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Abstract—Semiconductor monolithic mode-locked lasers
(MLLs) are potential solutions for generating high-speed optical
pulses in future mobile fronthaul networks in the millimeter-wave
(mmW) bands. Our previous studies have investigated using buried
heterostructure (BH) quantum dash (QDash) multi-wavelength
lasers for photonic mmW applications. Here we present results
from monolithic chip-scale ridge waveguide QDash MLLs for
generating and transmitting mmW signals. Through optimizing
epitaxy growth, waveguide design, and fabrication process,
the five-layer ridge waveguide QDash MLL exhibits superior
performance with regard to the coherent comb bandwidths,
lasing threshold current, output power, and internal quantum
efficiency. The generated mmW frequency at 28.36 GHz exhibits
excellent frequency stability, with a drift of less than ±50 kHz. For
the first time, we have utilized the free-running five-layer ridge
waveguide QDash MLL to implement single- and dual-optical
carrier modulation schemes in the millimeter-wave-over-fiber
(mmWoF) systems. Both modulation schemes have achieved
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satisfactory performance achieving error vector magnitude (EVM)
performance much lower than the 3GPP requirements (<12.5%)
for future networks. In particular, the single-carrier modulation
scheme achieves higher conversion efficiency and improved EVM
performance. In contrast, the dual-carrier modulation scheme
alleviates the path length matching challenges, offering a low-cost
and easy-to-implement solution in different usage scenarios.

Index Terms—Microwave photonics, millimeter-wave, optical
heterodyne, radio-over-fiber, quantum dash, mode-locked lasers,
mobile fronthaul system.

I. INTRODUCTION

TO ADDRESS the spectrum shortage problem and capacity
limitations of the current mobile network and to satisfy the

upcoming data rate demands, the utilization of millimeter-wave
(mmW) carrier frequencies (30–300 GHz) and beyond is being
considered as a solution for providing an unprecedentedly large
bandwidth with very high bit rates [1]. In addition, due to
the short wavelength, mmW communications facilitate multiple
small-sized antenna arrays [2] to be arranged in a restricted
area, allowing for highly directional beamforming that enhances
link margin and mitigates cell interference [3]. However, for
efficient high-speed mobile communication, there are two main
challenges in mmW generation and data transmission. First,
generating high-frequency mmW carriers in the conventional
electronic domain is challenging and less financially attrac-
tive. Secondly, mmW suffers substantial signal degradation
in free space and has a restricted communication range and
coverage [4]. These two main challenges have brought much
attention to microwave photonics systems such as radio-over-
fiber (RoF) [5], [6]. RoF technology integrates the advantages
of radio networks and photonic devices. In photonic mmWoF
wireless systems, the RF data modulated signal is produced
at the optical transmitter and then transmitted via a fiber link
to the wireless transmitter front-end. The wireless transmitter
delivers the signal to the mobile end-users at mmW frequency
[7]. This integration aids in reducing the complexity of car-
rier generation and circumvents significant transmission loss in
electronic components when operating at mmW frequencies.
Furthermore, RoF can seamlessly integrate with the existing
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fiber infrastructure, and it is a promising and reliable ap-
proach for access networks (first/last mile) in various scenarios
when combined with wavelength division multiplexing (WDM)
technology [8].

The photonic generation of mmW signals can be achieved by
the optical heterodyne beating of (at least) two optical carriers
with channel spacing equivalent to the intended RF beating fre-
quency detected using a photodetector (PD) [9]. The effective-
ness of a mmW transmission system is heavily reliant on several
factors, such as the stability of the RF beating frequency, the RF
linewidth, the spectral purity, and the coherence of the optical
sources [10]. Optical sources create intensity and phase noise,
which can impact the generated mmW signals when transferred
via optical heterodyning [11]. As such, it is preferable to either
reduce the noise or establish a strong correlation among the
optical carriers to generate mmW carrier signals with excellent
spectral purity and phase stability [12].

