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1 Introduction

Wireless home networking has recently been a hot area for
both academia and industry. Compared with rf-based wire-
less indoor communications, IR wireless home networking
provides many advantages such as broad and unregulated
bandwidth, possible spatial reuse of the available band-
width, absence of electromagnetic interference, and no
multipath fading. A major issue in IR wireless networking
that must be considered is the eye safety problem. Eye
safety limits the amount of the power to be transmitted, and
thus limits the coverage of an optical wireless home net-
working system. Holographic diffusers can be used to ex-
tend a collimated laser beam to cover a broad range. Holo-
graphic diffusers are usually designed using the computer-
generated hologram �CGH� technique that was proposed by
Brown and Lohmann1 in 1966. Different algorithms such as
error reduction, input-output, and simulated annealing have
been studied for CGH optimization. It was reported re-
cently that holographic diffusers generated based on the
simulated annealing were found to have the best output
compared to the error reduction and the input-output
techniques.2

For holographic diffuser design, a phase-only encoding
scheme would be used to increase the light efficiency.
Phase-only CGH has the unity transmittance that provides
nearly 100% light efficiency.3 Phase-only CGHs can be
implemented using kinoforms,3 a type of surface relief
micro-optical element. Because of its high diffraction effi-
ciency and its flexibility of design, the kinoform can be
used in many applications, such as phase-only filters in
optical information processing, optical pattern recognition,
and optical interconnection. Since it is a phase-only optical
element generated by a computer, the amplitude of the
transfer function is assumed to be unity. The phase infor-
mation, consisting of ordinary quantized values, is usually
represented by a relief profile on a recording material.
w0091-3286/2005/$22.00 © 2005 SPIE
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herefore, the kinoform can include the reconstruction
oise caused by the unitized amplitude and phase quantiza-
ion. Because reconstruction noise or error is a serious
roblem in many applications, it is necessary that the phase
istribution of the kinoform be optimized to decrease the
oise.4

In the design of a holographic diffuser, the system to be
ptimized consists of variables and a cost function repre-
enting the system configuration. Using the probability pro-
ess with appropriately controlled parameters, we can find
he nearly global minimum of the cost function that corre-
ponds to the optimum condition of the system. For the
hase optimization of the kinoform it is assumed that the
ariable is the phase of the pixels and that the cost function
s the mean square error between the reconstructed image
nd the desired image.2

Figure 1 shows the relationship between the image and
he hologram, where F�m ,n� is the hologram and f�k , l� is
he reconstructed image. Assume that the hologram has a
ize of N�N. The Fourier-transformed kinoform recon-
tructs the image in the far field. The reconstructed image
n the image plane is given by2

f�k,l� =
1

N2 �
m=1

N

�
n=1

N

F�m,n�exp�2�i
mk + nl

N
� . �1�

n a phase-only hologram, with P equally spaced phase
evels, the F�m ,n� takes the value of exp�2�p−1��i / P��p
1,… , P�. For example, in the binary and four-phase ho-

ograms, values of P are 2 and 4, respectively, then F�m ,n�
akes the values binary, ±1, and four-phase, ±1 and ±i.

The cost function E can be expressed as

= �
k

�
l

���f�k,l��2 − �ref�k,l��2�2, �2�
here � is the normalization factor given by
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� = �Nref/�tNf�1/2, �3�

Nf = �
k=1

N

�
l=1

N

�f�k,l��2, �4�

Nref = �
k=1

N

�
l=1

N

�ref�k,l��2, �5�

where �t is the desired diffraction efficiency of the holo-
gram; ref �k , l� refers to the desired image; and Nref and Nf

measure the total power within the first period of ideal dif-
fracted amplitude and the diffracted amplitude obtained
from the hologram, respectively.2

The optimization procedure is to find a hologram where
the cost function is minimized, therefore the difference be-
tween the desired and reconstructed image is minimized.

2 Modified Genetic Algorithm
Several methods have been adopted for the optimization of
a kinoform.2–6 In this paper, the optimization of the phase
distribution of a kinoform by a modified genetic algorithm
�GA� is proposed. The GA is a computational optimizing
method that is analogous to the evolution of life.7,8 GAs are
stochastic algorithms whose search methods model some
natural phenomena: genetic inheritance and Darwinian
strife for survival.8 It works on a population of encoded
solutions called chromosomes and the chromosome is com-
posed of a unique string of genes.8 There are basically two
types of representation methods for the GA: binary encod-
ing and floating point encoding. The binary encoding is
normally used for discrete model parameter values, while
the floating point encoding is for continuous model param-
eter values. In our problem, since diffuser design is dis-
crete, we adopt the binary encoding. A chromosome is a
vector w of n bits:

w = �w1,w2,…,wn� � G , �6�

where the genes wi with i=1,2 ,… ,n have binary values �0
or 1�, n is the number of genes, and G is the genotypic
ensemble of the 2n possible chromosomes. Each chromo-
some w corresponds to a unique noncoded solution of the
optimization problem.8 The chromosome is characterized

