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Abstract—High-speed and high-resolution interrogation of a
random fiber grating sensor based on spectral shaping and
wavelength-to-time (SS-WTT) mapping, and pulse compression
for simultaneous measurement of strain and temperature is pro-
posed and demonstrated. In the proposed system, an ultrashort
pulse is spectrum shaped by a high-birefringence (Hi-Bi) random
grating (HBRG) to generate two orthogonally polarized spectra
with a wavelength difference determined by the birefringence of
the HBRG, which are then fed to a dispersive optical loop in which
a linearly chirped fiber Bragg grating (LCFBG) is incorporated,
to perform linear WTT mapping, to generate two temporally sepa-
rated optical pulses, which are converted to two random electrical
waveforms at a photodetector). Random pulse compression is then
performed to increase the interrogation resolution. By measuring
the time shifts of the temporally compressed pulses, the strain and
temperature information is retrieved. An experiment is performed.
The experimental results show that the proposed random grating
sensor and its interrogation system can provide a strain and tem-
perature resolution of 7.1 pe and 0.79 °C at an ultrahigh speed of
20 MHz.

Index Terms—Fiber Bragg grating, interrogation, sensor, lin-
early chirped fiber Bragg grating.

1. INTRODUCTION

IBER grating sensors, with intrinsic advantages such as
light weight, compact size, immunity to electromagnetic
interference (EMI), and high tolerance to harsh environment,
have been extensively investigate and have found numerous
applications in areas such as in aerospace engineering, civil engi-
neering, petrochemical industry, and medical care [1]—-[3]. Usu-
ally, a fiber grating sensor is interrogated by an optical spectrum
analyzer (OSA) to monitor its wavelength shift, but the interro-
gation speed is slow, especially when the sensing resolution is
high [4].
To increase the interrogation speed while maintaining a high
resolution, various interrogation techniques have been proposed.
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For example, using a bulky dispersive element to convert the
wavelength information to its spatial light distribution and us-
ing a linear-array detector to detect the spatial light distribution,
the wavelength information can be measured in real time [5].
The system in [5] is simple and stable, but the free-space imple-
mentation makes the system relatively bulky and costly. The use
of an optical edge filter [6], [7] to convert the wavelength shift
to an intensity change is another approach that can provide real
time interrogation. The major limitation of using an edge filter is
the power variations of the light source, which would be trans-
lated to intensity changes, making the interrogation accuracy
reduced. To increase the accuracy, we may use an optical inter-
ferometric scanner to covert the wavelength shift to an optical
phase shift, with the phase shift estimated by a lock-in amplifier
[8]. The measurement resolution is significantly improved, but
the stability is poor due to the use of an interferometer which is
extremely sensitive to environmental changes.

Recently, fiber Bragg grating (FBG) sensors interrogated
based on microwave photonics (MWP) techniques have been
proposed. The key advantages of using MWP techniques are
the ultra-high interrogation speed and high resolution, which
are realized by translating the wavelength shift in the optical
domain to a microwave frequency change in the electrical do-
main. The microwave frequency change can be measured using
a digital signal processor (DSP) at an ultra-high speed and res-
olution. For example, in [9] two FBGs with one serving as a
sensor FBG and the other as a reference FBG were used to
slice the spectrum of an ultrashort pulse, to generate two spec-
trums. By wavelength-to-time mapping [10], [11], [12], the two
spectrums were converted to two temporal pulses. The sensing
information is obtained by measuring the frequency of the tem-
poral interference pattern, with an increased resolution. To fur-
ther increase the measurement resolution, a linearly chirped mi-
crowave waveform was generated and used in the interrogation
system [13]. By performing pulse compression, the resolution
can be further increased. A similar approach using pulse com-
pression was recently reported in [14], where a linearly chirped
microwave waveform was filtered by a microwave photonic filter
implemented using a phase-shifted FBG (PS-FBG). Again, by
using pulse compression, the sensing resolution was improved.
In [15], an optical chirped pulse is sent to two chirped FBGs,
with one as a sensor FBG and the other as a reference FBG.
Two time-delayed optical chirped pulses are obtained. By beat-
ing the two optical pulses at a photodetector (PD), a de-chirped
microwave signal with its frequency corresponding to the time
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delay difference between the two optical pulses was generated.
Since the time delay difference is temperature or strain depen-
dent, the frequency information reveals the sensing information.
High precision interrogation can also be done using an opto-
electronic oscillator (OEO) [16], [17]. For example, by using
a PS-FBG in an OEO, a microwave signal with its frequency
corresponding to the wavelength difference between the optical
carrier wavelength and the notch wavelength can be generated.
By monitoring the microwave frequency change, high speed
and ultra-high resolution interrogation can be achieved. All the
approaches reported in [9], [13]-[16] can provide high-speed
and high-resolution interrogation. However, since interferomet-
ric structures are employed in the systems, the stability is poor.
In this paper, we propose an approach to implement high-
speed and high-resolution interrogation of a random grating
sensor without using an interferometric structure. The key com-
ponent is a high-birefringence random grating (HBRG) sensor,
which is fabricated in a polarization maintaining fiber (PMF)
by pseudo-randomly varying the grating periods, providing a
random reflection response. An ultra-short pulse from a mode-
lock laser (MLL) is spectrum shaped by the HBRG to generate
two random spectrums with the wavelength spacing determined
by the birefringence of the HBRG, which are then fed to an
optical loop in which a linearly chirped fiber Bragg grating
(LCFBQG) is incorporated. Linear wavelength-to-time mapping
is implemented at the LCFBG in a complementary manner to
generate two temporally separated random waveforms, corre-
sponding to the spectrums along two orthogonal polarization
directions. Using pulse compression, the temporal locations of
the two random waveforms can be precisely measured, and thus
the strain and temperature information can be retrieved. Be-
cause of the high randomness of the reflection spectral response
of the HBRG, the compressed pulses are very narrow, leading
to a significantly increased interrogation resolution. Further-
more, using the LCFBG in a complementary manner can pro-
vide complementary optical dispersion to the two orthogonally
polarized spectrums. Thus, the two wavelength-to-time mapped
temporal waveforms would experience positive and negative
time delays, which would make the two temporal waveforms
shift in the opposite directions, avoiding the overlap of the two
random waveforms in the interrogation. In addition, without us-
ing an interferometric structure, the system is ultra-stable. The
proposed approach is experimentally evaluated. Experimental
results show that a strain and temperature resolution of 7.1 e
and 0.79 °C at an ultra-high speed of 20 MHz are achieved.

