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Optical processor for a binarized neural network
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We propose and experimentally demonstrate an optical pro-
cessor for a binarized neural network (NN). Implementation
of a binarized NN involves multiply-accumulate operations,
in which positive and negative weights should be imple-
mented. In the proposed processor, the positive and negative
weights are realized by switching the operations of a dual-
drive Mach–Zehnder modulator (DD-MZM) between two
quadrature points corresponding to two binary weights of
+1 and −1, and the multiplication is also performed at
the DD-MZM. The accumulation operation is realized by
dispersion-induced time delays and detection at a photode-
tector (PD). A proof-of-concept experiment is performed. A
binarized convolutional neural network (CNN) accelerated
by the optical processor at a speed of 32 giga floating point
operations/s (GFLOPS) is tested on two benchmark image
classification tasks. The large bandwidth and parallel pro-
cessing capability of the processor has high potential for next
generation data computing. © 2022 Optica Publishing Group

https://doi.org/10.1364/OL.464214

In recent years, deep neural networks (NNs) have achieved
great success in a wide range of applications including com-
puter vision, automatic speech recognition, and natural lan-
guage processing [1]. However, it also introduces tremendous
demand on computational resources. To meet the computational
requirement, analog optical computing that uses the physi-
cal characteristics of light, such as intensity and phase, and
the interactions between light and optical devices, has been
heavily investigated [2,3]. The inherent large bandwidth and
better parallelism, such as with wavelength division multiplex-
ing (WDM) and mode division multiplexing (MDM), can be
used to boost the computing capability. Specifically, for NN
computing, the vector-matrix multiplication (VMM) operation
can be accelerated by linear optics. Several configurations have
been proposed to speed up the implementation of NN algo-
rithms. In [4], the VMM is implemented by using cascaded
acousto-optic modulator arrays. In [5,6], the VMM is imple-
mented by time-wavelength plane manipulation and dispersed
time delays. In [7], the VMM is implemented by the optical
time-stretch method. In [8,9], the VMM is implemented by
Mach–Zehnder interferometers (MZIs). In [10], the VMM is
performed by interconnection based on group delay dispersion.
Photonic VMM can be also achieved by phase-change materials
[11,12] with reduced energy consumption. A key problem using
optics for VMM is the implementation of negative weights. A

few solutions have been proposed. In [4], a negative weight is
realized by using an electrical switch through which positive
and negative values can be switched after optical-to-electrical
conversion. However, an electrical switch has limited speed
and bandwidth compared with optics. In [6], negative weights
are implemented based on balanced photodetection. An optical
spectral shaper is used to direct optical carriers to two input
ports of a balanced photodetector, leading to the generation of
positive and negative weights. However, the response time of an
optical spectral shaper is several hundred milliseconds, leading
to a low refresh rate. In [7], an NN is separated into two parts
so as to calculate the positive and negative coefficients sepa-
rately. The positive and negative coefficients are encoded in two
time-stretched pulses, calculated in series, thus the calculation
speed is reduced by half. In [8,9], coherent optics is used. Since
both phase and intensity can be manipulated in coherent optics,
negative even complex weights can be achieved [9]. Compared
with coherent optics, by which both phase and intensity of a
light can be manipulated, incoherent optics can only manipu-
late light intensity with positive weights. To implement negative
weights, some special designs should be used. However, NNs
have achieved unprecedented success at the cost of complexity,
which hinders their hardware deployment. Therefore, the NN
compression concept is naturally proposed and widely used for
memory saving and computing acceleration [13]. Among the
NN compression techniques, binarizing weights was introduced
to simplify the NN implementation [14]. It was proved that a
binarized NN can approach the performance of a full-precision
NN on small datasets (e.g., MNIST, CIFAR-10) [15]. In the
past, the implementations of NNs were mainly based on digital
electronics. However, NNs can also be implemented based on
optics which can provide higher speed. In [16–18], binarized
NNs were implemented based on free-space optics. Waveguide
optics was also employed to implement NNs thanks to the com-
pact size [19,20], but no binarized NNs have been demonstrated
by waveguide optics.

