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Abstract—Photonic generation of a frequency-tunable mi-
crowave signal based on a silicon photonic integrated optoelec-
tronic oscillator (OEO) is proposed and experimentally demon-
strated. The silicon photonic chip includes a high-speed phase
modulator (PM), a thermally tunable micro-disk resonator (MDR),
and a high-speed photodetector (PD). When an external light wave
is injected into the chip, by a joint use of the PM, the MDR, and the
PD, a bandpass microwave photonic filter (MPF) based on phase
modulation and phase-modulation to intensity-modulation (PM-
IM) conversion is realized. If the output microwave signal from
the MPF is fed to the microwave input port of the PM with a suf-
ficiently large gain provided by an electrical amplifier, the MPF
becomes an OEQ. By controlling the electrical power applied to a
micro-heater, the resonance frequency of the MDR is tuned, which
leads to the tuning of the MPF, and thus, the OEO oscillation fre-
quency. In the experimental demonstration, two silicon photonic
integrated OEQOs using two MDRs with different micro-heaters are
studied. The first OEO has a high-resistivity metallic micro-heater
placed on top of the MDR, and the second OEO has a p-type doped
silicon heater in the MDR. The two thermally tunable MDRs are
characterized, and the performance of the MPFs based on the two
MDRs is evaluated. The use of the two MPFs to implement two
OEQs is performed, and their performance is evaluated in terms
of frequency tunable range, phase noise, and power consumption.

Index Terms—Microdisk resonator, microwave photonics, op-
toelectronic oscillator, phase modulator, photodetector, photonic
microwave generation, silicon photonics.

1. INTRODUCTION

O achieve high-resolution target detection and high speed
T communications, radar and wireless systems are expected
to operate at higher frequencies and broader bandwidths [1],
[2]. In response to such a demand, a high-frequency microwave
source with a broad frequency tunable range is highly required.
Pure electronic oscillators may not be able to generate a mi-
crowave signal at such a high frequency while maintaining a
low phase noise [3], [4]. To overcome this challenge, photonic
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generation of microwave signals has been a topic of interest in
the last few years [5]-[12]. The key advantages of using pho-
tonics to generate a microwave signal are the high frequency
and large frequency tunable range while the phase noise can be
maintained low.

Among various photonic generation approaches, microwave
generation based on an optoelectronic oscillator (OEO) has been
considered an effective solution for the generation of a high fre-
quency and ultra-low phase noise microwave signal [13]-[15].
To ensure an OEO to operate in single mode, a high-selectivity
bandpass filter (BPF) must be used. In earlier demonstrations,
the high-selectivity bandpass filter is usually an electrical BPF.
The use of an electrical BPF has two limitations. First, it is not
tunable or with a very limited tunable range, thus a microwave
signal with a fixed frequency or a small frequency tunable range
can be generated [16], [17]. Second, a high frequency electrical
BPF usually has a wide bandwidth. To ensure single frequency
operation, the bandwidth must be small, which would limit the
highest operating frequency. To overcome these two limitations,
we may use a microwave photonic filter (MPF) [18]-[22]. An
MPF can have a high center frequency while maintaining a nar-
row bandwidth. Different OEOs using an MPF are proposed
and experimentally demonstrated [23]-[25]. However, most of
the reported OEOs are implemented based on discrete opti-
cal components, which makes the system bulky, expensive and
with high-power consumption. For practical applications, it is
highly desirable that an OEO is implemented using a photonic
integrated circuit (PIC). With rapid development of silicon pho-
tonics, extensive efforts have been directed to the use of silicon
photonic technology in the implementation of microwave pho-
tonic systems [26], [27], due to its compatibility with current
CMOS technology and potential for seamless integration with
electronics [28].