Recently, optical frequency comb (OFC) sources [13] have
gained attention for potential applications as integrated sources
for multiple wavelength channels in coherent systems, WDM,
and RoF systems. An OFC creates beat notes at the repetition
frequency when each comb line beats with any of its two adjacent
lines [14]. Among different OFC technologies [13], semicon-
ductor monolithic self-pulsating passively MLL sources have
emerged as highly desirable options, particularly for mmWoF
communication systems, owing to their ability to mitigate phase
noise between correlated optical tones. Such OFC sources do
not necessitate an external mode-locking mechanism to partially
reduce the phase noise, resulting in a more stable system with
cost-effective benefits. Several material systems have been stud-
ied for semiconductor monolithic MLLs, such as quantum wells
(QWs), quantum dots (QDots), or quantum dashes (QDashes).
Among them, semiconductor QDash/QDot lasers are considered
a viable solution as a potential OFC source for photonic mmW
signals generation and processing [15], [16], [17], [18]. InAs/InP
QDash or QDot MLLs provide significant advantages such as
wide bandwidths, low threshold current densities and reduced
spontaneous emission rates [19]. These characteristics result in
lower intrinsic noise levels.

Pioneering studies have been conducted utilizing InP-based
QDash or QDot MLLs for mmWoF systems [20], [21], [22].
For instance, Stohr et al. demonstrated high bandwidth photonic
mmW transmission at the 60-GHz frequency range with data
rates as high as 27.04 Gbit/s (EVM of 17.6%) using 16QAM
OFDM modulation and achieving a bit-error-rate (BER) of 4.2
× 10−3 [20]. In the demonstration, a semiconductor laser chip,
comprising a buried structure and an active medium consisting
of six layers of InAs QDashes on an InP substrate, was utilized.
The RF linewidth was demonstrated to be as narrow as 10 kHz
[23]. Afterward, Brendel et al. studied the influence of chromatic
dispersion on the transmission of 60 GHz radio signals across a
standard single-mode fiber (SSMF) [24]. Recently, Elwan et al.
presented a simplified chromatic dispersion model for 60 GHz
RoF transmission based on a QDash MLL [11]. They investi-
gated how dispersion affects the power of the signal and noise
on the heterodyne carriers. Moreover, they investigated how
the higher-order terms of the fiber’s propagation constant affect

the mode partition noise of mmW heterodyne carriers. Their
experimental results revealed that the laser mode partition noise
symmetry was transformed to an asymmetric deformation on the
beating carrier [25]. More recently, Delmade et al. demonstrated
several techniques that specifically target the performance limi-
tations of the mmW signal. Of these techniques, the use of optical
heterodyne with QDash MLL OFC provides a more practical
solution for generating and transmitting mmW signals [21]. In
the demonstration, the optical linewidth of the QDash MLL used
is around 6 MHz. Without an optical feedback scheme, the RF
linewidth is∼10 kHz, and the measured EVM is 13%. However,
utilizing an optical feedback scheme, the RF linewidth is down
to ∼2 kHz, and the EVM performance is improved to 6% [21].

