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Abstract—We propose and experimentally demonstrate an on-
chip optical sensor based on a dual-passband microwave photonic
filter (MPF) incorporating a silicon photonic integrated microdisk
resonator (MDR). Two whispering gallery modes supported by
the MDR that are experiencing different wavelength shifts are
employed for simultaneous temperature and refractive index (RI)
measurements. To increase the interrogation speed and resolution,
the MDR is incorporated in an MPF to produce two microwave
passbands. By applying a broadband linearly chirped microwave
waveform to the MPF, two filtered microwave waveforms with their
temporal locations or equivalently central frequencies correspond-
ing to the wavelength shifts of the notches are generated. The mea-
surement of the temporal locations or equivalently the central fre-
quencies is performed at high speed and high resolution using a
digital signal processor. To increase the signal-to-noise ratio of the
filtered microwave waveforms, a noise reduction algorithm based
on phase-only filtering is proposed and employed. The on-chip op-
tical sensing system is experimentally demonstrated. The sensing
system can provide high temperature and RI interrogation resolu-
tions of 2.4 × 10−5 °C and 9.1 × 10−8 RIU at a high interrogation
speed of 1 MHz.

Index Terms—Micro-disk resonator, microwave photonics, sen-
sors, silicon photonics, refractive index, temperature.

I. INTRODUCTION

IN THE past few decades, fiber Bragg grating (FBG) sen-
sors have been extensively studied and employed for various

applications thanks to the key advantages such as low cost,
light weight, high sensitivity, resistance to harsh environment,
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immunity to electromagnetic interference (EMI), and wave-
length multiplexing capability. The fundamental principle be-
hind the use of an FBG for optical sensing is its wavelength
sensitivity to environmental changes, such as temperature and
strain [1]. However, an FBG is not sensitive to refractive in-
dex (RI) change of the external medium surrounding the FBG,
hence it cannot be directly employed as an RI sensor, or spe-
cial design has to be made to increase its sensitivity to external
RI changes by increasing the evanescent field interaction with
the surrounding medium. Those special FBGs include a thinned
FBG [2], a micro structured FBG [3], an etch-eroded FBG [4]
and a microfiber-based FBG [5]. For all those special FBGs,
the fiber diameters are significantly reduced, the durability and
practicability of the sensors become low.

Silicon photonic devices implemented on a silicon-on-
insulator (SOI) platform have a high potential for optical sensing
owing to their high sensitivity to RI changes, which is extremely
important for chemical diagnostics and label-free biosensing
since the presence of molecules can be detected through mea-
suring the RI changes [6]. A few types of SOI sensors, such as
nanocavity sensors [7], micro-ring resonator sensors [8], micro-
disk resonator sensors [9], and Bragg grating sensors [10], have
been proposed. However, the sensing information encoded in
these sensors is obtained through direct wavelength shift mea-
surement, which is usually done by an optical spectrum analyzer
(OSA). Due to the relatively poor resolution and low interroga-
tion speed of an OSA, the performance of the sensors including
sensing speed and resolution is poor. For many applications,
however, high-speed and high-resolution interrogation is
demanded, such as chemical and biological reaction detection.