Recently, we have reported an integrated MPF on a silicon
photonic chip [29]. The chip includes three key components:
a high-speed phase modulator (PM), a thermally-tunable high-
selectivity micro-disk resonator (MDR), and a high-speed pho-
todetector (PD). When an external optical wave is injected into
the chip, by jointly using the PM, the MDR and the PD, a band-
pass MPF is realized based on phase modulation and phase-
modulation to intensity-modulation (PM-IM) conversion. By
amplifying the output signal from the MPF and feeding it back
to the input of the MPF, the MPF becomes an integrated OEO.
If the gain is higher than the loss, microwaves oscillation will
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Schematic of the proposed silicon photonic OEO. (a) Perspective view of the proposed OEO; (b) the fabricated chip prototype captured by a microscope

camera; (c) perspective view of the MDR with a top-placed micro-heater; (d) perspective view of the MDR with a p-type doped micro-heater; (e) image of the
MDR with a top-placed micro-heater; and (f) image of the MDR with a p-type doped micro-heater.

start and the oscillation frequency is determined by the central
frequency of the passband of the MPF [30]. By controlling the
electrical power applied to the micro-heater which is located
on top of the MDR, the resonance frequency of the resonator is
tunable, which leads to the tuning of the central frequency of the
passband of the MPF, and thus the frequency of the generated
microwave signal from the OEO is tuned.

The work reported in this paper is an extension of our earlier
work reported in [30]. Here, a more detailed study, including
the frequency tunable range, phase noise and power consump-
tion, is performed. Two OEQOs using two MDRs with different
micro-heaters are fabricated and demonstrated. In the first OEO,
a high-resistivity metallic micro-heater is placed on top of the
MDR (MDR1), and in the second OEO, a p-type doped silicon
heater is incorporated in the MDR (MDR2). The two thermally-
tunable MDRs are firstly characterized, then the performance
of the MPFs based on the two MDRs are evaluated. The use
of the two MPFs to implement two OEOs are performed. The
performance in terms of frequency tuning range, phase noise,
and power consumption are evaluated. Both OEOs are able to
generate a microwave signal with a frequency tuning range from
3 to 8 GHz. The phase noise of the generated microwave signal
for the two OEOs is measured to be around —80 dBc/Hz at a
10-KHz offset frequency. Thanks to the high-level integration,
the integrated OEOs have the key advantages in terms of low
loss, high stability and large frequency tuning range. This suc-
cessful demonstration would boost the research on monolithic

integration of the OEOs and the large-scale practical deploy-
ment of the OEOs for microwave generation.

II. OEO DESIGN AND PRINCIPLE

Fig. 1(a) illustrates the schematic of a silicon photonic inte-
grated frequency-tunable OEO. Three key components includ-
ing a high-speed PM, a thermally-tunable high-selectivity MDR,
and a high-speed PD are monolithically integrated on a silicon
photonic chip. A grating coupler array with a center-to-center
spacing of 127 pm is used to couple light into and out of the
chip, through the use of a fiber array. To reduce the chip foot-
print, single-mode wire waveguide is mostly employed to guide
optical signals in the chip. When an external optical wave is
coupled into the chip, the optical wave is firstly routed to the
high-speed PM, where a phase-modulated optical signal is gen-
erated. Then, the phase-modulated optical signal passes through
the high-selectivity MDR, to filter out one sideband. At the out-
put of the MDR, a 3-dB Y-branch coupler is used to split the
optical signal equally into two channels. One channel of the
optical signal is directly guided to the high-speed PD, where a
microwave signal is generated, and the other channel is routed
to the output grating coupler to couple the light out of the chip
for real-time optical spectrum monitoring.

The chip is fabricated using a CMOS compatible process with
248-nm deep ultraviolet lithography. Fig. 1(b) shows the fab-
ricated silicon photonic chip, in which the red line shows the
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area of the OEO (4.71 x 0.64 mm?). In order to improve the
selectivity, the MDR is specifically designed to have an addi-
tional slab waveguide to wrap the disk and the bus waveguide
to reduce the waveguide sidewall scattering loss caused by side-
wall roughness. Thanks to the slab waveguide, part of the disk
sidewall is made away from the confined optical mode, which
would weaken the impact of the sidewall roughness on the opti-
cal field, to reduce the loss and thus increase the Q-factor of the
MDR [31]. By using the thermal-optic effect, the MDR could
be thermally tunable. In the implementation, two MDRs with
two different micro-heaters are used. Fig. 1(c) and (d) shows
the perspective views of the two MDRs with different micro-
heaters. In Fig. 1(c), the MDR has a high-resistivity metallic
micro-heater placed on top of the disk; in Fig. 1(d), the MDR
has a p-type doped silicon heater in the disk. The heavy p-type
implantation creates a doped resistor for efficient thermal tun-
ing of the MDR. Fig. 1(e) and (f) are the images of the two
fabricated MDRs captured by a microscope camera.