Fig. 1 Hologra
by performance with respect to objective function �fitness�, o
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hich is the minimum cost function between the reference
mage and the hologram-generated image for our problem.
he population of the next generation is formed by genetic
perators such as selection, cross-over, and mutation to
heir parent population. Chromosomes with high fitness
ave a higher probability to survive in the next generation.
n this way, the GA can locate a relatively global optimum
hromosome after certain iterations.

Simulated annealing �SA� was introduced by Kirk-
atrick and Vecchi in 1983, and was proposed based on an
nalogy with the annealing of solids: the object function to
e minimized is analogous to the energy of solids and the
ontrol parameter is analogous to the temperature of
olids.9 SA can start from a random initial state. Random
hange is generated for the state. The change is accepted if
t results in better performance of the object function. If the
hange results in worse performance, it is accepted with
ertain probability that is a function of the temperature.9,10

he temperature is initially high and decreases over time.
his probability function is usually given by the Boltzmann
istribution:

= exp�− �E/T� , �7�

here �E is the change in the object function, and T is the
emperature. In the diffuser design, �E is the cost function
etween the reference image and the hologram-generated
mage.

In fact, SA can be viewed as a special type of the GA
ith the population size equal to 1. Although the GA and
A are similar in many ways, there are some important
ifferences between them. The leading process in an SA is
utation, while selection is the leading process in a GA.
he advantage of the GA is that it maintains more solutions

han SA and can search in a broader range. Furthermore,
A is parallel in nature. However, the GA has one critical

hortcoming. The GA does not possess a formal proof of
onvergence to the global optima, while SA processes as
ong as the cooling schedule is slow enough,11 although in
ractice there must be a trade-off between the cooling
chedule and the speed of the program. For the GA, when a
hromosome w= �w1 ,w2 ,… ,wn� has a large number of
ene n, the performance is usually poor. The reason is that
he GA cannot maintain population diversity itself. Some
mportant genes may be lost during the search for a global

image planes.
m and
ptimum. Holographic diffuser design is such a case that
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has the characteristic of large genes. Although large popu-
lation size may result in better performance, we must select
proper population size to reduce the computation complex-
ity. For an image with size of 64�64 and with the repre-
sentation of quantization level 4, the size of the ensemble
of solutions is 28192. In this paper, we propose a modified
GA that combines SA and the GA to solve such a problem.

3 Description of the algorithm
The optimization procedure using the modified GA consists
of the following six steps:

3.1 Step 1: Initialization
The phase-distribution of a kinoform with a size of N�N
pixels is encoded as an individual chromosome, which is
represented by a N�N matrix. Each gene of the chromo-
some is ranged within the maximum quantization level. At
the beginning, all the chromosomes are generated at ran-
dom. In our simulations, we use a quantization level of 4 to
represent the kinoform. The quantization level must be
greater than 2 to avoid the problem of conjugate-image
generated by the CGH.2 The higher the quantization level,
the better the image quality. But holographic diffusers with
higher quantization levels are more difficult to fabricate. A
good trade-off in the diffuser design is to use a quantization
level of 4. The population size in the proposed modified
GA is 100, a value that is commonly used12 in GAs.

3.2 Step 2: Selection
Selection is based on the fitness of object function and
it is used to cause those individuals with higher fitness to
be selected with higher probability. One method of
selection is based on a roulette game.8 The fitness Q of
each chromosome ci is ranked in an ascending order:
Q�c1� ,Q�c2� ,… ,Q�cp�. The chromosome ci is selected for
reproduction if

Q�ci−1� � r = Q�ci� , �8�

where r is a uniform random number ranged from 0 to 1.
Note that Q�ci� is the cumulative selection probability,
which depends on the chromosome fitness. In this process,
the fitness depends on the cost function E and we can set
the fitness to 1/E since the cost function is inverse to the
fitness. The simulation results of the roulette game show
that it results in the search to converge quickly and to be
trapped to a local minimum even if the mutation probability
is set large. A different approach4 is also investigated here.
For each generation n�n�2�, select �1−s� and s of all the
individuals with the best fitness from the parents respec-
tively to form the offspring. Therefore, s best individuals
are selected twice and s worst individuals are replaced in
the new generation. Here s is the selection probability,
which in our design is 18%. It is different from the roulette
game in that this approach is based on the rank of the
fitness in a population pool instead of the relative fitness to
other population. The advantage of this approach is that it
is independent of the fitness distribution and the excellent
individuals are treated more fairly, therefore the pressure
for the best genes to propagate is reduced and the popula-
tion diversity can be maintained better. In the selection pro-

