs
Rules®9(t) and Rules'®")(t) with respect to an active
relational theory D amounts to establishing that, for all
database queries ()(s) and transactions ¢, whenever the
answer to @(s) is “yes” in a situation resulting from the
execution of Rules(»9)(t) in Sy, executing Rules* (t)
in Sy results in a situation yielding “yes” to Q(s).

Definition 6 (Implication of Execution Models) Suppose
D is an active relational theory, and let Rules*7)(t) and
Rules™"(t) be ConGOLOG programs corresponding to
the execution models (¢, j) and (k,1), respectively. More-
over, suppose that for all database queries (@, we have

(Vs, s',s" t).Do(Rules™™(t), s, ')A
Do(Rules™™(t),s,5") D Q[s'1=Q[s"],

where (m,n) is (i,j) or (k,I). Then a rule program
Rules7) (t) implies another rule program Rules () (t)
(Rules®9)(t) = Rules®! (1)) iff, for every database
query @,

(Vt, 5){[(3s').Do(Rules ™ (t),s,s') A Q[s']] D

(21

[(3s").Do(Rules®D(t),s,s") A Q[s"]]}.
Definition 7 (Equivalence of execution models) As-
sume the conditions and notations of Definition 6.
Then Rules(9)(t) and Rules*))(t) are equivalent

(Rules®(t) = Rules'®V(t)) iff, for every database
query @,

(vt, s){[(3s").Do(Rules'™ (t),s,s') A Q[s']] =
[(3s").Do(Rules™V (), 5,5") A Q[s"])]}-
We restrict our attention to database queries since we are

interested in the final state of the content of the database,
regardless of the final values of the system fluents.

Theorem 1 Assume the conditions of Definition 6. Then
Rules®?)(t) = Rules"V(t).

Proof (Outline). By Definition 6, we must prove that,
whenever () is a database query, we have

(Vt,5).[(3s").Do(Rules®? (t), 5,5") A Q[s']] D

(22)
[(3s").Do(Rules™V(t), 5,5") A Q[s"]].

Therefore, by the definitions of Rules(V(t),
Rules®>?)(t), Dol3, and the semantics of ConGolog
given in [8], we must prove:

(Vt, s).
{(3s").Trans*({(x&1, 7)1 [R1,1]? 5 (C1(F1)[Ra, E]A
assertionInterval(t))? ; a1 ()]

(anagn)[Tn[Rmt]?5 (Cn(fn)[Tmt]/\
assertionInterval (t))? ; an(Fn)]|
={[(3%1)(m1[R1, )AL (Z)[R1,t]) V. ..
V (3Z5) (Tn R, ] A Gn (Zn) [Bn, t]) A
assertionInterval(t)} 7}, s, nil, s') AQ[s']} D
{3s") Trans* ({(ns, 70l [Fa, 47 5 G(#0)[Ra, 175
on ()[R, t]]]

(ﬂfnagn)[Tn[Rnat]? 5 Cn(fn)[Rnat]? 5
an(§n)[Rn, t]]|
=[(3Z1) (11[Ry, ) AG(E)[Ry, E]) V. ...
V (3Z,) (Tp[Rn, A
Co(@0) R, t])] 71, 8, mil, s") AQ[s"]}.

By the semantics of T'rans, we may unwind the Trans*
predicate in the antecedent of the big formula above to ob-
tain, in each step, a formula which is a big disjunction of
the form

(3s").[(61 A ¢4 A assertionInterval(t) A ¢g) V - -+
V (@7 A @3 A assertionInterval(t) A ¢5)V

o] A QLS -



where ¢i represents the formula 7;[R;,t], ¢% represents
G(Z)[Rs, t), and @i represents the situation calculus for-
mula generated from o;(%;), with ¢ = 1,--- ,n; ® rep-
resents the formula in the last test action of Rules(>?)(t).
Similarly, we may unwind the T'rans* predicate in the con-
sequent of the big formula on the previous page, second
column, to obtain, in each step, a formula which is a big
disjunction of the form

(3s").[(d1 A b3 A B3)V
V(97 A gy A )V RTAQ[S"],

where ¢i, ¢4, and ¢% are to interpret as above, and
&' represents the formula in the last test action of
Rules"V(t). @' differs from & only through the fact
that ® is a conjuction with one more conjunct which is
assertionInterval(t). Also, since no nested transaction
is involved, and since both rule programs involved are con-
fluent, we may set s’ = s'’. Therefore, clearly (23) implies
(24). [ ]

(24)

Theorem 2 Assume the conditions of Definition 6. Then
Rules™?(t) = Rules®2)(t).

