Performance Evaluation of UWB Signal Transmission over Optical Fiber
Shilong Pan, Member, IEEE, and Jianping Yao, Senior Member, IEEE

Abstract—UWB over fiber (UWBoF) technique has been proposed to increase the area of coverage for UWB communication systems. In this paper, the transmission performance of impulse UWB signals over optical fiber is analyzed. Three types of UWB signals generated based on three different techniques are considered. Since optical signals with different optical spectra would have different tolerances to fiber dispersion, the transmission performance of the three types of UWB signals is studied. First, the impact of fiber chromatic dispersion on UWB waveforms and their spectra is evaluated. Then, the transmission performance of data-modulated UWB signals in an optical fiber is investigated, with a general model to analyze the signal power spectral density (PSD) being developed. The PSD of an UWB signal with on-off keying (OOK), bi-phase modulation (BPM) and pulse position modulation (PPM) schemes is calculated. Evolution of the PSD as a function of transmission distance is then performed. The suitability of the three types of UWB signals for UWBoF applications is also evaluated. The study provides a guideline for the design and development of a practical UWBoF system.

Index Terms—Ultrawideband (UWB), power spectral density (PSD), optical fiber, external modulation, photonic microwave filter, radio over fiber, microwave photonics.

I. INTRODUCTION

ULTRAWIDEBAND (UWB) is considered a promising solution for future high data-rate and short-range wireless communication systems, to meet an ever growing demand for wide bandwidth and high speed [1]–[4]. The key feature of an UWB system is the ability to spread a signal over a sufficiently wide bandwidth to ensure a low power density with negligible interferences with existing wireless systems. In 2002, the U.S. Federal Communications Commission (FCC) approved unlicensed use of a spectral band from 3.1 to 10.6 GHz with a transmitted power spectral density (PSD) of less than -41.3 dBm/MHz for indoor wireless communications. Due to the low power density of the transmitted signal, the communication distance of an UWB system is limited to a few meters to tens of meters. To increase the area of coverage, a new technique to distribute UWB signals over optical fiber, or UWB over fiber (UWBoF), is proposed [5]–[17]. In an UWBoF system, UWB signals are generated in the central office (CO) and distributed to the access points (APs) via optical fiber [5].

For UWB communications, the primary task is to generate UWB signals that have a PSD meeting the FCC spectral mask. An UWB signal can be generated in the electrical domain and then converted to the optical domain based on direct modulation of a laser source [17]. To avoid using extra electrical to optical conversion, UWB signals can also be generated directly in the optical domain. For example, an UWB signal can be generated in the optical domain based on spectral shaping and dispersion-induced frequency-to-time mapping [18], [19]. However, these techniques suffer severely from the frequency chirp and therefore the UWB pulses are easily distorted due to the chromatic dispersion (CD) of an optical fiber. To reduce the distortions, the transmission distance should be short [19] or dispersion compensation has to be employed [11], which may increase the system complexity and the cost. To overcome the problem, techniques to generate UWB signals with zero or small chirp have been recently proposed [6], [7], [20]–[31]. These techniques include the employment of external intensity modulation (IM) based on a Mach-Zehnder modulator (MZM) [6], [7], optical phase modulation (PM) and phase modulation-to-intensity modulation (PM-to-IM) conversion [21]–[23], and the employment of a two- or three-tap photonic microwave delay-line filter with one negative tap coefficient [24]–[30]. Although these techniques have been already reported in literature, the study on the fiber transmission performance of the UWB pulses generated based on these techniques has not been reported.

For an impulse UWBoF system, the information must be encoded using pulse modulation schemes, such as on-off keying (OOK), bi-phase modulation (BPM, also known as pulse-polarity modulation), pulse-position modulation (PPM) and pulse-shape modulation (PSM). UWB signals with different modulation schemes would have different PSD. Generally, the PSD of an UWB signal consists of continuous and discrete components. The discrete components contribute more to the PSD, therefore they would cause more interferences to narrowband wireless systems [32]. A technique called time hopping (TH) is thus proposed to reduce the discrete lines in the PSD. Because UWB signals should co-exist with other narrowband wireless systems operating in the same frequency range with negligible mutual interferences, the PSD of an UWB signal is very important for the design and deployment of a practical UWB system. In the past, the PSD of electrical UWB signals with and without TH were computed [32]–[38]. However, no investigation about the PSD of UWB signals in an UWBoF system has been reported.

In this paper, we theoretically study the transmission performance of an UWB signal propagating in an optical fiber. Since a Gaussian monocycle is the simplest pulse shape among the many suggested UWB waveforms [3], our study would be
performed based on Gaussian monocycle pulses. The results can be extended to other UWB waveforms, such as Gaussian doublet, Gaussian triplet, and other more complicated waveforms.

The paper is organized as follows. In Section II, we analytically study the optical spectral properties of UWB monocycle pulses. Three types of UWB signals generated based on three different techniques are considered. The first technique to generate an UWB signal is to use external modulation based on a MZM. In this case, the modulation signal is an electrical UWB signal. The UWB signal generated based on this technique is in fact a double-sideband modulated signal, which will be called double-sideband UWB (DSB-USB). The second technique to generate an UWB signal is to use a dual-drive MZM. The operation is similar but not exactly equal to this technique is in fact a double-sideband modulated signal, and spectra of UWB monocycle pulses as a function of distance are always less than 40 km. Due to the wide bandwidth would have higher tolerance to fiber dispersion. For an UWB signal, a narrower spectral width would make it more robust to fiber dispersion. In this section, the optical spectral properties of three types of UWB signals generated by three different techniques are analytically studied.

II. OPTICAL SPECTRA OF GAUSSIAN MONOCYCLCES

For an UWBoF system, we assume that the transmission distance is always less than 40 km. Due to the wide bandwidth and high data rate of an UWB signal, fiber dispersion will be the major factor that would affect the transmission performance. It is known that an optical signal with a narrower bandwidth would have higher tolerance to fiber dispersion. For an UWB signal, a narrower spectral width would make it more robust to fiber dispersion. In this section, the optical spectral properties of three types of UWB signals generated by three different techniques are analytically studied.

A. DSB-UWB Monocycle Pulse

It is known that the employment of external modulation using a MZM biased at the quadrature transmission point would perform double-sideband modulation, with the generated optical signal having an optical carrier and two sidebands. If the drive signal is an electrical Gaussian monocycle, the generated optical signal would have an optical spectrum consisting of an optical carrier and two sidebands with a shape identical to the spectrum of the monocycle [6], [7].

