
6464 Vol. 47, No. 24 / 15 December 2022 / Optics Letters Letter

Multi-task photonic time-delay reservoir computing
based on polarization modulation
Long Huang AND Jianping Yao∗
Microwave Photonics Research Laboratory, School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario
K1N 6N5, Canada
*Corresponding author: jpyao@eecs.uottawa.ca

Received 26 October 2022; revised 17 November 2022; accepted 17 November 2022; posted 22 November 2022;
published 13 December 2022

We propose and experimentally demonstrate a multi-task
photonic time-delay reservoir computing (RC) system based
on polarization modulation. The key component in the
system is a polarization modulator (PolM) that functions,
jointly with a polarization controller (PC) and a polarizer,
as an equivalent Mach–Zehnder modulator (MZM) to per-
form electrical to optical conversion and to provide nonlinear
operation. By adjusting the bias of the equivalent MZM, the
nonlinear function can be optimized for different tasks to
achieve the best multi-task performance. In this paper, the
task-independent information processing capacity (IPC) of
the time-delay RC system is evaluated. The results show that
the readout bias of the equivalent MZM leads to a different
IPC which can be optimized for different tasks. Two bench-
mark tasks (NARMA10 and IPIX radar signal prediction)
are performed experimentally. The readout bias is adjusted
independently for each of the two tasks to give a minimum
normalized mean square error (NMSE), which are 0.2103
and 0.0031 for the NARMA10 and IPIX radar signal pre-
diction tasks at a speed of 1.06 Mb/s, respectively. © 2022
Optica Publishing Group

https://doi.org/10.1364/OL.479472

The term reservoir computing (RC) was coined by Verstraeten
et al. [1] in 2007, which was proposed to unify two closely
related recurrent neural network (RNN) structures, the echo
state network by Jaeger [2] proposed in 2001, and the liquid
state machine by Maass et al. [3] proposed in 2002. In an RC
system, input signals are fed into a fixed RNN called a reser-
voir. A simple readout layer is trained to read the state of the
reservoir and map it to a desired output. The benefit of this frame-
work is that the training is performed only at the readout stage
and the laborious process of gradient-descent RNN training is
avoided. This simplification makes it possible to implement RC
systems based on photonics to provide a practical yet more pow-
erful hardware platform for RC. A photonic RC system can be
implemented based on coupled semiconductor optical ampli-
fiers (OSAs) [4], an integrated passive silicon photonic circuit
with the nonlinearity achieved at the readout layer [5], and a
semiconductor laser network based on diffractive coupling [6].
All these implementations rely on a real network with photonic
nodes that are spatially distributed. However, the concept of a

virtual network for RC using a time-delay feedback system in
electronics has been proposed [7]. In a delay-based RC sys-
tem, input signals are time-multiplexed and injected into the
reservoir via a nonlinear node. Then, the transient temporal
dynamics of the reservoir system are sampled and considered as
virtual network nodes. The time-delay feedback concept dras-
tically simplifies the hardware implementation and was later
extended to photonic implementations. Photonic time-delay RC
systems have been demonstrated using optical modulators [8],
semiconductor optical amplifiers [9], and semiconductor lasers
[10]. To process multiple tasks simultaneously, multiplexing of
the two polarization modes in vertical-cavity surface-emitting
lasers (VCSELs) were explored for parallel computing [11]. In
[12], two directional modes in a single ring laser are used to pro-
cess two tasks simultaneously. The approaches reported in [11]
and [12] are all-optical RC schemes, where optical-to-electrical
conversion and nonlinear functions are implemented separately.
Parallel RC can also be implemented in optoelectronic systems
where optical-to-electrical conversion and the nonlinear func-
tion are achieved in a single device [13]. Since optimal nonlinear
functions are different for different tasks, the shared nonlinear
node cannot achieve the best performance for different tasks
simultaneously [13].

In this paper, a photonic RC system for multi-task computing
based on polarization modulation is proposed and experi-
mentally demonstrated. First, a polarization modulator (PolM)
is employed to convert the feedback electrical signal to a
polarization-modulated optical signal. The PolM is operating,
jointly with a polarization controller (PC) and a polarizer, to
function as an equivalent Mach–Zehnder modulator (MZM).
The polarization-modulated signal is converted to an intensity-
modulated optical signal at the output of the polarizer. By tuning
the PC, the readout bias of the equivalent MZM is changed,
which would lead to different nonlinear functions. Due to the
structure of the equivalent MZM, the nonlinear function can be
optimized for different tasks to simultaneously achieve the best
performance. The information processing capacity (IPC) of the
time-delay RC performance on the bias is evaluated numerically.
It shows that the tuning of the readout bias of the equivalent
MZM would lead to a different IPC which can be adapted to
different tasks to achieve the best multi-task performance. Then,
two benchmark tasks, NARMA10 and IPIX radar signal predic-
tion, are performed experimentally. The bias of the equivalent
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Fig. 1. Schematic diagram of the proposed photonic RC system.