In this Letter, we propose and experimentally demonstrate a
new optical processor based on incoherent waveguide optics for
a general-purpose binary NN. The binary positive and negative
weights are realized by switching the operations of a dual-drive
Mach–Zehnder modulator (DD-MZM) between the quadrature
points in the complementary slopes of the transfer function and
the multiplication is also performed at the DD-MZM. The accu-
mulation operation is realized by dispersion-induced time delays
and detection at a photodetector (PD). Compared with previous
schemes that require a separate modulator to continuously tune
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Fig. 1. Experimental setup. The DD-MZM and the PD are the I/O
interface of the optical processor. Inset shows the switching between
the opposite quadrature points leading to binary weighting.

the weights, only a single modulator is employed, which greatly
simplifies the processor [4,5,7]. In addition, since the weights
are binary and the polarity is controlled by controlling the bias
voltage, a 1-bit DAC can be used and the weight refresh rate is
much faster than the approach using an optical spectral shaper
[6]. A proof-of-concept experiment is performed. An optical
processor for a binarized convolutional neural network (CNN)
at a speed of 32 giga floating point operations/s (GFLOPS) is
tested on two benchmark image classification tasks.

An NN consists of basic units called artificial neurons which
are inspired by biological neurons. Artificial neurons include two
constituents: linear operations and a nonlinear activation func-
tion. In the linear part, an input signal is weighted and summed.
Then the weighted sum of the input signal is sent to a module
with a nonlinear activation function to generate the output of
the neuron. To simplify the implementation, binary weights are
introduced to replace the full-precision weights. A simple bina-
rization operation can be given by the sign function, i.e., wb = 1
if w>= 0 and wb = 0 if w< 0 [15]. To achieve binarized positive
and negative weights in the optical domain, we propose to use
a DD-MZM by switching its operations between two quadra-
ture points. As shown in Fig. 1, a serial input signal x(t) and a
serial weight signal w(t) are applied to the two arms of the DD-
MZM. To implement a binarized NN, the constant bias voltage
is adjusted to bias the DD-MZM at the minimum transmission
point, and w(t) is set to ±Vπ /2 as shown in the inset of Fig. 1,
to allow the DD-MZM to operate between the two quadrature
points at the positive and negative slopes. Mathematically, the
generated binary electrical signal is I(t) ≈ 1± γx(t), when w(t)
=±Vπ /2. As can be seen, the input signal is scaled and multiplied
by a binary weight of +1 or −1. When x(t)= 0, the electrical sig-
nal is regarded as the reference level, given by I0 as shown in
the inset of Fig. 1. In the artificial neuron model, the weighted
input signal is summed before the nonlinear activation function.
To sum the binary-weighted input signal, we propose to use the
dispersion-indued time-delay method [5,6]. The input vector is
serialized first and applied to the DD-MZM. To sum up the
weighted time series after the DD-MZM, multiple optical carri-
ers with identical wavelength spacing are generated and sent to
the DD-MZM. The weighted signal is copied to the optical car-
riers, as shown in Fig. 2. Then, the modulated multi-wavelength
signal is directed to a dispersive medium where dispersion-
induced time delays are introduced. For a wavelength spacing
∆λ and chromatic dispersion D, the time delay is given by
∆τ =D×∆λ. If the time delay equals the symbol duration, then
the successive symbols are aligned. After photodetection, the
electrical signal at every symbol duration is the sum of succes-
sive symbols within a sum window determined by the number of
wavelengths, which is Isum[m] = Iref + g

m∑︁
n=m−N+1

wb[n]x[n], where

Fig. 2. Sum of the weighted input signal due the dispersion-
induced time delay.

Fig. 3. Employed CNN model which has two convolutional layers
and one fully connected layer. The optical processor implements the
first convolution layer.

Fig. 4. Training curves of the model with (a) full-precision and
(b) binarized weights on the MNIST dataset.

the reference level Iref and the gain g are intrinsic parameters of
the optical processor, which can be estimated by a calibration
process. Once the intrinsic parameters are obtained, the true
weighted sum can be given by (Isum[m] − Iref )/g.