In our demonstration, an OEO is realized by incorporating
an MPF implemented based on phase modulation and PM-IM
conversion. When an external optical wave is coupled into the
chip, a phase-modulated optical signal is generated at the output
of the PM and is sent to the high-selectivity MDR, which serves
as an optical notch filter. If the phase-modulated optical signal
is directly applied to a PD, no microwave signal will be recov-
ered due to the out of phase nature between the two first-order
sidebands of a phase-modulated optical signal. If one of the two
sidebands of the phase-modulated optical signal is attenuated by
locating it in the notch of the MDR, the phase-modulated signal
is converted to an intensity-modulated single-sideband signal,
and a microwave signal is generated at the PD. The entire op-
eration corresponds to a bandpass MPF, of which the spectral
response of the microwave filter is directly translated from the
spectral response of the MDR. Thanks to the ultra-narrow notch
and thermal tunability of the MDR, the MPF has a narrow pass-
band and is tunable. By feeding the microwave signal at the
output of the MPF to its input and providing a sufficiently large
gain using an electrical power amplifier, the MPF becomes an
OEOQO. By tuning the notch of the MDR, the center frequency of
the MPF filter is tuned, and thus the frequency of the generated
microwave signal is tuned.

III. EXPERIMENT

Two MDRs with two different micro-heaters are used in the
experimental demonstration. In the experiment, to control and
stabilize the chip temperature, a thermoelectric-cooler (TEC) is
used. The silicon chip is placed on the TEC, and a thermistor
is placed adjacent to the chip, to measure and provide a feed-
back temperature to a commercial TEC controller. During the
experiment, the chip temperature is stabilized at 23 °C.

A. High-Speed PM

Thanks to the free-carrier plasma dispersion effect in silicon,
a high-speed PM on silicon could be achieved. In our designs,
a traveling wave structure is used, where a lateral pn junc-
tion is incorporated in the rib waveguide to achieve high-speed
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modulation. When the reverse bias voltage is 4 V, the 3-dB
modulation bandwidth is measured to be 20.85 GHz.

B. Tunable MDRs

As a key component in the chip, an MDR plays a critical role
in determining the spectral response of the MPF. A higher Q-
factor of a MDR, a higher selectivity of the MPF. To elevate the
selectivity and strengthen the optical coupling between the disk
and the bus waveguides, an additional slab waveguide is used to
wrap the disk and the bus waveguide to weaken the impact of the
disk sidewall roughness on the optical field confinement [31].
In the design, the two MDRs are designed to have an all-pass
configuration, both having a radius of 10 pum and a height of
220 nm, and the bus waveguides have a height of 220 nm. The
additional slab waveguide has a height of 90 nm. To simplify
the design, the widths of the slab waveguide around the disk
and the bus waveguide are kept identical of 200 nm, and in the
coupling region the two slab waveguides are designed to fully
overlap. To effectively excite the first-order whispering-gallery-
mode (WGM), the width of the bus waveguide is controlled to
be 600 nm.

For both MDRs, the thermal-optic effect is used to perform
wavelength tuning. In the two MDRs, two different micro-
heaters are used. Fig. 2(a) shows a cross-sectional view of the
first MDR (MDR1) with a top-placed micro-heater along the
white dashed line AA’ in Fig. 1(c). A high-resistivity metallic
micro-heater is placed on top of the disk. To avoid the ther-
mal impact on neighboring components in the chip, a deep
trench is etched around the disk for thermal isolation. Fig. 2(b)
shows the measured transmission spectrum of MDR1 using an
optical vector analyzer (OVA, LUNA OVA CTe). First-order
and second-order WGMs are effectively excited in the disk.
The first-order WGM is measured to have a free spectral range
(FSR) of 10.7 nm, and the second-order WGM has an FSR of
10.6 nm. Fig. 2(c) gives the measured resonance WGM, 193 at a
wavelength of 1542.38 nm and its Lorentzian fitting. The notch
has a 3-dB bandwidth of 14 pm, corresponding to a Q-factor of
around 1.10 x 10°, and an extinction ratio of 4 dB. Fig. 2(d)
shows the spectrum tuning of the MDR when the applied elec-
trical power to the micro-heater is increased. The color indicates
the measured optical power, and the red dashed line shows the
resonance frequency of the WGMj; 194 with different applied
electrical power. Due to the thermal-optic effect, the refractive
index of the silicon is increased with the increase in temperature,
which leads to a red-shift of the MDR transmission spectrum.
The resistance of the micro-heater is calculated to be 27.1 2.
When the applied electrical power to the micro-heater is 110.4
mW, the red-shift amount of the transmission spectrum is one
FSR. The wavelength shift rate is calculated to be 96 pm/mW.