MZM is adjusted separately for the two tasks to give the min-
imum normalized mean square errors (NMSEs) of 0.2103 and
0.0031 at a speed of 0.53 Mb/s for a single task and 1.06 Mb/s
for two tasks.

The proposed photonic RC system is shown in Fig. 1. The
key component in the system is the PolM, which is a special
phase modulator that supports phase modulation for both the
transverse-electric (TE) and transverse-magnetic (TM) modes
with opposite phase modulation indices [14]. When an electrical
signal s(t) is applied to the PolM, the phase-modulated signals
after the PolM can be written as[︃

Ex

Ey

]︃
=

[︃
ejγs(t)

e−jγs(t)

]︃
ejωc t, (1)

where γ is the phase modulation index and ωc is the center
frequency of the optical carrier. The PolM operates jointly with
a PC and a polarizer to form an equivalent MZM. The structure of
a PolM-based equivalent MZM is shown in the inset of Fig. 1. By
adjusting the PC, the optical signal at the output of the polarizer
is given by

Eo(t) =

(︄√
2

2

)︄
(Exej2ϕ + Ey), (2)

where 2φ is a phase shift introduced by the PC between Ex and
Ey. Then, the optical intensity can be written as

Io(t) = |Eo |
2 ∝ cos2[γs(t) + φ]. (3)

As can be seen from Eq. (3), the polarization-modulated signal
is converted to an intensity-modulated signal at the output of the
polarizer, and the phase of the signal can be adjusted by adjusting
the bias through tuning the PC.

As can be seen from Fig. 1, a light wave generated by a
laser diode (LD) is sent to a PolM via a PC (PC00). The light
wave after the PolM is split into multiple branches by a 1×N
optical coupler (OC). One branch is for feedback to close the
optoelectronic loop. Each of the other branches is for readout of
a specific task. In the feedback loop, the PolM operates jointly
with a PC (PC01) and a polarizer (Pol0) to form an equivalent
MZM. Then, the optical signal at the output of the equivalent
MZM is delayed by a spool of fiber, attenuated by an attenuator
(Att), and sent to a photodetector (PD0) for optical-to-electrical
conversion. The generated electrical signal is amplified by an
electrical amplifier (EA), combined with the multi-task input
signal at an electrical coupler (EC), and applied to the PolM via
the RF port.

The dynamics of the proposed RC system is analyzed. We start
with a dimensionless variable x(t)= πV(t)/2Vπ , where V(t) is a
voltage signal driving the equivalent MZM with a half-voltage

of Vπ . The feedback circuitry is assumed to be a second-order
bandpass filter formed by a first-order low-pass filter with a 3-dB
cutoff frequency fL and a first-order high-pass filter with a 3-dB
cutoff frequency fH . Like a conventional MZM, the equivalent
MZM has a nonlinear transfer function cos2(.). A differential
equation characterizing the state x(t) of RC system is given by

x(t) + τ
dx(t)
dt
+

1
σ

∫ t

t0

x(s)ds = βcos2[x(t − T) + αu(t) + ψ0],

(4)
where τ = 1/(2πfH) and σ = 1/(2πfL) are the characteristic
response times associated with the high and low cutoff frequen-
cies fH and fL, respectively, β denotes the feedback strength, u(t)
is the input signal to the RC system, α is a scaling factor, ψ0 is
the bias of the equivalent MZM, and T stands for the feedback
time delay. The signal at the output of the RC system is given by

y(t) = cos2[x(t) + ψ], (5)

where ψ is the bias of the equivalent MZM at a readout layer.
The Taylor expansion of y(t) at the bias ψ is given by

y(t) =
1
2
+

1
2

cos(2ψ)
∞∑︂

n=0

(−1)n

(2n)!
[2x(t)]2n

−
1
2

sin(2ψ)
∞∑︂

n=0

(−1)n

(2n + 1)!
[2x(t)]2n+1

. (6)

Therefore, we can adjust ψ to achieve different nonlinearity in a
readout layer, eventually leading to a different IPC.