Over the past few decades, we have reported various InAs/InP
QDash/QDot Fabry-Perot (F-P) MLLs with channel spacing
ranging from tens of GHz up to THz [26], [27], [28]. In our
preliminary work, we developed and experimentally demon-
strated a BH waveguide InAs QDash MLL with a repetition rate
of 25 GHz for mmWoF systems [22]. The BH configuration
incorporated additional material growth processes, including
p-n-p blocking and ballast layers, to enhance mode symme-
try, output power and achieve a lower divergence angle that
improves coupling efficiency. However, the BH waveguide’s
lower divergence angle resulted in a larger RF frequency drift
(±150 kHz) due to its higher susceptibility to optical feedback.
In this study, we focus on the performance of free-running
InAs/InP ridge waveguide QDash MLLs with 5, 8, and 12
stacked QDash layers. The ridge waveguide has a smaller active
area compared to the BH structure, resulting in higher intracavity
intensity, improved mode confinement, broader lasing band-
width, and potential mode-locking. Through the optimization
of epitaxy growth, waveguide design, and fabrication process,
the five-layer ridge waveguide QDash MLL exhibits superior
performance with regard to the coherent comb bandwidths,
lasing threshold current, output power, and internal quantum
efficiency. Using the five-layer ridge waveguide QDash MLL,
we have achieved the optical heterodyne mmW frequency of
28.36 GHz with excellent stability, exhibiting a drift of below
±50 kHz over a free-running period of 4.5 hours. Thus the
generated mmW frequency fluctuation falls well within IEEE’s
frequency tolerance (less than ±20 ppm, corresponding to a
frequency of ±567 kHz) [29]. The measured RF beat-note
3-dB linewidth of the QDash MLL is down to 2.4 kHz without
using any optical feedback scheme. The selected modes exhibit
an average integrated relative intensity noise (RIN) of −132.1
dB/Hz and an optical linewidth of 1.9 MHz. This guarantees the
transmission and distribution of mmW signals with high-level
stability. For the first time, we have used the ridge waveguide
QDash MLL to implement and experimentally demonstrate
single- and dual-optical carrier modulation schemes in mm-
WoF fronthaul configurations. Both modulation schemes have
achieved satisfactory performance. The single optical carrier
modulation scheme notably offers higher conversion efficiency
and improved EVM performance. In contrast, the dual-carrier
modulation scheme has low complexity in the transmitter part,
providing a low-cost and easy-to-implement solution in different
usage scenarios.
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Fig. 1. (a) and (b) cross-section scanning electron microscopy of the five and twelve stacked InAs QDash layers (200 nm scale bar).

Fig. 2. (a) Measured optical spectra from QDash lasers with five, eight, and twelve stacked InAs QDash layers, at 421 mA and 18 °C. (b) Output power-current
characteristics from QDash lasers with five, eight, and twelve stacked InAs QDash layers, measured at 18 °C. (c) Calculated typical internal quantum efficiency
and internal losses of the QDash lasers with five, eight, and twelve stacked InAs QDash layers.

II. QUANTUM DASH MLL DESIGN, FABRICATION, AND

CHARACTERIZATION

The study utilizes InAs/InP QDash MLLs with identical
designs. The experimental outcomes rely on consistent features
observed across multiple batches, indicating that the findings
can be replicated and are not restricted to a single device.
Fig. S1(a) and S1(b) in the supplementary material contain a
representative schematic diagram and a corresponding scanning
electron microscopy (SEM) that shows the facet of the devices
after fabrication.

The gain region consisted of a 350 nm InGaAsP waveguide
core with five, eight, or twelve stacked InAs QDashes layers and
lattice-matched In0.816Ga0.184As0.392P0.608 (1.15Q) barriers.
The SEM cross sections of the 5 and 12 QDash layer cores
are shown in Fig. 1(a) and (b). More detailed material growth
and device characterization can be accessed in our previous
publication [30]. Fig. 2(a) depicts typical optical spectra from
the QDash MLLs with 5, 8, and 12 stacked layers, with cor-
responding center wavelengths of 1547.1 nm, 1556.6 nm, and
1566.0 nm, respectively. With 6-dB bandwidths of 12.5 nm, 12.1
nm, and 10.2 nm, the lasers offer 56, 54, and 44 channels, respec-
tively. Fig. 2(b) illustrates the relationship between output power

and current injection. Throughout the entire range investigated
(300 mA to 500 mA), the curves exhibit no evidence of power
saturation. Clear thresholds have been identified: the lowest is
at 51.9 mA for the five-layer devices, the middle is at 70.1 mA
for the eight-layer devices, and the highest is at 94.5 mA for the
twelve-layer devices. The five-layer QDash devices have 67.1%
higher output power than the twelve-layer QDash devices, e.g.,
45.3 mW vs. 27.1 mW at 500 mA. The five-layer QDash devices
exhibit the highest internal quantum efficiency of 55% with the
lowest internal loss (5.0 cm−1). In comparison, the twelve-layer
QDash devices (eight-layer QDash devices) lasers have not
only lower efficiency of 39% (47%) but also a higher internal
loss of 5.8 cm−1 (5.7 cm−1) because of increasing absorption
[Fig. 2(c)].