Fig. 2(e) shows a cross-sectional view of the second MDR
(MDR?2) with a p-type doped silicon heater along the white
dashed line AA’ in Fig. 1(d). The heavy p-type implantation
creates a doped resistor in the disk. Fig. 2(f) shows the mea-
sured transmission spectrum of the MDR using the same OVA.
First-order, second-order and third-order WGMs are effectively
excited in the disk. The first-order WGM is measured to have an
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(a) Cross-sectional view of the MDR with a top-placed micro-heater; (b) measured transmission spectrum; (c¢) zoom-in view of the WGM3 103;

(d) spectrum tuning of the MDR with a voltage applied to the micro-heater; (e) cross-sectional view of the MDR with a p-type doped micro-heater; (f) measured
transmission spectrum; (g) zoom-in view of the WGM3 g97; and (h) spectrum tuning of the MDR with a voltage applied to the micro-heater.

FSR of 10.3 nm, the second-order WGM has an FSR of 10.6 nm,
and the third-order WGM has an FSR of 10.7 nm. Fig. 2(g) gives
the measured resonance WGM3 97 at a wavelength of 1538.09
nm and its Lorentzian fitting. The notch has a 3-dB bandwidth of
26 pm, corresponding to a Q-factor of around 0.6 x 10°, and an
extinction ratio of 4.5 dB. The smaller Q-factor is due to the large
optical absorption loss induced by the heavy doped implanta-
tion. Fig. 2(h) shows the spectrum tuning of the MDR when the
applied electrical power to the micro-heater is increased. The
resistance of the micro-heater is calculated to be 330 2. When

the applied electrical power to the micro-heater is 13.2 mW, the
red-shift amount of the transmission spectrum is 3.3 nm. The
wavelength shift rate is calculated to be 250 pm/mW.

The difference shown in the transmission spectra of the two
MDRs is due to the different index perturbations induced by
the metallic and doped micro-heaters in the MDRs. Since the
doped resistor would introduce an additional optical absorption
loss, its Q-factor is smaller than the one with the top-placed
metallic micro-heater. In the meanwhile, the MDR with a doped
micro-heater has a higher wavelength shifting rate than the one
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Fig. 3. Experimental setup. The fiber array and electrical probes connected to
the chip are shown in an enlarged red-dashed box.

with a top-placed micro-heater. Since a higher Q-factor is more
important, especially for the implementation of an OEO where
a higher selectivity of the MPF is needed, the MDR with a
top-placed micro-heater is a better choice in the design and
implementation of an integrated OEO.

C. High-Speed PD

A high-speed silicon photonic PD can be implemented
based on germanium doping. For both designs, an identical
germanium-on-silicon pin PD is implemented. At a reverse bias
voltage of 7.5 V, the PD has a 3-dB bandwidth of 15.69 GHz.