The proposed optical processor is employed to implement
a binarized CNN. The CNN has two convolutional layers and
one fully connected (FC) layer, as shown in Fig. 3. The first
convolutional layer has eight channels, and the kernel size is
2× 2; the second convolutional layer has 32 channels, and the
kernel size is 5× 5. The output of the second convolutional layer
is flattened and connected to a FC layer whose output is sent to a
softmax layer to generate the output. The training curves of the
model with full-precision and binarized weights on the MNIST
dataset are illustrated in Fig. 4. The MNIST dataset is a database
of handwritten digits that is commonly used for training various
NNs. The MNIST dataset is divided into a training set consisting
of 60,000 images and a test set consisting of 10,000 images.
To train the model with binarized weights, the strait-through
estimator is used [15]. The best accuracy of the full-precision
model is 98.62% while the best accuracy of the model with
binarized weights is 98.18% with slight accuracy degradation
compared to the full-precision model. The trained kernels of the
first convolution layer are [−1, −1; −1,1], [−1,1;1,1], [1,1;1,1],
[1, −1; −1, −1], [1, −1;1,1], [−1, −1; −1, −1], [1,1;1,1], and
[−1, −1;1,1].

A proof-of-concept experiment is performed based on the
setup shown in Fig. 1. In the experiment, the optical processor
is used to calculate the first convolutional layer, and the other
layers in the CNN are carried out in a digital computer. Four
wavelengths from four laser diodes (Keysight N7714A) are
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combined to achieve 2× 2 convolution windows. Then, the com-
bined four wavelengths are directed to a DD-MZM (Fujitsu
FTM7921ER). The bandwidth and half-voltage of the DD-MZM
are 10 GHz and 4 V, respectively. An arbitrary waveform genera-
tor (AWG) (Keysight M8195A) with a sampling rate of 64 GSa/s
is employed to generate test image signals and weight signals.
The test image signal is applied to the DD-MZM via one RF port.
The weight signal is amplified by an electrical amplifier (EA)
(Multilink MTC5515) with a gain of 20 dB and combined with
a DC bias by a bias-tee and is applied to the DD-MZM via the
second RF port. The signal at the output of the DD-MZM is sent
to an optical fiber acting as a dispersive medium. A low-noise
erbium-doped fiber amplifier (EDFA) (Nortel FA17URAC) with
a gain of 25 dB is placed after the fiber to amplify the optical
signal. The signal at the output of the EDFA is sent to a PD
(New Focus 1414) with a bandwidth of 25 GHz and a respon-
sivity of 0.7 A/W. The chromatic dispersion of the fiber is 175
ps/nm. The baud rate of the system is set to be 4 GBd leading to
a computing speed of 2× 4× 4 GBd= 32 GFLOPS. To align the
successive symbols of the serial input signal, the wavelengths
are 1545.00, 1546.43, 1547.86, and 1549.29 nm with 1.43-nm
wavelength spacing. After photonic-to-electrical conversion at
the PD, an electrical signal is generated which is sampled by an
oscilloscope (OSC). Finally, the feature map is obtained from
the sampled signal. One image from the MNIST dataset, which
is labeled as number 1, shown in Fig. 5(a), is used for demonstra-
tion. Before being sent to the optical processor, the gray scale
2D MNIST image is standardized and serialized to a 1D signal,
as also shown in Fig. 5(a). The points less than 0 are the back-
ground black pixels while the points larger than the background
line are the white pixels. The kernels are also serialized as a
time waveform and sent to the other port of the DD-MZM to
induce binary weights to the image input. The zoom-in view
of the waveform of eight kernels is shown in Fig. 5(b). The
image signal and the weight signal are sent to the AWG and
synchronized.

To estimate the intrinsic parameter Iref , a rectangular wave-
form before the kernel waveform is used to generate the reference
level. For the other intrinsic parameter g, manual calibration can
be performed to obtain the relationship between the amplitude of
the electrical signal and the actual value. To simplify the intrin-
sic calibration process, layer normalization is incorporated into
the model shown in Fig. 3 since the layer normalization has a re-
scaling invariant property which leads the output being irrelative
to the scaling factor g. Since the sum slot is achieved with every
4-symbol spacing, we down-sample the generated waveform at
the output of the PD every four symbols, and the down-sampled
waveform as the pixels is shown as red dots in Fig. 6. The refer-
ence level is also recorded, shown by the blue triangles in Fig. 6.