Fig. 1(a) shows a schematic for the generation of a DSB Gaussian monocycle. The system consists of a laser diode (LD) and a MZM which is driven by an electrical Gaussian monocycle. Mathematically, if an optical carrier with an angular frequency of ω_c is injected into the MZM, the optical field at the output of the MZM can be expressed as

$$E(t) = \exp(j\omega_c t) \left\{ \exp\left[j\frac{\kappa}{2} w(t) + j\frac{\pi}{2}\right] + \exp\left[-j\frac{\kappa}{2} w(t)\right] \right\}$$

where κ is the phase modulation index, and $w(t)$ is the electrical Gaussian monocycle. Since the Gaussian monocycle is the first-order derivative of a Gaussian pulse, its normalized expression is given by

$$w(t) = -\frac{\exp(1/2)}{T_0} \exp\left(-\frac{t^2}{2T_0^2}\right)$$

where T_0 is the half-width (at 1/e-intensity point) of the Gaussian pulse. In practice, it is customary to use the full width at half maximum (FWHM) in place of T_0. The two are related by

$$T_{\text{FWHM}} = 2 \ln 2 T_0 \approx 1.665 T_0$$

The \pm in (1) corresponds to two opposite polaritons. To derive (1), we assume that the MZM has zero chirp.

When the signal expressed by (1) is sent to a photodetector (PD) for square-law detection, the photocurrent at the output of the PD is given by

$$I(t) \propto 1 \mp \sin[kw(t)] \approx 1 \mp kw(t)$$

where $\kappa \leq \pi/6$ is assumed.

Converting (1) to the frequency domain, we have

$$\tilde{E}(\omega) = (1 \pm j) \left[2\pi \delta(\omega - \omega_c) \mp \frac{\kappa}{2} \tilde{W}(\omega - \omega_c) \right]$$

where $\tilde{W}(\omega) = \tilde{f}\{w(t)\}$ is the Fourier transform of the input Gaussian monocycle. Accordingly, the optical spectrum of the generated optical Gaussian monocycle can be written as

$$\tilde{P}(\omega) = |\tilde{E}(\omega)|^2 \approx 8\pi^2 \delta(\omega - \omega_c) + \frac{\kappa^2}{2} \tilde{W}^2(\omega - \omega_c)$$
Since $\tilde{W}(\omega)$ has two sidebands, the optical spectrum of the generated pulse consists of an optical carrier and two sidebands. The pulse is thus called DSB-UWB monocycle.

B. QSSB-UWB Monocycle Pulse

Fig. 1(b) shows another scheme for the generation of a Gaussian monocycle [20]. A light wave from an LD is sent to a dual-drive MZM. The modulator is biased at the quadrature transmission point. A Gaussian pulse train is split into two portions and then applied to the MZM via the two RF ports. A time delay difference of τ between the two signals is introduced by an electrical delay line. The optical field at the output of the MZM can be expressed as

$$E(t) = \exp(j\omega_c t) \left\{ \exp\left[\frac{j}{2} u(t) \pm \frac{\pi}{2} \right] + \exp\left[\frac{j}{2} u(t - \tau) \right] \right\}$$

(7)

where $u(t)$ is a normalized Gaussian pulse which is given by

$$u(t) = \exp\left(-\frac{t^2}{2\delta^2}\right)$$

(8)

For small-signal modulation (i.e. $\kappa \ll \pi/6$), we have $\exp\left[j\kappa u(t)/2\right] = 1 + j\kappa u(t)/2$, then (7) is approximated

$$E(t) \approx \exp(j\omega_c t) \left\{ (1 \pm j) + \frac{\kappa}{2} [u(t - \tau) \mp u(t)] \right\}$$

(9)

If the signal with an expression of (9) is sent to a PD for square-law detection, we have the photocurrent at the output of the PD,

$$I(t) \propto |E_0(t)|^2 \approx 2 \pm \kappa [u(t - \tau) - u(t)]$$

(10)

As can be seen the AC term of the output current is proportional to the first-order difference of the input Gaussian pulse. If τ is sufficiently small, the first-order difference can be approximated as the first-order derivative, therefore the entire system is equivalent to a first-order differentiator. A Gaussian monocycle is thus generated. Since the phase of $E(t)$ varies with t, the optical QSSB-UWB pulse is chirped.

Converting (9) to the frequency domain, we have

$$\tilde{E}(\omega) = 2\pi(1 \pm j)\delta(\omega - \omega_c) + \frac{\kappa}{2} \left\{ e^{-j(\omega - \omega_c)\tau} \mp 1 \right\} \tilde{U}(\omega - \omega_c)$$

(11)

where $\tilde{U}(\omega) = \tilde{F}[u(t)]$ is the Fourier transform of the input Gaussian monocycle. Correspondingly, the optical spectrum can be written as

$$\tilde{P}(\omega) = |\tilde{E}(\omega)|^2$$

$$\approx 8\pi^2 \delta(\omega - \omega_c) + \frac{\kappa^2}{2} [1 \pm \sin(\omega - \omega_c)\tau] \tilde{U}^2(\omega - \omega_c)$$

(12)

As can be seen from (12), the optical spectrum is asymmetric, which consists of an optical carrier and a Gaussian lobe filtered by a system having a sine-based asymmetry transfer function. The profile would be similar to the optical spectrum of a single sideband plus carrier (SSB+C) signal. The pulse is thus named as QSSB-UWB monocycle.

It should be noted that an asymmetric optical spectrum can also be produced by the UWB monocycle generation technique in [21]–[23], where an UWB monocycle is generated based on PM and PM-to-IM conversion. Specifically, a continuous-wave light is first phase modulated by an electrical Gaussian pulse and then filtered by a fiber Bragg grating (FBG) or an asymmetric Mach-Zehnder interferometer (AMZI). The FBG or AMZI introduces an imbalance loss to the left and right sides of the optical carrier, which performs the PM-IM conversion leading to the generation of a Gaussian monocycle.