13
cess, the elitism principle is adopted. For the k’th genera- p
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ion, select the chromosomes with the best fitness from the
k−1�’th generation if the best fitness of the k’th generation
s worse than the �k−1�’th generation. The elitism can re-
uce the genetic drift, which resulted from mutation and
ross-over. It increases the selection pressure by ensuring
he best chromosome to copy its traits to the next
eneration.13,14

.3 Step 3: Cross-Over
wo individuals are selected randomly with the probability

� Pc, �9�

here Pc is the cross-over probability, and r is a uniform
andom variable8 ranging from 0 to 1. Cross-over generates
ew individuals by combining genes from their parents.
he methods of cross-over include single-point cross-over
nd double-point cross-over. The single-point cross-over
ivides each of the parents into two parts and exchanges the
wo parts between the two individuals; double-point cross-
ver divides each of the parents into three parts and ex-
hanges the middle parts between the two individuals.
ouble-point cross-over is reported to have better
erformance15 and is used in our diffuser design.

In our design, the cross-over probability Pc is 0.8, which
eans that the Pc of all individuals are crossed over.12 It is

ccepted that Pc cannot be too low and a value below 0.6 is
arely used.11 Note that a kinoform is a 2-dimensional op-
ical element; therefore, four random variables are gener-
ted to divide the kinoform, as can be seen in Fig. 2.

.4 Step 4: Mutation
o maintain a good genetic diversity of the genes in a
opulation, the genes are mutated with the mutation prob-
bility Pm. The mutation probability is a very important

Fig. 2 Double-point cross-over between two chromosomes.
arameter that should be chosen carefully. A premature
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convergence can be resulted from a too-low mutation prob-
ability, whereas a slow and poor convergence can be re-
sulted from a high mutation probability.8 A random variable
is generated and each gene is mutated if the random vari-
able is less than Pm. In our design, three mutation methods
are investigated.

A widely used method to control Pm is to use the “opti-
mally tuned” value, which means that Pm is set to an opti-
mal value by experiments.8,12 The commonly used12 value
of Pm is between 0.001 and 0.01. In our simulations, we
assign different values to Pm and compare the performance
of the algorithm while keeping other parameters �popula-
tion size, cross-over probability, etc.� the same. For the de-
sign problem here, a Pm of 0.002 is found to be the optimal
value. The “tuned optimal” method is the simplest ap-
proach, but it lacks of adaptability; since during the evolu-
tionary process, Pm should be higher at first to achieve a
wider search range but lower and lower afterward to miti-
gate the deterioration of good genes. Furthermore, the ef-
fort to find the optimal value is time consuming and other
parameters �cross-over probability etc.� have a great impact
on the optimal value of Pm. Exponentially decreased Pm is
a modification to the “tuned optimal” Pm in which Pm is not
a fixed value but decreases over generations. The value of
Pm can be expressed as

Pm�i + 1� = �Pm�i� , �10�

where i represents the i’th generation. The initial Pm is set
to 0.01 and �=0.985.

The “1/5 success rule” can also be used8 to find the
optimum value of Pm. The 1/5 success rule states that the
ratio of successful mutations to all mutations should be 1/5.
The process to adjust Pm is actually an evolutionary pro-
cess. After each k generation, the cost functions of parents
and descendents are compared. The Pm is increased by a
factor of � if more than 1/5 descendents have better cost
functions than their parents and decreases otherwise. This
can be expressed as

Pm = 	�Pm if ��k� � 1/5

Pm/� if ��k� 	 1/5

Pm otherwise,

 �11�

where ��k� is the success ratio of mutation.
For each of the above methods we use the 16�16 image

to simulate for 20 times and the results are shown in Table
1. From Table 1, we can see that the exponentially de-
creased Pm and the 1/5 success rule Pm perform better than

Table 1 Normalized cost func

Maxim
Cost Fun

Tuned optimal Pm 1

Exponentially decreasing Pm 0.935

1/5 success rule of Pm 0.945
the tuned optimal method. The performance difference be- c

Optical Engineering 085801-4
ween the exponentially decreased Pm and the 1/5 success
ule Pm is not apparent. However, the disadvantage of the
/5 success rule is that it is more computationally intensive
ince there is a monitoring process during the search.
herefore, as far as speed and performance are concerned,

he approach using exponentially decreased Pm provides
he optimal trade-off.