Proof. This proof is similar to that of Theorem 1, so we
omit it. |

Corollary 1 Assume the conditions of Definition 6. Then
Rules™?)(t) = Rules™V(t).

Proof. The proof is immediate from Theorems 1 and 2. W

Contrary to this section, where we assume flat transac-
tions, we could also specify the execution models of ac-
tive databases by assuming that the underlying transaction
model is that of nested transactions [23]. In the latter case,
various flavors of immediate and delayed execution models
are considered. They all are shown to imply the basic case
Rules(t1). Moreover, all the execution models examined
are not equivalent to Rules(>") [16].

6 Discussion

Among logic-oriented researchers [31, 19, 9, 1, 2], Baral
and Lobo develop a situation calculus-based language to
describe actions and their effects, events, and evaluation
modes of active rules [2]. In [4], Bertossi et al. pro-
pose a situation calculus-based formalization that differ
considerably from our approach. Their representation of
rules forces the action part of their rules to be a primi-
tive database operation. Unlike Bertossi et al., we base our
approach on GOLOG, which allows the action component
of our rules to be arbitrary GOLOG programs. Moreover,
transactions are first-class citizens in their approach.

Thus far, ACTA [6] seems to our knowledge the only
framework addressing the problem of specifying transac-
tion models in full first order logic. We complement the
approach of ACTA with a formalization of rules and give
implementable specifications. The method for such an im-
plementation is given elsewhere [16].

We have used one single logic — the situation calculus —
to accounts for virtually all features of rule languages and
execution models of ADBMSs. The output of this account
is a conceptual model for ADBMSs in the form of active
relational theories to be used in conjunction with a theory
of complex actions. Thus, considering the software devel-
opment cycle as depicted in Figure 2, an active relational
theory corresponding to an ADBMS constitutes, together
with a theory of complex actions a conceptual model for
that ADBMS. Since our theories are implementable speci-
fications, implementing the conceptual model provides one
with a rapid prototype of the specified ADBMS.

The emerging SQL3 standard [17] contains further di-
mensions of active behavior that are important and are not
mentioned in this paper:

e AFTER/BEFORE/INSTEAD rule activation: SQL3
provides the possibility that a rule be fired before, af-
ter, or instead of a certain event.

e Rule activation granularity: rules can be activated for
each row or for each statement.

o Interruptability: rule actions may be interruptable in
order for other triggered rules to be activated or not.

These issues are dealt with in [16].

Ideas expressed here may be extended in various ways.
First, real ADBMSs may be given the same kind of seman-
tics to make them comparable with respect to a uniform
framework; [16] addresses this issue. Second, formaliz-
ing rules as GOLOG programs can be fruitful in terms of
proving formal properties of active rules since such prop-
erties can be proved as properties of GOLOG programs.
Here, the problems arising classically in the context of ac-
tive database like confluence and termination [29] are dealt
with, and the relationships between the various execution
models in terms of their equivalence/nonequivalence are
also studied here. This is a reasoning task that will ap-
pear in the full version of this paper. Finally, possible rule
processing semantics different from existing ones may be
studied within our framework.

In Memoriam

Ray Reiter passed away on September 16, 2002 when this
work and some others were almost completed. Ray’s work
has been very influential in foundations of databases and ar-
tificial intelligence. To pick just a few of his most important
contributions, his concept of Closed World Assumption in
database theory, his Default Logic, and his formalization
of system diagnosis are well known. His last major contri-
bution was in the area of specifications using the situation
calculus [28]. Many in the field considered Ray to be an
exceptionally intelligent, and at the same time a very hum-
ble human being. The deep intellectual impression that he
left and his great achievements will last for years to come.
It is hard to imagine that Ray is no longer with us; we miss
him very much. Salut Ray!



Figure 2: Relational theories as conceptual models of active database management systems

conceptual model prototype
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