C. GUWB Monocycle Pulse

It is known that the first-order difference can be implemented by a two-tap photonic microwave delay-line filter having a positive and a negative taps, and the operation can be approximated as a first-order differentiation if the time delay is sufficiently small. Therefore, a Gaussian monocycle can be produced if the input electrical signal is a Gaussian pulse [5], [13], [24]–[30]. When designing a photonic microwave delay-line filter, to avoid optical interference, incoherent detection is employed which can be achieved by using two independent wavelengths corresponding to the two taps or a single wavelength but with two orthogonally polarized states. Since the detection is incoherent, the optical spectrum of the generated pulse is simply an addition of the optical spectra of the time-delayed signals. When the input signal is an electrical Gaussian pulse, the optical spectra of the time-delayed signals consist of an optical carrier and a Gaussian lobe. As a result, the generated Gaussian monocycle has one or two optical carriers and one or two Gaussian lobes [23]. Fig. 1(c) shows a two-tap photonic microwave delay-line filter with two coefficients (1, -1) [25], which consists of a LD, a polarization modulator (PolM), two polarization controllers (PCs) and a section of polarization-maintaining fiber (PMF). A light wave from the LD is fiber coupled to the PolM through a PC (PC1) which is driven by a Gaussian pulse train. The PolM is a special phase modulator that can support both TE and TM modes with, however, opposite phase modulation indices. When a linearly polarized incident light is oriented at an angle of 45° to one principal axis of the PolM, complementary phase modulated signals are generated along the two principal axes. The normalized optical fields at the output of the PolM along

![Simulated optical spectra of the optical DSB-UWB (solid line), QSSB-UWB (dashed line) and GUWB (dotted line) monocycle pulses.](image-url)
the two principal axes can be expressed as

\[
\frac{E_x(t)}{E_y(t)} = \exp(j\omega_c t) \left[\exp[jk(t)/2] \right] \cdot \exp[-j\kappa(t)/2] \quad (13)
\]

The optical signals are then sent to a PMF-based delay line through a second PC (PC2), which is used to align the principal axes of the PMF to have an angle of 45° with the principal axes of the PMF. The optical fields at the output of the PMF along the two principal axes of the PMF can be written as

\[
\left[\frac{E'_x(t)}{E'_y(t)} \right] = \frac{\sqrt{2}\exp(j\omega_c t)}{2} \times \exp[jk(t)/2 + \exp(-j\kappa(t)/2)] \cdot \exp(-j\kappa(t)/2 - j\phi_0) \quad (14)
\]

where \(\phi_0 \) is a static phase shift induced by PC2 and \(\tau \) is the differential group delay (DGD) of the PMF. If the signal from the PMF is sent to a PD for square-law detection, the photocurrent at the output of the PD is

\[
I(t) \propto \left[\frac{E'_x(t)}{E'_y(t)} \right]^2 + \left| \frac{E'_y(t)}{E'_y(t)} \right|^2 \approx 2 + [\cos[ku(t) + \phi_0] - \cos[ku(t) + \phi_0]] \quad (15)
\]

To generate an UWB monocycle, we set \(\phi_0 = \pm \pi/2 \). (15) can be then re-written as

\[
I(t) \propto 2 \pm [\sin[ku(t)] - \sin[ku(t)]] \quad (16)
\]

For small signal modulation, \(\kappa \) is small, we have \(\sin[ku(t)] = ku(t) \), then (16) is approximated

\[
I(t) \propto 2 \pm k [u(t) - u(t - \tau)] \quad (17)
\]

As can be seen the output current is proportional to the first-order difference of the input Gaussian pulse. Again, if \(\tau \) is sufficiently small, the first-order difference can be approximated as the first-order derivative. Therefore, the entire system is equivalent to a first-order differentiator and a Gaussian monocycle is generated if the input drive signal is a Gaussian pulse.

Substituting \(\phi_0 = \pm \pi/2 \) into (14), and adopting the assumption of small signal modulation, we have

\[
\left[\frac{E'_y(t)}{E'_x(t)} \right] \propto \left[\frac{(1 \pm j)[1 \pm ku(t)/2]}{e^{j\kappa(t)}(1 \pm j)(1 \pm ku(t)/2)} \right] \quad (18)
\]

From (18), we can see that both \(E'_x(t) \) and \(E'_y(t) \) have a fixed phase. Therefore, the generated Gaussian monocycle is chirp free.

The optical spectrum of the generated Gaussian monocycle can be written as

\[
\tilde{P}(\omega) = |\tilde{E}'_x(\omega)|^2 + |\tilde{E}'_y(\omega)|^2 \approx 8\pi^2 \delta(\omega - \omega_c) + \frac{\kappa^2}{2} \tilde{Q}^2(\omega - \omega_c) \quad (19)
\]

As can be seen from (19), the optical spectrum of the generated UWB pulse consists of a spectrum line corresponding to the optical carrier and a power spectrum of the input Gaussian pulse.

A photonic microwave delay-line filter using two independent wavelengths to generate an UWB Gaussian monocycle [27]–[29] has an optical spectrum in the form of

\[
\tilde{P}(\omega) = \frac{2\pi\delta(\omega - \omega_c)}{2} + \frac{\kappa}{2} \tilde{U}(\omega - \omega_c)^2 \quad (20)
\]

where \(\omega_c \) and \(\omega_c' \) are the angular frequencies of the two wavelengths.

Fig. 2 shows the optical spectra of a DSB-UWB, QSSB-UWB and GUWB monocycle pulse obtained by numerical evaluations of the derived analytical equations. In the simulation, the time-domain waveforms of the generated UWB pulses are set to be same. The 3-dB bandwidths for the DSB-UWB, QSSB-UWB and GUWB monocycle pulse are 13.3, 6.4 and 6.8 GHz; or the 10-dB bandwidths are 18.1, 11.7 and 12.4 GHz. The DSB-UWB monocycle pulse has an optical bandwidth much wider than that of the QSSB-UWB and GUWB monocycle pulses, while the QSSB-UWB monocycle pulse occupies the narrowest optical bandwidth.

III. PROPAGATION IN AN OPTICAL FIBER

When an optical pulse \(E(z, t) \) propagates in an optical fiber, the CD will introduce a phase shift to each optical frequency component and accordingly the shape of the pulse will be changed. When propagating in an optical fiber, \(E(z, t) \) satisfies the following linear partial differential equation [39]

\[
\frac{\partial^2 E(z, t)}{\partial z^2} = -\frac{\beta_2}{2} \frac{\partial^2 E(z, t)}{\partial t^2} \quad (21)
\]

where \(\beta_2 \) is the group-velocity dispersion coefficient of the fiber and \(z \) is transmission distance along the fiber. The fiber loss is not considered in our model since it can be easily compensated by an erbium-doped fiber amplifier. Eq. (21) is readily solved by using the Fourier-transform method. The solution is given by

\[
E(z, \omega) = \tilde{E}(0, \omega) \exp \left(\frac{j}{2} \beta_2 \omega^2 z \right) \quad (22)
\]

Since \(\tilde{E}(0, \omega) \) for the optical DSB-UWB, QSSB-UWB and GUWB monocycle pulses is different, the transmission performance of these pulses in an optical fiber would be different.