To maximize spectral efficiency, five-layer QDash devices
with the best static characteristics are selected for further in-
vestigation of the system’s performance. The cavity length is
1500 µm. The QDash MLLs are prone to timing instabilities
due to various environmental noise sources, including laser in-
jection currents, temperature fluctuations, and unwanted optical
feedback [31]. To assess the stability, the RF peak frequency and
its free-running drift are measured at 421 mA and 18 °C. Fig. 3(a)
presents the RF performance, indicating a beating frequency of
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Fig. 3. (a) RF beating frequency and (b) RF peak frequency drift measurement at 421 mA and 18 °C (RBW:1 kHz).

Fig. 4. (a) Measured RIN spectra; (b) integrated RIN from QDash lasers individual modes at 421 mA and 18 °C. (c) measured frequency noise spectra at 421
mA and 18 °C; and (d) optical linewidth from QDash lasers individual modes at 421 mA and 18 °C.

28.36 GHz and signal-to-noise ratio (SNR) that exceeds 45 dB.
The frequency fluctuation is measured at a sweep interval of
20 ms for 4.5 hours to assess the frequency drift on this time
scale. The result shows a free-running drift of less than±50 kHz
[Fig. 3(b)]. The frequency instability of the mmW carrier signal
is low and thus falls well within IEEE’s frequency tolerance
[29].

The laser mode-locking characteristics are also investigated.
The RF spectra evolving with current injection are illustrated
in Fig. S2(a) in the supplementary material. Clear single peak
frequencies at approximately 28.36 GHz demonstrate effective
mode-locking over an extensive range of current injection. To
determine the RF linewidths, we apply Lorentzian fitting on the
RF beating-notes. The measured RF beat-note 3-dB linewidth is

Authorized licensed use limited to: Jianping Yao. Downloaded on October 07,2023 at 17:38:15 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: MONOLITHIC InAs/InP QUANTUM DASH MODE-LOCKED LASERS 1900110

Fig. 5. Experimental setup for (a) single-carrier modulation and (b) dual-carrier modulation on a seamless fiber-mmWoF system. Measured optical spectra for
(c) single-carrier modulation and (d) dual-carrier modulation of the selected two channels at the wireless transmitter before the PD (at point A).

down to 2.4 kHz without using any optical feedback scheme [Fig.
S2(b) in the supplementary material]. The noise characteristics
are also investigated, as they have a substantial influence when
the MLL device is utilized for generating photonic mmW signals
and transmitting data. Fig. 4(a) and (b) show the RIN spectra.
These MLLs have a low collective RIN of−171.8 dB/Hz in their
overall spectral emission, with an average integrated RIN value
of −132.1 dB/Hz across all selected modes. Fig. 4(c) and (d)
depict the frequency noise spectra and optical linewidth, respec-
tively. An average optical linewidth of 1.9 MHz across all modes
demonstrates excellent noise performance. Thus, these QDash
MLLs are appealing options for multi-wavelength sources in
mmWoF systems. To reduce frequency noise in individual laser
sources, researchers have employed various techniques, such as
optical/electrical injection locking [32], [33], dispersion engi-
neering, optical-phase-locked-loop [34], or integrated external
cavity [35], [36], [37]. In particular, Tran et al. [35] have exten-
sively discussed techniques to significantly reduce the linewidth
of lasers, including the use of hybrid/external cavity lasers and
the heterogeneously integrated of silicon with III-V materials
for narrow linewidth lasers. A comprehensive discussion on this
topic will be presented in a forthcoming publication.

III. SYSTEM IMPLEMENTATION, RESULTS, AND DISCUSSION

To exploit the ridge waveguide QDash MLLs in the converged
optical/mmWoF fronthaul system, two types of experimental
configurations are implemented. The system mainly includes

five parts: optical transmitter, fiber link, wireless transmitter for
optical-to-RF conversion, wireless link, and wireless receiver.
In our experiment, the lengths of the fiber link and wireless
link are 25 km and 2 m, respectively. The main difference
between both setups lies in the optical transmitter, while the re-
ceiver and subsequent signal processing and conversion steps are
identical.