D. Frequency-Tunable MPFs

The operation and the performance of the MPFs based on
the two MDRs are evaluated. Fig. 3 shows the image of the
experimental set-up. Thanks to the high-level integration of the
chip, the set-up is simple and only an external laser source is
required, which makes the system to have a stable operation and
low power consumption. The inset shows the electrical probes
connected to the PM, the MDR and the PD. A CW light gener-
ated by a tunable laser source (Anritsu MG9638A) is sent to the
chip via a polarization controller (PC) which is used to adjust
the state of polarization (SOP) of the input light to the chip
to minimize the polarization-dependent loss. A vector network
analyzer (VNA, Keysight N5227A) is used to measure the fre-
quency response. An incoming microwave signal from the VNA
is tuned from 2 to 10 GHz with a constant power of 10 dBm. A
microwave probe with a GSG configuration in combination with
a bias tee is connected to the microwave port of the PM to apply
the microwave signal together with a reverse bias voltage to the
PM. At the end of the PM, a matched impedance terminator is
used to minimize the microwave signal reflection. The phase-
modulated signal is sent to an MDR, with one of the sideband
be filtered out by the notch of the MDR. To tune the MDR, a DC
voltage is applied to the micro-heater to generate the heat. By
using a PD, the optical signal is converted to a microwave signal.
To collect the microwave signal, another microwave probe with
a GSG configuration in combination with a bias tee is connected
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to the output of the PD. At the optical output coupler, an opti-
cal spectrum analyzer (OSA) is connected to real-time monitor
the optical spectrum of the optical signal from the MDR. Three
high-precision voltage source meters (Keithley 2400) are used
to provide the bias voltages for the PM, the MDR, and the PD.

For the chip with a top-placed micro-heater, the PM is reverse
biased at 3.6 V and the PD is reverse biased at 8.8 V. The bias
voltage for MDRI is tuned from O to 0.13 V to tune the filter
frequency response. Fig. 4(a) shows the measured frequency
response of the MPF with a center frequency tuned from 2 to 10
GHz when the applied electrical power to the micro-heater of
the MDR varies from 0 to 0.6 mW, in which the color indicates
the normalized power of microwave signal. As can be seen, a
frequency tuning range as broad as 8 GHz is achieved with a
power consumption as small as 0.6 mW, which demonstrates
the key advantage of an integrated MPF in the terms of a broad
frequency tuning and low power consumption. Note that the
peak power of the frequency response is becoming smaller with
the increase of the center frequency, which is caused by the
limited bandwidths of the PM and PD. Fig. 4(b) shows the filter
frequency response with a center frequency of 5.0 GHz when
the applied electrical power to the micro-heater is 0.2 mW. The
MPF is measured to have a 3-dB bandwidth of 1.8 GHz, which
matches well with the 3-dB bandwidth of the notch of the MDR,
and an extinction ratio of 19.6 dB.

For the chip with a p-type doped silicon heater, the PM is
reverse biased at 3.5 V and the PD is reverse biased at 8.6 V.
The bias voltage for the MDR is tuned from 1.08 to 1.28 V
to tune the filter frequency response. Fig. 4(c) shows the mea-
sured frequency response of the MPF with a center frequency
tuned from 2 to 10 GHz when the applied electrical power to
the micro-heater of the MDR varies from 0.36 to 0.50 mW.
As can be seen, a frequency tuning range as broad as 8§ GHz
is achieved with a power consumption as small as 0.50 mW,
which again demonstrates the key advantage of the integrated
MPF in the terms of a broad frequency tuning and low power
consumption. Fig. 4(d) shows the filter frequency response with
a center frequency of 4.8 GHz when the applied electrical power
to the micro-heater is 0.43 mW. This MPF is measured to have a
3-dB bandwidth of 2.7 GHz, which matches well with the 3-dB
bandwidth of the notch of the MDR, and an extinction ratio of
7.1 dB.

The frequency response difference between the two MPFs
shown in Fig. 4 is due to the different notch profiles of the MDRs.
The metallic and doped micro-heaters impose a different index
perturbation on the disks and optical coupling, which leads to
the notch difference of the MDRs. Especially, the p-type doped
heater introduces a large optical absorption loss, which cause a
wider bandwidth and poorer selectivity of the MPF.

E. Frequency-Tunable OEOs

By feeding the output signal from the PD to the microwave
input port of the PM through an electrical amplifier with a
gain larger than the loop loss, the MPF becomes an OEO and
microwave oscillation starts. The oscillation frequency of the
OEO could be tuned by tuning the center frequency of the
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MPF via applying a different bias voltage to the micro-heater
of the MDR. In the OEO experiment, the output signal from
the PD is equally divided by an electrical coupler into two
paths. In one path, the signal is amplified by two cascaded
power amplifiers (MultiLink modulator driver MTC5515-751)
and fed to the microwave input of the PM; in the other path, the
microwave signal is guided to an electrical spectrum analyzer
(ESA, Agilent E4448A) for real-time spectrum monitoring and
a signal source analyzer (SSA, Agilent ES052B) for phase noise
measurements.