Microwave photonics (MWP), an interdisciplinary field that
encompasses optical, microwave, and electrical engineering,
provides an effective solution to high-speed and high-resolution
interrogation. The basic concept of achieving high-performance
interrogation is to translate a wavelength variation in the opti-
cal domain to a microwave frequency change in the microwave
domain, which can be real-time monitored by a digital sig-
nal processor (DSP) at a high speed and high resolution [11].
Various MWP-based interrogation solutions have recently been
proposed and demonstrated. In [12], Fu et al. reported a high-
frequency FBG interrogation system for strain sensing based
on fiber Sagnac-loop-based microwave photonic filtering. The
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wavelength shift induced by a strain was converted into intensity
variation of a recovered electronic microwave signal. Since the
measurement was done in the electrical domain, the interroga-
tion speed was increased. In [13], Liu et al. proposed a strain
sensor based on a linearly chirped fiber Bragg grating (LCFBG)
which was used to encode the sensing information in its spec-
tral response. After spectral shaping and wavelength-to-time
(SS-WTT) mapping [14], a linearly chirped microwave wave-
form (LCMW) was generated. The interrogation resolution was
improved by correlating the generated chirped waveform with a
chirped reference waveform to achieve pulse compression in a
DSP. Since the approaches in [12], [13] cannot distinguish tem-
perature and strain, the strain measurement accuracy is deterio-
rated due to temperature variations. To overcome the problem, in
[15], Kong et al. demonstrated a thermal-insensitive transverse
load sensor based on a dual-frequency optoelectronic oscilla-
tor (OEO) using a phase-shifted fiber Bragg grating (PS-FBG),
which is employed as an oscillation frequency selection filter
as well as a sensing element. Since the two frequencies from
the OEO will have the same frequency shifts due to temperature
change, the beating between the two frequencies will generate
a third frequency which is not sensitive to temperature change,
thus the impact due to temperature variations is eliminated for
strain measurement. The temperature itself, however, cannot
be measured. In addition, due to the gain competition between
the two microwave frequencies in the OEO, the stability of the
dual-frequency OEO is poor which would make the sensing ac-
curacy reduced. Recently, we have proposed and demonstrated
an optical sensor employing a micro-disk resonator (MDR) for
temperature or RI sensing with high-speed and high-resolution
interrogation [16]. However, the cross-sensitivity due to
temperature and RI still exists.

In this paper, an on-chip optical sensor for simultaneous tem-
perature and RI sensing based on a dual-passband microwave
photonic filter (MPF) incorporating a silicon photonic integrated
MDR is presented. Two whispering gallery modes (WGMs) sup-
ported by the MDR that are experiencing different wavelength
shifts are employed. To increase the interrogation speed and
resolution, the MDR is incorporated in an MPF to produce two
microwave passbands. The MPF is implemented based on phase
modulation and phase-modulation to intensity-modulation (PM-
IM) conversion, to translate the spectral response of the two
notches in the optical domain to two passbands in the mi-
crowave domain [17]. When the MDR experiences temperature
and/or RI variations, the wavelengths of the two notches will
shift, leading to the change in the central frequencies of the
two microwave passbands. By applying a broadband LCMW
to the MPF, two filtered microwave waveforms with their tem-
poral locations or equivalently central frequencies correspond-
ing to the wavelength shifts are generated. The measurement
of the temporal locations or equivalently central frequencies
is performed using a DSP at a high speed and high resolu-
tion. To increase the signal-to-noise ratio (SNR) of the filtered
microwave waveforms, a noise reduction algorithm based on
phase-only filtering is proposed and employed. The proposed
approach is experimentally demonstrated. The measurement re-
sults show that interrogation resolutions for temperature and RI

Fig. 1. Configuration of the proposed sensing system. LD, laser diode; PC,
polarization controller; PM, phase modulator; AWG, arbitrary waveform gen-
erator; EDFA, erbium-doped fiber amplifier; PD, photodetector; VNA, vector
network analyzer; DSP, digital signal processor; OSC, oscilloscope.

Fig. 2. (a) Cross-sectional view of the MDR, (b) the photomicrograph of
the fabricated MDR and the mode field distributions of the (c) first-order
(d) second-order (e) third-order radial TE mode in the MDR.

of 2.4 × 10−5 ◦C and 9.1 × 10−8 RIU, respectively, at a speed
of 1 MHz are achieved.

II. PRINCIPLE

The schematic diagram of the proposed sensor employing
an integrated silicon photonic MDR in a dual-passband MPF
is shown in Fig. 1. The system consists of a laser diode (LD),
a 40-GHz phase modulator (PM), an MDR, an erbium-doped
optical amplifier (EDFA), a 45-GHz photodetector (PD), and
a DSP. The joint operation of the LD, the PM, the MDR, and
the PD corresponds to a dual-passband MPF, with the two
passbands determined by the two notches of the MDR, realized
based on phase modulation and PM-IM conversion [17]. A
detailed discussion of the implementation of a dual-passband
MPF can be found from [17]. In the proposed system, a
broadband LCMW is applied to the dual-passband MPF. Two
filtered microwave waveforms with their temporal locations or
equivalently central frequencies representing the wavelength
shifts of the two notches of the MDR are obtained. By measur-
ing the temporal locations or equivalently central frequencies,
the sensing information is retrieved.