.5 Step 5: Mutation by SA
lthough we choose Pm carefully, there is still a high prob-

bility that the search for best cost function will converge
o a premature optimum. The reason is as already men-
ioned: we have a large ensemble of genes but a low popu-
ation size. After certain iterations, the cost functions of
lmost all the chromosomes will be the same. Increasing
m can delay the speed of convergence and diversify the
opulation, but the random mutation may destroy excellent
enes when the chromosomes converge to nearly optimal.
o maintain better diversity without destroying excellent
enes, we incorporate SA as a supplement mutation algo-
ithm into the GA.

As discussed, selection is the leading evolutionist pro-
ess in the classical GA, whereas mutation is the leading
volutionist process in SA. In the GA, new genes can only
e introduced in a population by occasionally random mu-
ations, which will lead to better or worse individuals with
he same possibilities, whereas mutation in SA will only
ccasionally lead to worse individuals. In our algorithm,
A acts not only as a way to maintain diversity of the
hromosomes, but also as a local search for better genes.16

To measure the diversity of chromosomes, we introduce
parameter called variance of fitness �VOF�. VOF is de-

ived from the cost function in our design. If VOF is 0, that
eans all the chromosomes are the same. The process of

sing SA is that after every n iterations from steps 2 to 4,
e check the VOF. If the VOF is less than 1, we randomly

elect k chromosomes and use SA to mutate these chromo-
omes. Therefore, better diversity of chromosomes can be
aintained without destroying the excellent genes.

.6 Step 6: Output the Result
teps 2 to 5 are performed repeatedly until the change of

he total fitness of all the chromosomes in certain iterations
s less than a minimum value we define. The chromosome
ith the best cost function is then what we need. The pro-

f different mutation methods.

Minimum
Cost Function

Average
Cost Function

0.7449 0.8153

0.7305 0.7769

0.7240 0.7772
tions o

um
ction

4

3

ess is shown in Fig. 3.
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4 Results and Discussions
In the simulations, we compare the classical GA, SA, and
modified GA under different circumstances. Two images
with image sizes of 16�16 and 64�64 are used in the
simulations.

First, for the 16-�16-pixel image, we run simulations to
generate holograms with the GA, SA, and the modified GA
20 times, respectively. Table 2 summarizes the cost func-
tions of the three algorithms and Fig. 4 shows the original
and reconstructed images. The table demonstrates that the
performance among the algorithms is the modified GA	
the SA	 the GA. The smaller variance of SA compared to
the other two algorithms demonstrates that SA has the most
stable output, while the GA has the least stable output. The
better variance of the modified GA than the GA shows that
after the introduction of SA as a mutation algorithm, the
GA can maintain much better population diversity, and
therefore, we can greatly reduce the convergence to a local
minimum. In addition, we also find that the performance of
the best individual of the modified GA is better than the
SA. The reason is that the modified GA has a larger popu-
lation size than the SA �population size is 1 for the SA� and
can search the chromosomes in a broader range.

Next, for the 64�64 pixel image, Fig. 5 shows a 64
�64 spot pattern to be used for the diffuser design. The

Fig. 3 Flow chart of the modified GA for CGH design.

Table 2 Normalized cost functions of

Algorithms
Maximum

Cost Function
Minimum

Cost Funct

GA 1 0.7449

SA 0.8286 0.7325

Modified GA 0.8827 0.7197
Optical Engineering 085801-5
iffuser designed based on this pattern will diffract the in-
oming single laser beam to 4�4 beams. In IR wireless
ome networking systems, the diffracted beams are usually
urther diffused by the ceiling of the office or home, which
ould finally provide a uniform diffuse IR distribution to

over the entire space. For the 64�64 image, the same
rocedure is employed to design the diffuser. We find that
n this case, the classical GA performs much poorer than
he other two. If we take average of the cost functions and
ormalized them, we find that the cost functions of the
lassical GA, SA, and the modified GA are 1, 0.8473, and
.8461, respectively. This shows that the modified GA and
A perform much better than the classical GA, and the
odified GA provides the best performance.
The reason is that the solution ensemble of an image

ith 64�64 pixels is 216 times larger than an image with
6�16 pixels. With the population size the same and only
he random mutation to search for a better gene, it is very
ifficult for the classical GA to find a global optimum in
uch a large solution ensemble. Therefore one normal
ethod for the classical GA to guarantee the performance

s the solution ensemble increases is to enlarge the popu-
ation size. The introduction of SA as a complementary
utation method can better diversify the population to re-

ssical GA, SA, and the modified GA.