A. DSB-UWB Monocycle Pulse

For a DSB-UWB monocycle pulse, the optical field at point \(z \) along the optical fiber is given by

\[
E(z, \omega) \approx 2\pi(1 \pm j)\delta(\omega - \omega_c) - (j \pm 1)\frac{k}{2} \tilde{w}(\omega - \omega_c) \exp \left[\frac{j}{2} \beta_2 (\omega - \omega_c^2) z \right] \quad (23)
\]

In obtaining (23), \(\omega_c \gg \omega - \omega_c \) is considered and \((\omega - \omega_c^2) \approx \omega^2 - \omega_c^2 \) is assumed. Converting (23) to the time domain, we obtain

\[
E(z, t) = \exp(j\omega_c t) \left(1 \pm j \right) \left[1 \mp \frac{k}{2} w_1(z, t) \right] \quad (24)
\]

where

\[
w_1(z, t) = -\frac{T_0^2 \exp(1/2)}{(T_0^2 - j\beta_2 z)^{1/2}} \exp[-\frac{t^2}{2(T_0^2 - j\beta_2 z)}] \quad (25)
\]
If \(E(z, t) \) in (24) is applied to a PD for square-law detection, the photocurrent at the output of the PD is

\[
I(z, t) \propto 1 + \kappa [\varepsilon_1(z) \cos \theta(z, t) + \varepsilon_2(z) \sin \theta(z, t)] w_2(z, t)
\]

(26)

where

\[
w_2(z, t) = -\frac{T_0^2 \exp(1/2)}{(T_0^4 + \beta_2^2 z^2)^{3/2}} \exp \left[-\frac{r^2 T_0^2}{2(T_0^4 + \beta_2^2 z^2)} \right]
\]

(27)

\[
\varepsilon_1(z) = -\frac{\beta_2 z (3T_0^4 - \beta_2^2 z^2)}{2(T_0^4 + \beta_2^2 z^2)^{3/2} - 2T_0^4 + 6T_0^2 \beta_2^2 z^2}^{1/2}
\]

(28)

\[
\varepsilon_2(z) = \frac{1}{2} \left[2(T_0^4 + \beta_2^2 z^2)^{3/2} - 2T_0^4 + 6T_0^2 \beta_2^2 z^2 \right]^{1/2}
\]

(29)

\[
\theta(z, t) = \frac{r^2 \beta_2 z}{2(T_0^4 + \beta_2^2 z^2)}
\]

(30)

Compared (26) with (4), the dispersion of the optical fiber introduces a time-varied coefficient to the Gaussian monocycle, which would slightly change the profile of the waveform. As an example, we evaluate the evolution of an UWB pulse traveling in a standard single mode fiber (SMF, \(\beta_2 \approx -21.7 \text{ps}^2/\text{km} \)). Fig. 3 shows the transmission performance of an optical DSB-UWB monocycle pulse traveling in a SMF. The results in Fig. 3(a) and (b) are obtained for the UWB pulse traveling in a SMF with a distance of 0, 5, 10, \(\cdots \), 40 km. From Fig. 3(a) we can see that the temporal shape of the Gaussian monocycle slightly deviates from its original shape when propagating along the SMF. The pulse width, which is defined as the time interval between 10% the positive peak and 10% the negative peak, increases with \(z \), from 216 ps at 0 km to 226 ps at 40 km, as can be seen from Fig. 3(c). Since the original pulse is chirp free, the increase of the pulse width would cause a decrease of the peak amplitude. The power spectrum of the UWB signal is given as \(\tilde{F}(\tilde{I}(z, t)) \). As can be seen from Fig. 3(b), the power of the high frequency components are reduced due to the low-pass equivalent filtering resulted from the dispersion medium [40]. According to [40], ideally the depth of the notches in Fig. 3(b) should be infinite. In our analysis, however, we have performed a first-order approximation since small signal modulation is employed, so the depth of the notches is finite. The 10-dB bandwidth is decreased from 8.22 GHz to 6.80 GHz, as can be seen from Fig. 3(c). Because the dispersion has less impact on the lower frequency components, the center frequency is shifted from 4.91 to 4.17 GHz.

B. QSSB-UWB Monocycle Pulse

Using a similar mathematical treatment as used in deriving (24), we obtain an expression for the optical field of a QSSB-UWB monocycle at point \(z \) along the optical fiber

\[
E(z, t) \approx \exp(\pm j \omega t) \left\{ 1 + \frac{\kappa}{2} \left[j u_1(z, t - \tau) \mp u_1(z, t) \right] \right\}
\]

(31)

where

\[
u_1(z, t) = -\frac{T_0}{\sqrt{T_0^2 - j \beta_2 z}} \exp \left[-\frac{r^2}{2(T_0^2 - j \beta_2 z)} \right]
\]

(32)

The photocurrent after optical to electrical conversion at a PD has the form

\[\begin{aligned}
\Gamma^+(z, t) &\approx 2 + \kappa A_2(z, t - \tau) u_2(z, t - \tau) - \kappa A_1(z, t) u_2(z, t) \\
\Gamma^-(z, t) &\approx 2 - \kappa A_1(z, t - \tau) u_2(z, t - \tau) + \kappa A_2(z, t) u_2(z, t)
\end{aligned}\]

(33)

(34)

where

\[
u_2(z, t) = -\frac{T_0}{(T_0^4 + \beta_2^2 z^2)^{1/2}} \exp \left[-\frac{r^2 T_0^2}{2(T_0^4 + \beta_2^2 z^2)} \right]
\]

(35)

\[
A_1(z, t) = \left[\frac{\beta_2 z}{\eta(z)} - \frac{\eta(z)}{2} \right] \cos \theta(z, t) + \left[\frac{\beta_2 z}{\eta(z)} + \frac{\eta(z)}{2} \right] \sin \theta(z, t)
\]