Fig. 5. (a) Serialized temporal waveform of the image. Inset
shows an image from the MNIST dataset labeled as “1” and the
serialization process. (b) Zoom-in view of the waveform of the
eight kernels.

Fig. 6. Recorded waveform (black line), the down-sampled pixels
(red dots), and the reference level (blue triangle) for the eight feature
maps of the first convolutional layer.

Subtracting the reference level from the down-sampled pixels,
the feature map of the first convolutional layer can be calcu-
lated. At the same time, we apply the convolutional layer to the
input image with the eight kernels by a digital computer, and
eight feature maps are also obtained. Both results are shown in
Fig. 7(a). The root mean square errors (RMSEs) between the fea-
ture maps are 0.1137, 0.0919, 0.3363, 0.1738, 0.2119, 0.1914,
0.3321, 0.1226, while the structural similarity index measures
(SSIMs) between the feature maps are 0.6632, 0.6847, 0.1890,
0.6432, 0.2468, 0.6133, 0.1907, 0.4083. We can see the optical
processor can generate similar results. Finally, the eight feature
maps are sent to the second convolutional layer followed by the
FC layer, and the output of the softmax layer for the classifi-
cation task is shown in Figs. 7(b) and 7(c). Figure 7(b) shows
the classification probability calculated by the digital computer,
and the probability of the correct classification is 0.99999. Fig-
ure 7(c) shows the classification result calculated by the optical
processor. The probability of correct classification is 0.99988.
Both can give the right results. We further tested 49 images.
Both can generate the same results. The classification confusion
matrix is given in Fig. 7(d).

Furthermore, the optical processor is also tested on the fashion
MNIST dataset which is a dataset of Zalando’s article images.
First, the CNN given in Fig. 3 is re-trained on the new dataset.
The training curves of the full-precision and the binarized model
are given in Figs. 8(a) and 8(b). The best accuracy for the
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Fig. 7. (a) Feature maps calculated by a digital computer (left)
and the optical processor (right). Classification probabilities by (b)
a computer and (c) the processor. (d) Confusion matrix for the
MNIST dataset.

full-precision and binarized weights is 89.70% and 86.44%,
respectively. The performance degradation of the model after
binarization on the fashion MNIST dataset is larger than the
MNIST dataset, which can be attributed to the less redundancy
of the weights. A better model on the fashion MNIST can be
designed to get less loss when the weights are binarized. The
trained kernels for the fashion MNIST are [1,1;−1,1], [−1,1;
−1,1], [1, −1;1,1], [1, −1;1, −1], [1,1;1,1], [−1, −1, −1,1],
[1,1;1,1], and [−1,1;1,1]. We calculate the feature maps of a
sample “ankle boot” from the dataset by a digital computer
and the optical processor, with the results given in Fig. 8(c).
The RMSEs between the eight feature maps are 0.1170, 0.2468,
0.0828, 0.2125, 0.0686, 0.2499, 0.0547, 0.0687 while the SSIMs
are 0.8104, 0.3765, 0.9087, 0.6047, 0.7945, 0.4414, 0.8312,
0.9489. Similar results are obtained. The classification prob-
ability is 0.92 by a digital computer while it is 0.74 by the
optical processor, as shown in Figs. 8(d) and 8(e). Both can give
the right results. We further tested 49 images. Again, the same
results are obtained. The classification confusion matrix is given
in Fig. 8(f).

In conclusion, we have proposed a novel optical processor
based on incoherent waveguide optics for a binarized NN. To
achieve ±1 weights, the DD-MZM was operating between two
opposite quadrature points. The use of the optical processor
to demonstrate a binarized CNN for image classification was
performed at a speed of 32 GFLOPS and the results agreed well
with those using a digital computer. The computing speed can
be scaled up by using more wavelengths, higher baud rate, and
more DD-MZMs.
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