The key component in the proposed sensing system is the
integrated silicon photonic MDR, which should have a high Q
factor to make the two microwave passbands have narrow band-
widths. To do so, the MDR is designed to have an additional slab
waveguide to wrap the disk and the bus waveguide, to reduce the
impact of the sidewall roughness [18]. Fig. 2(a) gives the cross-
sectional view of an MDR. The disk has a diameter of 20 μm and
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Fig. 3. Measured transmission spectrum of the MDR which can support three
WGMs.

a height of 130 nm. The bus waveguide has a width of 580 nm
and the height is kept identical to the height of the disk. The
coupling gap between the disk and the bus waveguide is cho-
sen to be 230 nm. The slab waveguide has a height of 90 nm.
Fig. 2(b) shows the photomicrograph of the MDR comprising
the disk, the slab waveguide and the bus waveguide. Fig. 2(c)–(e)
shows the first-, second- and third-order radial TE WGMs sup-
ported by the MDR.

The transmission spectrum of the MDR is shown in Fig. 3.
Each notch represents a specific WGMp,q mode, where p and
q are the numbers of radial and azimuthal harmonic orders, re-
spectively. The first three orders of the WGMs are exited and
the inset shows the zoom-in view of two modes, WMG1,106
and WGM3,96 . The WMG1,106 and WGM3,96 modes have
3-dB bandwidths of 20 pm and 15 pm, corresponding to Q
factors of 77,000 and 100,000, respectively. The use of an MDR
with a higher Q factor is of help in strengthening the interaction
between the confined optical field and the outer environment
changes including temperature and RI variations, which would
lead to higher temperature and RI detection sensitivities. The
two modes are used as two notches to produce two microwave
passbands. The central wavelength difference between the two
modes is 66 pm, corresponding to a frequency difference of
8.25 GHz.

By incorporating the MDR into an MPF, a dual-passband
MPF is implemented. The operation principle of the dual-
passband MPF is shown in Fig. 4. A phase-modulated double
sideband with carrier (DSB+C) signal is applied to the MDR
and the output signal is applied to a PD. If the optical carrier
and the two sidebands are fully transmitted, the beating between
the upper sideband and the optical carrier will cancel the beat-
ing between the lower sideband and the optical carrier, thus no
microwave signal is generated except a direct current. When
one sideband is filtered out by a notch, PM-IM conversion is
realized, and a microwave signal is generated at the PD [17],
[19]. In the proposed sensing system, the first-order sideband is
filtered by two notches at two different frequencies, which leads
to a dual-passband MPF. The central frequencies of the two

Fig. 4. Operation principle of the dual-passband MPF. (a) The transmission
spectrum of the MDR and (b) the frequency response of the dual-passband MPF.

passbands are determined by the wavelength intervals between
the optical carrier and two notches.

In the MDR, the central wavelengths of the two notches in
the transmission spectrum can be expressed as

λ1,2 =
2πneff1 , 2 R

m
(1)

where neff1 , 2 are the effective RIs of the first and third order
WGM modes, R is the disk radius and m is the azimuth harmonic
number of the WGM. The mode field of the TE modes decay
rapidly outside the disk. Thus, when the disk surface environ-
ment varies, neff1 , 2 will be changed, leading to the shifts of the
resonance wavelengths. It is worth noting that neff1 , 2 and the
change rates of the different order modes are different, which
leads to different wavelength shifts under the same environment
variations. Assuming the wavelength and frequency of the opti-
cal carrier are λc and fc , and the wavelength and frequency of the
two notches representing the first and third order WGM mode
resonances are λ1,2 and f1,2 , respectively, the central frequen-
cies of the dual-passband MPF named fp1,p2 can be expressed
as [20]

fp1,p2 = |f1,2 − fc | =
c |λc − λ1,2 |

λ2
c

(2)

where c is the velocity of light in vacuum. When the MDR is
experiencing temperature and/or RI variations, the wavelengths
of the first and third order WGM mode resonances are shifted,
given by [21], [22]