For the chip with a top-placed micro-heater, Fig. 5(a) shows
the measured electrical spectrum of the generated microwave
signal at 4.74 GHz, where the frequency span is 6 GHz and the
resolution bandwidth (RBW) is 200 KHz. A side-mode suppres-
sion ratio (SMSR) as high as 67 dB is observed. Fig. 5(b) shows
the electrical spectrum of the generated 4.74-GHz signal with a
frequency span of 25 GHz and a RBW of 200 KHz. As can be
seen, higher-order harmonics are observed, which are caused by
the nonlinearity in the OEO loop. Fig. 5(c) shows the measured
optical spectrum at the output grating coupler of the chip when
the OEO is operating at 4.74 GHz. It is clear to see that the
power of the upper first-order sideband is smaller than that of
the lower first-order sideband by 4 dB. The sideband suppres-
sion ratio could be improved if an MDR operating in the critical
coupling condition is employed by re-designing the coupling
gap and length. Although the upper sideband is not completely
removed, the residual power is very small, and an effective PM-
IM conversion is achieved. Fig. 5(d) shows the measured phase
noise of the generated microwave signal when the OEO is oper-
ating at4.74 GHz. The phase noise at a 10-KHz offset frequency
is measured to be —81 dBc/Hz, which is large considering the
loop length is very small. The phase noise performance can be

further improved by adding an optical waveguide delay line in
the chip to increase the loop length or by using an MDR with a
higher Q-factor.

The frequency tunability of the OEO is also investigated. By
tuning the bias voltage to the micro-heater, the notch of the MDR
is shifted and thus the frequency of the generated microwave sig-
nal is tuned. Fig. 5(e) shows the superimposed spectrums of the
generated microwave signal with its frequency tuned from 3 to
7.4 GHz. As can be seen, with the frequency of the generated
microwave signal tuned, a high SMSR is still maintained. Since
the MPF has a lower gain at a higher frequency and the two
microwave amplifiers could not offer an enough gain to sup-
port the OEO to operate at a frequency higher than 7.4 GHz, the
frequency tunable range is limited to 3 to 7.4 GHz in this experi-
mental demonstration. Fig. 5(f) shows the measured phase noise
of the generated microwave signal when its frequency is tuned.
It is clear to see the phase noise of the generated microwave
signal maintains around —80 dBc/Hz at the offset frequency of
10 KHz, which verifies the key advantage of an OEO to have a
constant phase noise with the increase in oscillation frequency.

For the chip with a p-type doped micro-heater, Fig. 6(a) shows
the measured electrical spectrum of the generated microwave
signal at 4.56 GHz, where the frequency span is 6 GHz and
the RBW is 200 KHz. An SMSR as high as 61 dB is observed.
Fig. 6(b) shows the electrical spectrum of the generated 4.56-
GHz signal with a frequency span of 25 GHz and a RBW of 200
KHz. Again, higher-order harmonics are observed, which are
caused by the nonlinearity in the OEO loop. Fig. 6(c) shows the
measured optical spectrum at the output grating coupler of the
chip when the OEO is operating at4.56 GHz. Itis clear to see that
the power of the upper first-order sideband is smaller than that
of the lower first-order sideband by 7 dB, which again verifies
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TABLE I
HEATER POWER CONSUMPTION OF OEOS FOR FREQUENCY TUNING

Frequenc DC Voltage (V)/

OEO (g}Hz) Y Current }(gmf\)) Power (mW)
31 0.01/033 0.003
35 0.02/0.71 0.014
OEO 42 0.03/1.10 0.033
with a 47 0.05/1.82 0.091
top- 53 0.07/2.69 0.188
placed 59 0.08/3.06 0.245
heater 65 0.09/3.36 0302
7.0 0.10/3.58 0358
74 0.11/3.81 0419
3.0 1.09/0.33 0.360
OEO 3.6 1.14/0.34 0.388
with a 42 1.16/0.35 0.406
Zzyﬁ; 46 1.18/0.36 0425
Sih‘i . 6.0 1.22/0.38 0.464
P 6.5 1.25/0.39 0.483
6.9 1.28/0.39 0.499

that an effective PM-IM conversion is achieved. Fig. 6(d) shows
the measured phase noise of the generated microwave signal
when the OEO is operating at 4.56 GHz. The phase noise at a
10-KHz offset frequency is measured to be —78 dBc/Hz, which
is also large considering the loop length is very small. The low
phase noise is due to the high Q-factor of the MDR.