Next, we perform a numerical simulation to show the depen-
dence of the IPC on the bias ψ. The IPC introduced in [15]
is widely used as a task-independent measure to characterize
the processing performance of an RC system. In the evalu-
ation of IPC, the input signal is a random sequence taking
arbitrary values from −1 to 1, and the corresponding state
of the RC system is recorded. The target signal is given by
z(t) =

∏︁
i Pdi (u(t − i)), where Pdi(.) is the normalized Legendre

polynomial of degree di at delay i. The IPC of an RC system to
reconstruct the function z from its state is quantified in terms
of the mean square error (MSE) MSE[ẑ] =

∑︁T
t=1 (ẑ(t) − z(t))2/T ,

where ẑ(t) =
N∑︁

i=1
Wixi(t) +W0 is a linear estimator of z(t) by the

state variables xi(t). Then, the IPC of an RC system to recon-
struct the function z is defined as C = 1 − min MSE[ẑ]/

⟨︁
z2
⟩︁
,

where ⟨z2⟩ =
T∑︁

t=1
z(t)2/T . The minimum MSE is calculated by

the linear regression to obtain the IPC. The IPC of the pro-
posed RC system as a function of the readout bias is numerically
calculated by the fourth-order Runge–Kutta method. In the sim-
ulation, the interval of the virtual nodes θ is set to θ = 50 ps, the
time delay T is set to T= 20θ, the bias of the equivalent MZM
in the loop ψ0 is set to ψ0= π/4, the characteristic response
times associated with the high and low cutoff frequencies τ and
σ are set to τ = 19.89 ps and σ = 51.34 ps, respectively. The
calculated IPC versus the readout bias ψ is given in Fig. 2. As
can be seen, when ψ = 0, the system only has an IPC of even
degrees. This phenomenon can be explained from the Taylor
expansion of y(t). When ψ = 0, the Taylor series of y(t) is given
by y(t) = 1 − x2(t) + (1/3)x4(t) + (2/45)x6 + . . .. As can be seen,
y(t) only consists of terms of even powers of x(t). We can also
see from Fig. 2 that when ψ = π/4, the RC only has an IPC of
odd degrees. This phenomenon can also be explained from the
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Fig. 2. IPC evaluated under different readout bias until a degree
of 7. The capacities for different degrees are plotted by different
colors.

Fig. 3. Schematic to show the time-multiplexing of the two tasks.

Taylor series of y(t) for ψ = π/4, y(t) = 1/2 − x(t) + (2/3)x3(t) −
(2/15)x5(t) + (4/315)x7(t) + . . .. As can be seen, y(t) only con-
sists of terms of odd powers of x(t). Based on the dependence of
the IPC on the readout bias ψ, the readout bias can be adjusted
to adapt to different tasks with different nonlinearity. The IPC
is periodic with a period of 0.5π since the Taylor expansion of
y(t) at the bias ψ + 0.5π is given by

y(t) =
1
2
−

1
2

cos(2ψ)
∞∑︂

n=0

(−1)n

(2n)!
[2x(t)]2n

+
1
2

sin(2ψ)
∞∑︂

n=0

(−1)n

(2n + 1)!
[2x(t)]2n+1

. (7)

Compare Eq. (7) with Eq. (6), the absolute value of the coef-
ficients of the Taylor series is periodic with a period of 0.5π,
leading to the same period of the IPC.

The input signal is constructed by time-multiplexing of several
tasks, as introduced in [13]. To time interleave these tasks, one
needs to inject the masked input signal successively by virtual
nodes for the reservoir computer, as is shown in Fig. 3.

A proof-of-concept experiment is performed based on the
setup shown in Fig. 1. Note that to simplify the implementation,
only one readout branch is constructed in the experiment. Since
the bias of each readout layer is independently controllable, the
task of a specific layer can be optimized independently without
affecting the performance of the other layers.