(36)

\[
A_2(z, t) = \left[\frac{\beta_2 z}{\eta(z)} + \frac{\eta(z)}{2} \right] \cos \theta(z, t) - \left[\frac{\beta_2 z}{\eta(z)} - \frac{\eta(z)}{2} \right] \sin \theta(z, t)
\]

(37)

In the above expressions

\[
\eta(z) = \sqrt{2 \left(T_0^4 + \beta_2^2 z^2 - 2T_0^2 \right)}
\]

(38)

As can be seen from (33) and (34), the UWB pulse after transmission over a dispersion medium has a similar...
expression as the original Gaussian monocycle, that is, the
pulse is the difference of two time-delayed Gaussian pulses.
However, the CD of the fiber introduces two different
time-varied coefficients A_1 and A_2 to the two Gaussian
pulses, which gives an amplitude imbalance to the two Gaussian
pulses. As a result, the obtained UWB monocycle pulse would
have two different peak amplitudes in the positive and negative
parts. In addition, the pulse width T_1 of the Gaussian pulse
$u_1(z,t)$ increases with z, which can be expressed as

$$T_1(z) = \sqrt{T_0^2 + (\beta_2 z/T_0)^2} \quad (39)$$

Because the expressions (33) and (34) for the pulses with
negative and positive polarities are different, the pulses with
different polarities may have a different time shift in the
transmission, which is not desirable for some modulation
schemes, such as BPM.

Fig. 4 shows the evolution of the QSSB-UWB monocycle
with z in the time domain and in the frequency domain. In
the time domain, the UWB pulse after transmission deviates
from the shape of an ideal Gaussian monocycle. The power of
the pulse increases with the transmission distance because the
residual PM is converted to IM when the pulse is transmitted in
the optical fiber (considering that the initial pulse is chirped).
Because the pulse chirp is compensated by the fiber dispersion,
the pulse width decreases with z, from 216 ps at 0 km to
191 ps at 40 km, as can be seen from Fig. 4(c). In the
frequency domain, the peak power in the spectrum is increased
and is shifted to a higher frequency. The 10-dB bandwidth is
firstly increased since the original chirp is compensated by
the fiber CD, and then decreased since the chirp introduced by

$$I(z,t) \approx 2 + \kappa [B(z,t-\tau)u_2(z,t-\tau) - B(z,t)u_2(z,t)] \quad (41)$$

C. GUWB Monocycle Pulse

When the optical signal shown in (18) is transmitted over
an optical fiber, the two orthogonally polarized light waves
traveling along the two principal axes of the PMF will be
affected by the CD. The optical field at point z along the fiber
is given by

$$\begin{bmatrix} E_1^z \\ E_2^z \end{bmatrix} \propto \begin{bmatrix} (1 \pm j)[1 \pm ku_1(t)/2] \\ e^{j\omega_c\tau}(1 \mp j)[1 \mp ku_1(t-\tau)/2] \end{bmatrix} \quad (40)$$

When the optical signal is sent to a PD, we obtain the
photocurrent at the output of the PD,

$$I(z,t) \approx 2 + \kappa [B(z,t-\tau)u_2(z,t-\tau) - B(z,t)u_2(z,t)] \quad (41)$$
where
\[
B(z, t) = \frac{\beta z}{\eta(z)} \cos \theta(z, t) + \frac{\eta(z)}{2} \sin \theta(z, t)
\]
(42)

For a two-tap photonic microwave delay-line filter using two wavelengths, the expression for \(B(z, t)\) is the same as in (42) except that \(\beta_2\) has to be changed to \(\beta_2(t)\).

Fig. 5 shows the simulated results for the transmission of a GUWB monocycle pulse over a SMF. The GUWB monocycle almost maintains its shape when propagating in the fiber. The pulse width has a slight increase after transmission, from 218 ps at 0 km to 228 ps at 40 km. The power of the UWB pulse decreases with \(z\). In the frequency domain, the high frequency components are compressed while the low frequency components are almost kept unchanged. From Fig. 5(c), the 10-dB bandwidth decreases from 8.13 to 6.76 GHz, and the center frequency is shifted from 4.85 to 4.14 GHz. Comparing Fig. 5 with Fig. 3, we can find that the transmission performance of the GUWB monocycle is very similar to that of a DSB-UWB pulse. This is because that a GUWB monocycle is the combination of two incoherent time-delayed optical signals. Both of the time-delayed signals would be degraded by the CD when they are transmitted in the optical fiber. As a result, the transmission performance of the combined signal is equivalent to that of a single optical signal occupying a wider optical bandwidth.

IV. PSD Analysis

The PSD of a typical electrical UWB signal with BPM and PPM has been given in the literature [32]–[38]. In the work reported in [32]–[38], however, the expressions for pulses to represent ‘0’ and ‘1’ are the same or have a simple relationship. Based on the study, the expression for the pulse to represent ‘0’ is different from the one for a UWB pulse to represent ‘1’ when the UWB signals are transmitting in an optical fiber. As a result, a more general model must be established to include the fiber transmission effects. To do so, we represent a data-modulated UWB signal by

\[
x(t) = \sum_{n=0}^{\infty} [(1 - a_n)f_0(t - nT - \mu_n) + a_nf_1(t - nT - \mu_n)]
\]
(43)

where \(a_n\) is a binary independent and identically distributed (i.i.d.) random sequence with a probability density function (PDF) \(P(a_n = 1) = p\), \(T\) is the bit period, \(f_0\) and \(f_1\) are the waveforms representing bits ‘0’ and ‘1’, respectively, and \(\mu_n\) is the TH time shift, which is uniformly distributed in \([\Delta, \Delta]\). For modulation schemes such as OOK, BPM and PPM, \(f_0\) and \(f_1\) are present in Table I.