Δλ1,2 =
λ1,2

ng

[(
α · nef f1 , 2 +

∂nef f1 , 2

∂T

)
ΔT

+
(

∂nef f1 , 2

∂nsur

)
Δnsur

]
(3)

where ng is the group index of the guided mode, α is the coef-
ficient of thermal expansion of the waveguide material, ΔT is
the temperature change, nsur is the RI of the surroundings and
Δnsur is the surrounding RI change. According to (2) and (3),
the central frequency changes of the two passbands of the dual-
passband MPF, corresponding to the wavelength changes of the
two notches in transmission spectrum of the MDR, produced by
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temperature and RI variations are, respectively, given by

⎧⎪⎨
⎪⎩

Δf1 =
c

λ2
c

· Δλ1 = KT
1 × ΔT + Kn

1 × Δnsur

Δf2 =
c

λ2
c

· Δλ2 = KT
2 × ΔT + Kn

2 × Δnsur

(4)

As can be seen, both central frequencies of the two passbands
of the MPF are linearly proportional to the temperature and RI
variations with the sensitivities represented by KT ,n

1,2 . By solving
(4), temperature and RI measurements can be realized.

In the implementation, the central frequency changes are mea-
sured by applying a wideband LCMW to the MPF, to generate
two filtered microwave waveforms. By measuring the temporal
locations or equivalently central frequencies of the microwave
waveforms, the frequency changes corresponding to the wave-
length changes are measured. Owing to the high insert loss of the
system, the filtered microwave waveforms are relatively weak
with a poor SNR. Therefore, in the signal processing step, a noise
reduction algorithm is introduced. A phase-only filter based on
the input LCMW is built and is correlated with the filtered
chirped microwave waveforms. The microwave waveforms are
significantly compressed. However, since the distribution of the
noise is random and is not correlated with the reference LCMW,
the noise distribution is not altered. By applying a Hamming
window to select the compressed waveforms, the noise is sig-
nificantly suppressed. After re-correlating the noise-supressed
waveforms with the reference LCMW, the two microwave wave-
forms are recovered with a significantly improved SNR.

In the following, we show the SNR of the microwave wave-
forms can be improved. Assume the reference LCMW is r(t)
and its Fourier transform is R(jω). A phase-only filter is estab-
lished by R(jω )

|R(jω )| = ejφR ( j ω ) , where φR(jω ) is the phase term. A
filtered chirped microwave waveform is given by

x (t) = s (t) + n (t) (5)

where s(t)is the filtered chirped microwave waveform and n(t)
is the noise. After correlation with the phase-only filter, we have
a compressed waveform, given by

Y (t) = F−1
[
X (jω) × R∗ (jω)

|R (jω)|
]

= F−1 {
[S (jω) + N (jω)] × e−jφR ( j ω )

}
=F−1 [|S (jω)| ejφS ( j ω ) × e−jφR ( j ω ) + |N (ω)| ejφN ( j ω )

× e−jφR ( j ω )
]

(6)

where X(jω), S(jω) and N(jω) are the Fourier transforms
of x(t), s(t) and n(t), respectively, R∗(jω) is the complex
conjugate of R(jω), and φS (jω ) , φN (jω ) and φR(jω ) are the
phase terms of, S(jω), N(jω) and R(jω), respectively. Since
the filtered chirped microwave waveform is from the refer-
ence LCMW and the MPF has a linear phase response, the
phase of the filtered chirped microwave waveform is same as

the reference LCMW. Thus, (6) is simplified as

Y1 (t) = F−1 [|S (jω)| ejφR ( j ω ) × e−jφR ( j ω )

+ |N (jω)| ejφN ( j ω ) e−jφR ( j ω )
]

= F−1 [|S (jω)| + |N (jω)| ejφN ( j ω ) e−jφR ( j ω )
]

(7)

Eq. (7) shows that a filtered microwave waveform is com-
pressed. The phase of the noise is randomly distributed which
means that the noise cannot be compressed and is still uniformly
distributed.