A. Single Optical Carrier Modulation

A schematic illustrating the experimental setup for the op-
tical single-carrier modulation is shown in Fig. 5(a). At the
optical transmitter side, the output light from the QDash-MLL
is collected using an antireflection-coated fiber focuser. The
QDash-MLL optical tones are separated into two paths using
a 90/10 polarization maintaining optical coupler, transmitting
through two tunable optical bandpass filters (OBPFs). OBPF1

and OBPF2 separate two optical modes, providing flexibility
in wavelength tunability and RF frequency generation. For
example, in Fig. 5(c), a repetition frequency of 28.36 GHz
was obtained in channel 1 (1550.602 nm) and channel 2
(1550.824 nm). Channel 1 serves as an un-modulated optical
local oscillator (LO) for optical heterodyne beating. In contrast,
channel 2 is the optically modulated data channel with an I/Q
lithium niobate (LiNbO3) Mach-Zehnder modulator (Model
SHF 46215B DP-QAM, 23 GHz bandwidth, 14.0 dB insertion
loss). Baseband 16QAM data signals are used to modulate chan-
nel 2 at symbol rates of 2-GBd or 4-GBd, utilizing a 65 GSa/s
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Fig. 6. Measured electrical spectra for (a) single-carrier modulation and (c) dual-carrier modulation at the wireless transmitter after the PD (at point B); Performance
of the ridge waveguide QDash MLL in photonics-assisted (b) single-carrier modulation and (d) dual-carrier modulation at 8 Gbit/s (2-GBd × 16QAM) and 16
Gbit/s (4-GBd × 16QAM) mmWoF systems ((i)(iii) 2-GBd and (ii)(iv) 4-GBd 16QAM constellations with measured EVM and their corresponding eye diagrams).

arbitrary waveform generator that employs a pseudo-random
binary sequence pattern of 215-1 bits. An erbium-doped fiber
amplifier (EDFA1) is utilized to amplify the data channel prior
to modulation. A tunable optical delay line (around 40-m) on the
un-modulated path is inserted to pre-compensate the effective
difference in path length. This establishes a strong level of phase
coherence between optical tones resulting in the mitigation of
RF phase noise when the optical signals beat at the high-speed
PD. Optical polarization controllers are placed on both the
un-modulated and modulated paths and are adjusted manually
to ensure that the polarization states of both paths match. Sub-
sequently, the modulated 16QAM optical signal is recombined
with the unmodulated optical tone at a 50/50 optical coupler.
After being transmitted over the 25-km SSMF, the optical signal
received at the wireless transmitter is amplified using EDFA2,
and then passes through OBPF3. The optical and electrical spec-
tra of the received carriers before and after the PD are depicted
in Figs. 5(c) and 6(a), respectively. After photo-mixing the two
optical signals using a PD, the resulting output is amplified by
an RF power amplifier with a typical small signal gain of 43 dB,
before being fed into a 20-dBi horn antenna. After transmission
over the wireless link, the mmW signal is received using another
antenna. Finally, the signal is sent to a real-time oscilloscope for

further processing at the wireless receiver. More detailed system
characterization can be accessed in our previous publication
[18]. The evaluation of optical-to-millimeter-wave conversion
efficiency is a critical metric for assessing the effectiveness of
optical mmW signals as it determines the minimum amount
of optical power required by the receiver to generate sufficient
mmW power. This efficiency of the conversion process is typi-
cally expressed as a power ratio of the output mmW signal to the
input signal. In this study, we performed measurements to deter-
mine the conversion efficiency of the single-carrier modulation,
which yielded a value of -17.4 dB. The mmW radio signals are
transmitted over the end-to-end system, and their performance is
evaluated using the EVM parameter. Fig. 6(b) depicts the EVM
performance for 2-GBd and 4-GBd 16QAM signals, which are
7.5% and 7.6%, respectively. This corresponds to data transmis-
sion with bit rates of 8 Gbit/s and 16 Gbit/s, respectively. The
study includes additional experimentation to investigate trans-
mission rates beyond the previously tested 4-GBd. Specifically,
6-GBd, 8-GBd, and 10-GBd are examined. This corresponds
to data transmission with bit rates of 24 Gbit/s 32 Gbit/s, and
40 Gbit/s, respectively. The measured EVM and their corre-
sponding eye diagrams have been provided in the supplementary
material.
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B. Dual Optical Carrier Modulation