In the experiment, a tunable laser source (Keysight N7714A)
is used to generate a light wave at 1550 nm with a power of 9 mW.
The light wave is sent to the PolM (Vesawave) with a bandwidth
of 40 GHz and Vπ of 5.3 V. The optical signal after the PolM is
split by a 1× 2 50:50 optical coupler. Each of the two branches
is connected to a PC and a polarizer to achieve an equivalent
MZM. The time delay of the reservoir is 2.05µs. The EA inside

Fig. 4. Input signals to the reservoir computer. (a) NARMA10
task, (b) IPIX radar signal prediction task, and (c) time-multiplexed
tasks.

the reservoir has a gain of 35 dB with a bandwidth from 30 kHz
to 11 GHz. The input signal sent to the reservoir is generated
by an arbitrary waveform generator (Tektronix AWG7102) with
a sampling rate of 1.6 GSa/s. The signal at the output of each
readout branch is also sent to a PD with a bandwidth of 10 GHz
for optical to electrical conversion. The output electrical signal
is sampled by an oscilloscope (Agilent DSO-X 93204A) with a
sampling rate of 200 MSa/s and 12-bit resolution. The interval
of the virtual nodes is set to 0.05µs and the number of virtual
nodes is set to 38.

First, two tasks, NARMA10 and IPIX radar sig-
nal prediction tasks, are generated and time multiplexed.
The model to generate the NARMA10 series is given

by the recurrence y(n + 1) = 0.3y(n) + 0.05y(n)
9∑︁

i=0
y(n − i) +

1.5u(n − 9)u(n) + 0.1, where u(n) is a sequence of random inputs
drawn from a uniform distribution over an interval [0, 0.5]. For
the IPIX radar signal prediction task, we consider a radar signal
backscattered from the ocean surface collected by the MacMas-
ter University IPIX radar [13]. This task is to predict the radar
signal one step in the future. Two random binary sequences with
values drawn from {−1, 1} are used as the mask signals for the
two tasks. The input signals of the two tasks are mixed with the
masks and time multiplexed. Then, the time-multiplexed signal
is fed to the reservoir computer for processing. Figure 4 shows
the input signals mixed with the masks and the time-multiplexed
signal. For both tasks, 700 samples are used for training while
700 samples are used for testing. In both stages, the first 200
samples are discarded due to the need for warmup of the reser-
voir computer. In the training phase, the readout weights W are
trained by a ridge regression algorithm and fixed in the test
phase.

The feedback strength of the reservoir computer and the inter-
nal bias ψ0 are adjusted to be at the edge of a chaos for good
performance [16]. Then, the readout bias is adjusted to min-
imize the NMSE of the NARMA10 task, which is done by
adjusting ψ. In this case, the NMSE of the NARMA10 task is
0.2103 on average. The NMSE of the IPIX radar signal predic-
tion task is also calculated, which is 0.0111 on average. Figure 5
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Fig. 5. Readout bias adjusted to minimize the NMSE of the
NARMA10 task. (a) True and predicted NARMA10 time series
and (b) the difference between them. (c) True and predicted IPIX
radar signals and (d) the difference between them.

Fig. 6. Readout bias adjusted to minimize the NMSE of the IPIX
radar signal prediction task. (a) True and predicted NARMA10 time
series and (b) the difference between them. (c) True and predicted
IPIX radar signals and (d) the difference between them.

shows the experimental results, in which Fig. 5(a) shows the
true and predicted NARMA10 time series and Fig. 5(b) shows
the difference between them. Figure 5(c) shows the true and
predicted IPIX radar signals and Fig. 5(d) shows the difference
between them. Then, ψ is adjusted to minimize the NMSE of
the IPIX radar signal prediction task. The NMSE is calculated
to be 0.0031 on average. The NMSE of the NARMA10 task is
also calculated which is 0.2560 on average. Figure 6 shows the
experimental results in which Fig. 6(a) shows the true and pre-
dicted NARMA10 time series and Fig. 6(b) shows the difference
between them. Figure 6(c) shows the true and predicted IPIX
radar signals and Fig. 6(d) shows the difference between them.

In conclusion, we have proposed and demonstrated a novel
reservoir computer for multi-task computing based on a PolM.
The key device in the system was the PolM, which could func-
tion, jointly with a PC and a polarizer, as an equivalent MZM.
The performance of the reservoir computer can be optimized by
adjusting hyper-parameters including the number of nodes N,
the feedback strength β, the scaling factor of the input signal
α, the high and low cutoff frequencies fH and fL, and the bias

ψ0 and ψ. Within these hyper-parameters, the readout bias ψ
can be adjusted by the PolM-based equivalent MZM in each
readout layer independently. Thus, optimized multi-tasks can
be implemented. Numerical simulation showed by controlling
the readout bias, the IPC could be adjusted. Thanks to this
property, the readout bias of each readout layer can be indepen-
dently adjusted to optimize the performance of multiple tasks.
The proposed system to process two tasks were experimentally
demonstrated. Experiment results have confirmed that the per-
formance of each task could be independently optimized by
adjusting the bias of the specific readout layer.
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