The frequency tunability of the OEO is also investigated.
Fig. 6(e) shows the superimposed spectrums of the generated
microwave signal with its frequency tuned from 3 to 6.8 GHz.
As can be seen, with the frequency of the generated microwave
signal tuned, a high SMSR is still maintained. In addition, near
the frequency of 5 GHz, there is no microwave oscillation. This
is because the filter selectivity is undermined since the doped
silicon heater induces a large optical absorption loss at this
point, which inhibits the single mode oscillation in the OEO
loop. Fig. 6(f) shows the measured phase noise of the generated
microwave signal when its frequency is tuned. It is clear to see
the phase noise of the generated microwave signal maintains
around —80 dBc/Hz at the offset frequency of 10 KHz, which
verifies again the key advantage of an OEO to have a constant
phase noise with the increase in oscillation frequency.

The power consumption of the two OEOs is also evaluated.
Table I summarizes the power consumption of the two OEOs
when operating at different frequencies. Overall, the OEOs have
a low power consumption, which is attributed to the low power
needed for thermal tuning of the MDRs. Specifically, with a
frequency tuning range from 3 to 7.4 GHz, the OEO with a
top-placed micro-heater has a power consumption from 0.003
to 0.419 mW, a net power consumption increase of 0.416 mW.
The frequency shifting rate is calculated to be 10.6 GHz/mW.
With a frequency tuning range from 3 to 6.8 GHz, the OEO
with a doped micro-heater has a power consumption from 0.360
to 0.499 mW, a net power consumption increase as small as
0.139 mW. The frequency shifting rate is calculated to be
23.7 GHz/mW. The doped micro-heater performs better in terms
of frequency shifting rate.

Compared the performance of the two OEOs using two dif-
ferent micro-heaters, the one with a top-placed micro-heater
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has better performance in terms of frequency tuning range and
phase noise. Since the doped silicon heater induces an optical
absorption loss to the MRD, the Q-factor of the MDR is lower
and the selectivity of the MPF is poorer, thus the phase noise
performance is degraded. For the implementation of an OEO, a
high Q-factor is more important, thus an OEO using a top-placed
micro-heater is a better choice.

IV. CONCLUSION

Silicon photonic integrated OEOs for tunable microwave sig-
nal generation have been demonstrated. The key component in
a silicon photonic integrated OEO is the MDR, which was de-
signed by adding a slab waveguide to wrap the disk and the bus
waveguide to reduce the impact of the sidewall roughness on
the optical field confinement. Thus, the loss of the MDR was
reduced and the Q-factor was increased. A wideband PM and
high-speed PD were also implemented on a single chip. Thus,
the overall size of an integrated OEO was small and the power
consumption was low. The frequency tuning was achieved by
thermally tuning the MDR. In the study, two different micro-
heater approaches were employed. Both can provide a frequency
tuning range of 8 GHz. Compared with the microwave signal
generation of the two OEOs, the OEO with a top-placed micro-
heater has a slightly better performance in terms of frequency
tuning range and phase noise. Although an OEO based on a
p-type doped silicon heater can have a wide tunable range, the
optical absorption loss due to the doping is higher, which makes
the selectivity of the MPF poorer and the phase noise higher.

To achieve monolithic integration, a laser source must be also
integrated into the chip, which can be realized using heteroge-
neous integration [32]. In addition, thanks to the compatibility
of silicon photonic technology with the mature CMOS tech-
nology, it is feasible to realize seamless integration between
photonic components and electronic circuits to include a bias
tee, a microwave power amplifier and a feedback circuit into
the chip. Thus, true monolithic integration can be realized and
the OEO performance could be significantly improved, mak-
ing large-scale deployment of on-chip OEOs for applications in
microwave systems possible.
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