By applying a Hamming window to extract the compressed
waveform, the noise is suppressed significantly. Then, the re-
covered signal by re-correlating the compressed waveform with
the phase-only filter can be written as

Y2 (t) = F−1 [(|S (jω)| + |N ′ (jω)| ejφN ( j ω ) e−jφR ( j ω )
)

× R∗ (jω)
|R (jω)|

]

= F−1 [|S (jω)| e−jφR ( j ω )

+ |N ′ (jω)| ejφN ( j ω ) e−j2φR ( j ω )
]

(8)

where |N ′(jω)| is the spectrum of the noise after windowing.
As can be seen from (8), the microwave waveform after noise
reduction processing is a time-reversed version of the microwave
waveform, but the noise is significantly suppressed. Therefore,
the filtered microwave waveform is rebuilt with an improved
SNR.

III. EXPERIMENTAL RESULTS

An experiment based on the setup in Fig. 1 is performed.
A light wave generated by the LD (Yokogawa AQ2201) is di-
rected to the 40-GHz PM (Throlabs), where the light wave is
phase modulated by a chirped microwave waveform. The phase-
modulated optical signal is sent via a grating coupler to the
MDR where one sideband is supressed. The optical signal at
the output of the MDR is coupled out of the chip via a second
grating coupler and amplified by the EDFA (Nortel FA17UFAC-
119C28) before being applied to the 45-GHz PD (New Focus
1014), to recover the filtered microwave waveforms. The fil-
tered microwave waveforms are sent to the DSP, where the
SNR is improved and the central frequency changes are esti-
mated. For temperature measurement, the MDR is immersed
into pure water. The temperature is increased from 22.22 °C to
23 °C. Two filtered chirped microwave waveforms at five differ-
ent temperatures are measured, as shown in Fig. 5(a). Due to the
large optical insertion loss caused by low-coupling efficiency
of the grating couplers and the low-power handling capability
of the PD, the recovered chirped microwave waveforms have
a relative low power, which makes the waveforms quite noisy.
It is difficult to identify the central frequencies of the filtered
chirped microwave waveforms directly. To improve the SNR of
the waveforms, a noise reduction algorithm based on phase-only
filtering and Hamming windowing is employed. Fig. 5(b) shows
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Fig. 5. The filtered chirped microwave waveforms with different temperatures
(a) before the noise reduction and (b) after the noise reduction.

the waveforms after noise reduction. The noise is significantly
suppressed and the SNR is significantly increased.

With the increase of the temperature, the central frequencies
of two filtered chirped microwave waveforms are shifted to
higher frequencies, due to the red shift of the two passbands
of the MPF. By measuring the temporal locations or equivalently
the central frequencies of the two filtered microwave waveforms,
the wavelength changes of the two notches can be obtained.
In this paper, we apply Fourier transform to the noise-reduced
waveforms and measure the central frequencies.

Fig. 6(a) shows the spectra of the noise-reduced two filtered
chirped microwave waveforms. The central frequencies of the
two filtered chirped microwave waveforms are obtained by ex-
tracting the peak frequencies at different temperatures. Through
plotting the experimental data with linear fitting, as shown in
Fig. 6(b) and (c), the temperature sensitivities of the two chirped
waveforms based on the WGM1,106 and WGM3,96 mode reso-
nances are calculated, which are 8.2811 GHz/°C with a correla-
tion coefficient (R2) of 0.9970 and 8.6884 GHz/°C with an R2

of 0.9961, respectively.
For RI sensing, the MDR is dripping with a saline solution

having different RIs at a constant temperature. Fig. 7(a) shows
the filtered chirped microwave waveforms with different RIs.
Since the waveforms are very noisy, it is also difficult to directly
measure the central frequencies. Again, we apply the noise re-
duction algorithm to the waveforms. As can be seen in Fig. 7(b),
the noise is significantly reduced, and the SNR is increased. Two
filtered chirped microwave waveforms shift to higher frequen-
cies with the increase in the RI.