The dual-carrier modulation mmWoF transmission system is
illustrated in Fig. 5(b). In this system, both adjacent optical carri-
ers, randomly selected from the 56 comb lines, are modulated by
the radio signals at intermediate frequencies (IF) of 4/3.5 GHz.
To create the modulated optical signal, a 40 GHz linearly biased
LiNbO3 Mach-Zehnder intensity modulator (MZM, Thorlab
LNA6112, 4.0 dB insertion loss) with an electrical amplifier
is utilized. The inclusion of intensity modulation leads to a
reduction in modulator insertion loss and helps to simplify the
system in comparison to the single-carrier modulation scheme.
Both channels are modulated with IF 16QAM data signals with
a symbol rate of 2-GBd (IF = 4 GHz) or 4-GBd (IF = 3.5 GHz).
After the 25-km optical fiber link, the received optical signal
is amplified using EDFA2 and filtered with OBPF3. For both
modulation schemes, the optical signal injected into the PD is
maintained at approximately the same level (−0.5 dBm). This
power level is sufficient to reach the wireless receiver through
an RF power amplifier without causing saturation in the PD.
Figs. 5(d) and 6(c) exhibit the spectra of the received carriers
before and after the PD, respectively. The conversion efficiency
of the dual-carrier modulation is −22.8 dB. Fig. 6(d) shows
the EVM performance for 2-GBd and 4-GBd 16QAM signals,
which are 7.8% and 9.6%, respectively. The EVM performance
for all signals falls below the requirement of 12.5% set by
the third-generation partnership project (3GPP) standards. Clear
constellation diagrams indicate successful recognition of the 2-
GBd and 4-GBd 16QAM mmW signals. This is further demon-
strated in the eye patterns of the wirelessly received 2-GBd
and 4-GBd 16QAM signals shown in Fig. 6(d). Therefore, both
modulation schemes have achieved satisfactory performance. In
particular, the single-carrier modulation scheme achieves higher
conversion efficiency and improved EVM performance. This im-
provement can be attributed to the reduction of intermodulation
distortion [29], [38], making this scheme more robust to in-band
beating noise and chromatic dispersion. On the other hand,
the dual-carrier modulation approach mitigated the path length
matching challenges since the optical carrier and modulated
signal traverse a single optical path. Furthermore, the inclusion
of intensity modulation leads to a reduction in modulator in-
sertion loss. Thus the dual-carrier modulation scheme provides
an uncomplicated and inexpensive solution in different usage
scenarios.

IV. CONCLUSION

Optical heterodyning RoF fronthaul provides an effective
method of generating and transmitting mmW data signals for
wireless systems. To achieve successful implementation of fiber-
wireless systems, it is crucial to develop techniques that reduce
restrictions on RF frequency drift and noise properties between
optical carriers while keeping additional complexity to a mini-
mum. This article demonstrates the suitability of a monolithic
ridge waveguide QDash passively MLL-based optical frequency
comb for use in mobile fronthaul systems in the mmW bands.
The OFC-based systems using single- and dual-optical carrier
modulation methods are evaluated and compared. Satisfactory

performance is obtained for both modulation schemes. Thus,
for the QDash MLL OFC-based fronthaul systems, the single
optical carrier modulation scheme provides higher conversion
efficiency and improved EVM performance. In contrast, the dual
optical carrier modulation approach offers an uncomplicated and
economically viable option for radio access networks in different
usage scenarios.
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