In the appendix, the PSD for the signal \(x(t)\) is expressed as

\[
S(\omega) = S_C(\omega) + S_D(\omega)
\]
(44)

where \(S_C(\omega)\) and \(S_D(\omega)\) denote the continuous part and the discrete part of the PSD, respectively, which are given by

\[
S_C(\omega) = \frac{|F_0(\omega)|^2}{T}
\begin{cases}
(1-p) - (1-p)^2\sin^2\left(\frac{\omega\Delta}{2}\right)
\end{cases}
+ \frac{|F_1(\omega)|^2}{T} \left[p - p^2\sin^2\left(\frac{\omega\Delta}{2}\right)\right]
- \frac{|F_0(\omega)F_1^*(\omega) + F_0^*(\omega)F_1(\omega)|^2}{T} p(1-p)\sin^2\left(\frac{\omega\Delta}{2}\right)
\]
(45)

\[
S_D(\omega) = \frac{1}{T^2} \sum_{n=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi n}{T}\right) \left[|F_0(\omega)|^2 (1-p)^2\sin^2\left(\frac{\omega\Delta}{2}\right)\right]
+ |F_1(\omega)|^2 p^2\sin^2\left(\frac{\omega\Delta}{2}\right)
+ \left[|F_0(\omega)F_1^*(\omega) + F_0^*(\omega)F_1(\omega)|^2\right] p(1-p)\sin^2\left(\frac{\omega\Delta}{2}\right)
\]
(46)

Because an UWB antenna can be considered as a differentiation block in the time domain, the radiated PSD of the UWB

<table>
<thead>
<tr>
<th>Modulation Scheme</th>
<th>(f_0)</th>
<th>(f_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOK</td>
<td>(I(z, t))</td>
<td>(I(z, t))</td>
</tr>
<tr>
<td>BPM</td>
<td>(I'(z, t))</td>
<td>(I'(z, t))</td>
</tr>
<tr>
<td>PPM</td>
<td>(I(z, t - T_{th}))</td>
<td>(I(z, t - T_{th}))</td>
</tr>
</tbody>
</table>

\(I(z, t)\) is the expression of the electrical UWB pulse obtained at the output port of the PD. \(I'(z, t)\) and \(I'(z, t)\) represent pulses with positive and negative polarities, respectively.
signal is then written as

\[S_R(\omega) \propto \omega^2 S(\omega) \]

(47)

As can be seen from (44)-(47), the radiated PSD of an UWB signal is determined by five parameters, i.e., \(F_0(\omega), F_1(\omega), T, p\) and \(\Delta\). Since \(T, p\) and \(\Delta\) are time invariant in transmission, and can be obtained by the Fourier transform of the signals in (26), (33), (34) or (41) using the fast Fourier transform algorithm, (47) can be numerically calculated.

In this section, the radiated PSD of an OOK, BPM and PPM UWB monocycle signal in transmission is calculated by setting \(p = 0.5\) and \(T = 1\) ns, i.e., with a bit rate equal to 1 Gbit/s. It should be noted if \(f_0\) and \(f_1\) have different shapes or different amplitude, (43) is an expression for a pulse-shape modulated (PSM) or pulse-amplitude modulated (PAM) signal. Thus, (44) to (47) can also be applied to study the radiated PSD of a PSM and PAM signal.

A. On-Off Keying

For OOK modulation scheme, \(f_0 = 0\) and \(f_1\) equal to 0. Because of the blank transmission in case of bit '0' and because it could create further problems for synchronization [4], OOK cannot take advantage of TH. Thus, \(\Delta = 0\). (47) can then be simplified to

\[S_{\text{R-OOK}} \propto \frac{\omega^2 F_1(\omega)}{T} \left[1 - p + \frac{p}{T} \sum_{m=-\infty}^{\infty} \delta \left(\omega - \frac{2\pi m}{T} \right) \right] \]

(48)

As can be seen from (48), the ratio of the powers for the discrete lines and the continuous points are \(p/T(1-p)\). For \(p = 0.5\) and \(T = 1\) ns, this ratio is as large as \(10^5\). Fig. 6 shows the PSD of a radiated OOK UWB monocycle signal before transmission and after 20- and 40-km SMF transmission. As expected, the discrete lines are 90 dB larger than its continuous counterpart. The FCC-specified indoor spectral mask is also plotted. The powers of the initial UWB signals are controlled to satisfy the FCC mask. From Fig. 6, the high frequency components are reduced by fiber dispersion for the UWB signals based on DSB-UWB and GUWB monocycles, which would further reduce the total transmitted power from the antenna. On the contrary, the CD has a positive impact on the PSD of an UWB signal based on QSSB-UWB monocycles. The components in the 3.1-10.6 GHz band are enhanced, which would increase the total transmitted power. Comparably, QSSB-UWB monocycles are more suitable for UWBoF system with OOK modulation scheme.

B. Bi-Phase Modulation

For ideal BPM, the pulses shape (e.g., the AC term of \(I(z, t)\)) for '0' and '1' are inverted, i.e., \(f_0 = -f_1\). Substituting this relation to (45) and (46), we obtain the radiated PSD, given by

\[S_{\text{R-BPM}} = \frac{\omega^2 F_0(\omega)}{T} \left[1 - (1 - 2p)^2 \sin^2 \left(\frac{\omega \Delta}{2} \right) \right] \]

\[+ \frac{\omega^2 (1-2p)^2}{T^2} \sum_{m=-\infty}^{\infty} |F_0(\omega)|^2 \sin^2 \left(\frac{\omega \Delta}{2} \delta \left(\omega - \frac{2\pi m}{T} \right) \right) \]

(49)

As can be seen from (49) \(S_{\text{R-BPM}}\) has the same expression as that for a BPM signal in [32]. If \(p = 0.5\), the discrete part of the PSD equals to 0. After transmission over an optical fiber, the UWB signals based on the DSB-UWB and GUWB monocycles still maintain the relation \(f_0 = -f_1\), as can be seen from the expressions shown in (24) and (41), so no new discrete lines are generated. However, from (33) and (34) there is a time shift for the QSSB-UWB monocycles with different polarities after transmission. As a result, \(f_0\) does not equal to \(-f_1\) and the discrete lines would be generated again. The calculated results for the PSD of a BPM UWB monocycle signal without TH are shown in Fig. 7. The initial UWB signal has no discrete lines in the PSD, which indicates that the total transmitted power from the antenna can be greatly increased as compared with the OOK modulation scheme. After 20- and 40-km SMF transmission, no new discrete lines appear in the PSD of the DSB-UWB and GUWB monocycle signals, while strong discrete lines are created again for the UWB signal based on the QSSB-UWB monocycles.