Fig. 8(a) shows the spectra of the noise-reduced two filtered
chirped microwave waveforms. Through linear data fitting, as
shown in Fig. 8(b) and (c), the RI sensitivities of the two
filtered chirped waveforms based on the WGM1,106 and

Fig. 6. (a) The spectra of the noise-reduced filtered chirped microwave wave-
forms with different temperatures; the relationships between the temperature and
central frequencies of the noise-reduced filtered chirped microwave waveforms
for (b) WGM1 ,106 and (c) WGM3 ,96 mode resonances.

Fig. 7. The filtered chirped microwave waveforms with different RIs (a) before
noise reduction and (b) after noise reduction.

WGM3,96 mode resonances are calculated, which are
2195 GHz/RIU and 2344 GHz/RIU with R2s of 0.9978 and
0.9999, respectively.

According to the experimental results, the relationship be-
tween the central frequencies of the two filtered chirped mi-
crowave waveforms and the changes in temperature and RI are
given by

{
Δf1 = 8.2811 × ΔT + 2195 × Δnsur

Δf2 = 8.6884 × ΔT + 2344 × Δnsur
(9)
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Fig. 8. (a) The spectrums of the noise-reduced filtered chirped microwave
waveforms with different RIs; the relationships between the RI and central
frequencies of the noise-reduced filtered chirped microwave waveforms for
(b) WGM1 ,106 and (c) WGM3 ,96 mode resonances.

By measuring the central frequency changes, the temperature
and RI changes can be calculated by[

ΔT

Δnsur

]
=

[
6.8969 −6.4585
−0.0256 0.0244

] [
Δf1
Δf2

]
(10)

Note that if the wavelength changes of the two notches are
measured by an OSA with a resolution of 0.01 nm, the tem-
perature and RI measurement resolutions are calculated to be
0.15 °C and 5.7 × 10−4 RIU, respectively. In the proposed inter-
rogation approach, since the wavelength changes are converted
to microwave waveform location changes in the time domain
or microwave frequency changes, the frequencies can be accu-
rately measured by a DSP. The resolution of the proposed system
is thus limited by the sampling rate of the signal processor. In
the experimental demonstration, an LCMW with a chirp rate
of 32 GHz/μs was employed. The sampling rate of the oscillo-
scope used to perform signal digitization is 160 GSa/s. Thus, a
minimum frequency measurement resolution is calculated to be
200 KHz or 1.6 fm. The temperature and RI measurement res-
olutions are 2.4 × 10−5 ◦C and 9.1 × 10−8 RIU, respectively,
which are four orders of magnitude better than a conventional
optical sensing system using an OSA. Note also that in the ex-
periment, the broadband LCMW has a repetition rate of 1 MHz,
thus the interrogation speed is 1 MHz. The speed can be higher
if an LCMW with a higher repetition rate is employed.

IV. CONCLUSION

We have theoretically and experimentally investigated an on-
chip integrated sensor based on a dual-passband MPF incor-
porating an integrated silicon photonic MDR for simultaneous
RI and temperature measurements with high-speed and high-
resolution interrogation. The key element in the system was an
MDR which was used a sensing element. Simultaneous tem-
perature and RI sensing was achieved by measuring the wave-
lengths shifts of two notches of the MDR spectral response.

To increase the interrogation speed and resolution, the MDR
was incorporated in an MPF to produce dual microwave pass-
bands. By applying a broadband LCMW to the MPF, two chirped
microwave waveforms with their temporal locations or equiva-
lently central frequencies corresponding to the wavelength shifts
of the notches were generated. To increase the SNR of the fil-
tered microwave waveforms, a noise reduction algorithm based
on phase-only filtering and Hamming windowing was proposed
and employed. The proposed approach was experimentally eval-
uated. Simultaneous temperature and RI sensing with high in-
terrogation resolutions of 2.4 × 10−5 ◦C and 9.1 × 10−8 RIU at
a high interrogation speed of 1 MHz was demonstrated, which
is four orders of magnitude higher than the use of an OSA.
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