Average
Cost Function Variance of Cost Function

0.8153 1

0.7704 0.1776

0.7665 0.2639

ig. 4 Reconstructed 16-�16-pixel image of the kinoform : �a�
riginal image, �b� image reconstructed by the classical GA, �c� im-
ge reconstructed by SA, and �d� image reconstructed by the modi-
ed GA.
the cla

ion
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duce the population size needed. Furthermore, our simula-
tion shows that when the GA approaches an optimal area,
SA can quickly locate the exact place by its internal search
process, but the cross-over and other operators of the GA
may cause the search to drift out of that area, which means
that SA can act as a local search tool.

Figure 6 shows the convergence process of the cost
functions of the classical GA and the modified GA. For the
classical GA, it converges more sharply than the modified
GA at the beginning. But because its internal mutation al-
gorithm cannot maintain good population diversity, it is
trapped at a premature minimum after about 1500 itera-
tions. As we can see from Fig. 6, after 1500 iterations, the

Fig. 5 Reconstructed 64- �64-pixel image of
structed by the classical GA, �c� image reconstr
modified GA.
cost functions does not improve much. We investigated the F

Optical Engineering 085801-6
OF of the classical GA and the modified GA, and found
hat the VOF of the classical GA decreases quickly, and
fter 1500 iterations it is almost 0. On the contrary, the
OF of the modified GA can always remain at a relatively
igher value. Therefore, the better population diversity
akes it possible for the modified GA to search through a
uch wider area and get a better result.
However, the modified GA will take a longer computa-

ion time than the conventional GA since the mutation pro-
ess of the modified GA combines with SA. The computa-
ion times of different algorithms depends much on the
nverse Fourier construction of a hologram because of its
omputation intensity. As our simulation shows, the inverse

noform : �a� original image, �b� image recon-
by the SA, and �d� image reconstructed by the
the ki
ucted
ourier transform occupies around 70% of the computation

August 2005/Vol. 44�8�
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time in the GA and 95% of computation time in SA. The
modified GA requires about 10% more inverse Fourier
transform computation than the normal GA. For a GA pro-
cess with 100 populations and 2000 iterations and a SA
process with 100,000 iterations, the ratio of the computa-
tion times of the modified GA, the conventional GA, and
the SA is around 3:2.6:1.

The hologram designed by the modified GA has an im-
proved performance. A four-level phase hologram, as
shown in Fig. 7�a�, is calculated by the modified GA and
fabricated at a pixel resolution of 2 
m on a quartz sub-
strate, with a phase difference of 0, �/2, �, 3�/4 rad at each
pixel. To make full use of the 0.81-mm source laser beam
width, the 64-�64-pixel basic cell was stepped in a 16
�16 array to create a total hologram size of 1024
�1024 pixels, with a total physical size of 2.048
�2.048 mm. The fabricated hologram mask was illumi-
nated using a 7-mW, 633-nm laser source normally incident
on the mask, and the obtained reconstructed hologram is
shown in Fig. 7�b�. The reconstructed image was obtained
by projecting the image onto a planar surface, such as a
wall, in an enclosed dark room environment with no other
sources of light besides the hologram. We can observe that
the obtained results are similar to the theoretically deter-
mined reconstruction pattern from Fig. 5�a�. However, a
large central spot can be seen in the reconstructed pattern
and this is attributed to fabrication limitations,17 containing
almost 20% of the input laser power. By optimizing the
fabrication techniques, the central spot power could be re-
duced to about 0.1%.

5 Conclusion
The GA was proposed to imitate the principles of natural
evolution as a method to solve parameter optimization
problems. How to control the values of various parameters
and how to maintain the population diversity are two of the
most important issues to be solved in the GA. Although the
GA works well for a wide variety of applications in engi-
neering and science, when facing those problems with a

Fig. 6 Cost functions of the classical GA �dotted curve� and the
modified GA �solid curve�.
large ensemble of solutions such as CGH design, the GA

Optical Engineering 085801-7
orks poorly and may converge with a high probability to
local optimum. The modified GA was proposed in this

aper to solve this problem. In the modified GA, we used a
election process base on the rank of fitness, the exponen-
ially decreased mutation probability, and incorporated SA
s the mutation algorithm into the GA to maintain good
opulation diversity. We compared the modified GA with
he classical GA and SA. The simulation result showed that
or images with small and large sizes, even with a small
opulation size, the modified GA could search the nearly
lobal optimum with a high probability.
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