In a practical system, it is very hard to keep exactly \(p = 0.5\). If \(p\) slightly deviates from 0.5, strong discrete lines would be present in the PSD of the initial UWB signals. For instance, we set \(p = 0.55\) and calculate the PSD again. The results are shown in Fig. 8. For the initial signals, the discrete lines are 70 dB larger than its continuous counterpart. When transmitted in an optical fiber, this ratio is maintained for the UWB signals based on DSB-UWB and GUWB monocycles, while it is increased up to 19 dB after 20-km SMF transmission and is increased up to 31 dB after 40-km SMF transmission for the UWB signal based on QSSB-UWB monocycles. Since the strong discrete lines would present great interferences to other narrowband communication systems, the QSSB-UWB monocycles cannot be used in an UWBoF system with BPM. It should be noted that some optical UWB pulse generators
would introduce an initial time shift to the UWB pulses with different polarities [30]. In that case, the time shift introduced by the fiber transmission may compensate in part the original time shift and thus have a positive impact on the system performance.

C. Pulse Position Modulation

For PPM, the pulses for ‘0’ and ‘1’ have a time shift of T_b, so we have

$$\tilde{F}_1(\omega) = \tilde{F}_0(\omega)\exp(j\omega T_b)$$ \hspace{1cm} (50)

Substituting (50) into (45) and (46), we obtain

$$S_C(\omega) = \left| \frac{\tilde{F}_0(\omega)}{T} \right|^2 \left\{ 1 - \frac{\sin^2\left(\frac{\omega \Delta}{2}\right)}{\sin^2\left(\frac{\omega \Delta}{2}\right)} \cdot \left[(1 - p)^2 + p^2 - 2p(1 - p)\cos(\omega T_b) \right] \right\}$$ \hspace{1cm} (51)

$$S_D(\omega) = \frac{1}{T} \sum_{n=-\infty}^{\infty} \left| \tilde{F}_0(\omega) \right|^2 \frac{\sin^2\left(\frac{\omega \Delta}{2}\right)}{\sin^2\left(\frac{\omega \Delta}{2}\right)} \delta\left(\omega - \frac{2\pi n}{T}\right)$$ \hspace{1cm} (52)

As can be seen from (51) and (52), both the discrete and the continuous parts of the PSD are the power spectrum of an UWB pulse multiplied by a cosine-based function. Since a cosine function is periodic, there should be many notches with a spacing of $1/T_b$ in the PSD. In the calculation, we set $T_b = T/2$. Fig. 9 shows the radiated PSD of a PPM UWB monocycle signal without TH before transmission and after 20- and 40-km SMF transmission. Just as the case in OOK, the power of the high frequency components are reduced by the fiber dispersion for the UWB signals based on DSB-UWB and GUWB monocycles, while the components in the 3.1 to 10.6 GHz band are enhanced for the UWB signal based on QSSB-UWB monocycles. Therefore, QSSB-UWB monocycles have the best transmission performance in an UWB-OF system with PPM.

In the above study, we only calculated the PSD for UWB signals without TH. It is known that the employment of TH can reduce the spectral lines in the PSD of an UWB signal, which can also minimize collisions between users in a multiple access system using a distinct pulse shift pattern for each user [4]. From (45) and (46), the impact of TH is related to the terms containing $\sin^2\left(\frac{\omega \Delta}{2}\right)$. For the PPM signals, as can be seen from (51) and (52) the TH terms and $\tilde{F}_0(\omega)$ terms can be separated, so the impact of TH is independent of transmission distance. This feature is also applicable to a BPM signal based on DSB-UWB or GUWB monocycles (see (49)). The impact of TH on the PSD of such a signal would be the same as that in a wireless link, which has been sufficiently investigated [32]–[36]. For a BPM signal based on the QSSB-UWB monocycles, the TH terms and $\tilde{F}_0(\omega)$ terms cannot be separated. A numerical simulation is performed by setting $\Delta = 0.1$ ns. Fig. 10 shows the radiated PSD of a BPM UWB signal without (solid line) and with (dotted line) TH based on the QSSB-UWB monocycles after 20- and 40-km SMF transmission. To avoid overlap, in Fig. 10 the PSD of the TH UWB signal is manually shifted by 0.1 GHz. As can be seen, the notches in the continuous part are eliminated. Meanwhile, the power of the discrete lines is reduced up to 26 dB for the signal after 20-km SMF transmission and up to 28 dB for the signal after 40-km SMF transmission. However, the discrete lines are still too strong.
V. CONCLUSION

We have theoretically studied the transmission performance of UWB signals over optical fiber. The optical spectral properties of the DSB-UWB, QSSB-UWB, GUWB monocytes were analyzed. The DSB-UWB monocycle has an optical bandwidth much wider than that of the QSSB-UWB and GUWB monocytes, and the QSSB-UWB monocycle occupies the narrowest optical bandwidth. The impact of fiber dispersion on the waveforms and spectra of the Gaussian monocytes were studied. The transmission performance of the GUWB monocycle is very similar to that of a DSB-UWB pulse, while the QSSB-UWB monocytes were found to have a better tolerance to fiber dispersion. A general model to analyze the PSD of UWB signals was developed to investigate the transmission performance of data-modulated monocycle signals. The PSD of a monocycle-based UWB signal with OOK, BPM and PPM schemes was calculated. The UWB signals based on QSSB-UWB monocytes were found to be more suitable for an UWBoF system with OOK or PPM, while the UWB signals based on DSB-UWB or GUWB monocytes have better transmission performance for an UWBoF system with BPM.

APPENDIX A

Suppose that a data-modulated UWB signal is represented in the time domain by

\[x(t) = \sum_{n=-\infty}^{\infty} \left[(1 - a_n) f_0(t - nT - \mu_n) + a_n f_1(t - nT - \mu_n) \right] \tag{A1} \]

where \(\{a_n\} \) is a binary i.i.d. random sequence, \(\mu_n \) is uniformly distributed in \([-\Delta, \Delta]\). The PSD of (A1) can be computed using the Wiener-Kinchine theorem as follows [35].

\[S(\omega) = \lim_{N \to \infty} \frac{1}{NT} \mathbb{E} [X_N(\omega) \cdot X_N^*(\omega)] \tag{A2} \]

where \(\mathbb{E} \) denotes the expectation, and

\[X_N(\omega) = F_0(\omega) \sum_{n=1}^{N} (1 - a_n) \exp \left\{ -j\omega(nT + \mu_n) \right\} + F_1(\omega) \sum_{n=1}^{N} a_n \exp \left\{ -j\omega(nT + \mu_n) \right\} \tag{A3} \]

where \(F_0(\omega) \) and \(F_1(\omega) \) are the Fourier transform of \(f_0 \) and \(f_1 \), respectively. Then,

\[S(\omega) = \lim_{N \to \infty} \frac{1}{NT} \mathbb{E} \left[X_N(\omega) \cdot X_N^*(\omega) \right] = \lim_{N \to \infty} \frac{1}{NT} \left[Y_1(\omega) + Y_2(\omega) + Y_3(\omega) \right] \tag{A4} \]

where

\[Y_1(\omega) = |F_0(\omega)|^2 \sum_{n=1}^{N} \sum_{m=1}^{N} \mathbb{E} \left[(1 - a_n)(1 - a_m) \exp \left\{ -j\omega(n - m)T \right\} \right] \cdot \mathbb{E} \left[\exp \left\{ -j\omega(\mu_n - \mu_m) \right\} \right] \tag{A5} \]

\[Y_2(\omega) = |F_1(\omega)|^2 \sum_{n=1}^{N} \sum_{m=1}^{N} \mathbb{E} \left[a_n a_m \exp \left\{ -j\omega(n - m)T \right\} \right] \cdot \mathbb{E} \left[\exp \left\{ -j\omega(\mu_n - \mu_m) \right\} \right] \tag{A6} \]

\[Y_3(\omega) = \left[F_0(\omega) F_1^*(\omega) + F_1(\omega) F_0^*(\omega) \right] \cdot \sum_{n=1}^{N} \sum_{m=1}^{N} \mathbb{E} \left[a_n(1 - a_m) \exp \left\{ -j\omega(n - m)T \right\} \right] \cdot \mathbb{E} \left[\exp \left\{ -j\omega(\mu_n - \mu_m) \right\} \right] \tag{A7} \]

In the above expressions

\[\mathbb{E} \left[\exp \left\{ -j\omega(\mu_n - \mu_m) \right\} \right] = \begin{cases} \frac{1}{\pi} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \exp \left\{ -j\omega(x - y) \right\} = \text{sinc}^2 \left(\frac{\omega}{2} \right) & m = n \\ \end{cases} \tag{A8} \]

Assume the PDF of \(a_n \) is

\[P(a_n) = \begin{cases} p & a_n = 1 \\ 1 - p & a_n = 0 \end{cases} \tag{A9} \]
we can obtain

\[
E[a_n a_m] = \begin{cases}
 p & m = n \\
 p^2 & m \neq n
\end{cases} (A10)
\]

\[
E[(1 - a_n)(1 - a_m)] = \begin{cases}
 1 - p & m = n \\
 (1 - p)^2 & m \neq n
\end{cases} (A11)
\]

\[
E[a_n] = \begin{cases}
 0 & m = n \\
 p(1 - p) & m \neq n
\end{cases} (A12)
\]

Then

\[
\sum_{n=1}^{N} \sum_{m=1}^{N} E [(1 - a_n)(1 - a_m) \exp [-j\omega (n - m)T]]
\cdot E \left[\exp [-j\omega (\mu_n - \mu_m)] \right]
= \frac{N}{\sum_{n=1}^{N} \sum_{m=1}^{N} E [(1 - a_n)(1 - a_m)] \exp(j\omega T)}
\cdot E \left[\exp [-j\omega (\mu_n - \mu_m)] \right]
\]

(A13)

In the above expression

\[
\sum_{n=1}^{N} E [(1 - a_n)(1 - a_m)] \exp(j\omega T) E \left[\exp [-j\omega (\mu_n - \mu_m)] \right]
= (1 - p) \exp(j\omega T) + \sum_{n=1,m=1,m \neq n}^{N} (1 - p)^2 \exp(j\omega T) \sin^2 \left(\frac{\omega \Delta}{2} \right)
\]

\[
= (1 - p) - (1 - p)^2 \sin^2 \left(\frac{\omega \Delta}{2} \right) \exp(j\omega T)
\]

(A14)

Hence, \(Y_1(\omega) \) is simplified to

\[
Y_1(\omega) = N |F_0(\omega)|^2 \left[(1 - p) - (1 - p)^2 \sin^2 \left(\frac{\omega \Delta}{2} \right) \right]
\]

\[
+ |\tilde{F}_0(\omega)|^2 \sum_{n=1}^{N} \exp(j\omega T)(1 - p)^2 \sin^2 \left(\frac{\omega \Delta}{2} \right)
\]

\[
\cdot \frac{1 - \exp(j\omega NT)}{1 - \exp(j\omega T)}
\]

\[
= N |F_0(\omega)|^2 \left[(1 - p) - (1 - p)^2 \sin^2 \left(\frac{\omega \Delta}{2} \right) \right]
\]

\[
+ (1 - p)^2 \sin^2 \left(\frac{\omega \Delta}{2} \right) \left[F_0(\omega)^2 \right] \frac{1 - \exp(j\omega NT)}{1 - \exp(j\omega T)} \]

(A15)

Using a similar mathematical treatment as used in deriving (A15), the simplified expressions for \(Y_2(\omega) \) and \(Y_3(\omega) \) can also be obtained. Substituting them into (A4), we obtain

\[
S(\omega) = S_C(\omega) + S_D(\omega) \quad (A16)
\]

where \(S_C(\omega) \) and \(S_D(\omega) \) denotes the continuous part and the discrete part of the PSD, respectively, which are represented by

\[
S_C(\omega) = \frac{|F_0(\omega)|^2}{T} \left[(1 - p) - (1 - p)^2 \sin^2 \left(\frac{\omega \Delta}{2} \right) \right]
\]

\[
+ |\tilde{F}_0(\omega)|^2 \left(\frac{p - p^2 \sin^2 \left(\frac{\omega \Delta}{2} \right)}{T} \right)
\]

\[
- \frac{|\tilde{F}_0(\omega)|^2}{T} \left(\frac{p \sin^2 \left(\frac{\omega \Delta}{2} \right)}{T} \right) \]

(A17)

\[
S_D(\omega) = \frac{1}{T^2} \sum_{n=-\infty}^{\infty} \delta \left(\omega - \frac{2\pi n}{T} \right) \left[|F_0(\omega)|^2 (1 - p) \sin^2 \left(\frac{\omega \Delta}{2} \right) \right]
\]

(A18)

In obtaining (A17) and (A18), the following relationship is adopted

\[
\lim_{N \to \infty} \frac{1}{NT} \left(\frac{\sin \omega NT}{\omega T} \right)^2 = \frac{1}{T^2} \sum_{n=-\infty}^{\infty} \delta \left(\omega - \frac{2\pi n}{T} \right) \quad (A19)
\]

REFERENCES