II. PRINCIPLE

The proposed interrogation system is shown in Fig. 1. An ul-
trashort optical pulse generated by a mode-locked laser (MLL)
is sent through a bandpass optical filter and an optical circulator
(OC1) to an HBRG serving as a sensor. A polarization controller
(PC1) is used to control the polarization direction of the ultra-
short pulse to have an angle of 45° relative to one principle axis
of the HBRG. Thus, the incident light pulse is projected equally
to the two principle axes of the HBRG. Two orthogonally po-
larized spectrums with a wavelength spacing determined by the
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Fig. 1. (a) Schematic of the proposed HBRG sensor interrogation system;
(b) the spectrums and temporal waveforms at different locations of the system.
MLL: mode-locked laser; OC: optical circulator; PC: polarization controller;
HBRG: high birefringence random grating; PBS: polarization beam splitter;
LCFBG: linearly chirped fiber Bragg grating; EDFA: erbium-doped fiber am-
plifier; PD: photodetector; DSP: digital signal processor.

birefringence of the HBRG are generated and sent to an opti-
cal loop via a second OC (OC2) and a second PC (PC2). The
optical loop consists of a polarization beam splitter (PBS), an
LCFBG, and a delay line. PC2 is used to align the polarization
directions of the optical pulses (horizontal and vertical) with
the principle axes of the PBS, so that one optical pulse with
its polarization aligned with one principle axis (say, horizon-
tal) is directed to the left path, and the optical pulse with its
polarization aligned with the vertical principle axis of the PBS
(vertical) is directed to the right path. Then, the horizontally po-
larized light is reflected from the shorter wavelength end of the
LCFBG, thus wavelength-to-time mapping is implemented at
the LCFBG with a positive dispersion coefficient. Meanwhile,
the vertically polarized light is reflected from the longer wave-
length end, and wavelength-to-time mapping with a negative
dispersion coefficient is implemented. The leaked light due to
the imperfect reflection of the LCFBG is blocked by the PBS be-
cause of the orthogonal polarization. A section of single-mode
fiber (SMF) is added to the left path to introduce an additional
time delay, say 7y, thus the reflected horizontally polarized pulse
would experience a 27, extra time delay, to make the two pulses
further separated in the time domain to avoid overlap. The two
mapped optical pulses are then amplified by an erbium-doped
fiber amplifier (EDFA) before photodetection at a PD, and two
electrical random waveforms are generated, corresponding to
the two random spectrums of the HBRG sensor. By performing
pulse compression using a DSP, the two pulses are significantly
compressed, which leads to a precise measurement of the tem-
poral shifts of the two random waveforms, leading to an accurate
retrieval of the strain and temperature information.

The key component of the generation system is the random
grating. The random grating is fabricated based on the plane-by-
plane writing technique using a Femto-second (fs) laser, which
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Fig. 2. Schematic of the setup for plane-by-plane grating fabrication [18]. fs
laser: femtosecond laser.

is shown in Fig. 2 [18]. By using a microscope objective, pulses
from the fs laser are focused to the fiber core region and make
high localized changes to the refractive index of the fiber core.
The objective is fixed on a translation stage driven by a piezo
position system, which allows the focus to dither along the fiber
axis. By randomly varying the grating planes spacing between
0 pum and 3.5 pum plane-by-plane, a random index modifica-
tion is realized, leading to a random grating, and the spacing
randomness is determined by a random number generated by a
computer.

For a random grating, the core-core mode Fabry-Pérot inter-
ferences and core-cladding mode Mach-Zehnder interferences
existing in the fiber would generate irregular reflections, leading
to a random reflection spectrum. Because the transmitted core
mode is much higher than the other modes, the spectrum of the
transmitted light is almost the same as that of the incident light,
with some loss [19]. By feeding a broadband light pulse into
the random grating, a light pulse with a random spectrum can
be reflected. The change of the environmental temperature and
the applied strain will cause change in the interferometer length
and effective refractive indices of the core mode and cladding
modes, leading to a spectral shift in the corresponding reflection
spectrum of the random grating.

Mathematically, the wavelength shift can be expressed as

A = g1 Ac + AT (1)

where Ac is the strain change, AT is the temperature change
and g1, g» are the corresponding coefficients, respectively.
Because the random spectrum is broad, direct interrogation of
the spectrum shift using an optical spectrum analyzer (OSA) will
have poor accuracy and low resolution. To increase the resolu-
tion, pulse compression technique can be employed. A random
waveform can be compressed significantly by correlation [20].
If a shifted spectrum is correlated with a reference spectrum (a
spectrum without experiencing a temperature or strain change),
the correlation peak will appear at a location representing the
spectrum shift. Thus, the shift of the spectrum can be accurately
measured. However, the measurement of the spectrums using
an OSA has a low speed. In the proposed approach, we convert
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the spectrums to the time domain based on wavelength-to-time
mapping, and the measurement can be done in the time domain
using a high-speed DSP.

As shown in Fig. 1, the LCFBG is employed to implement
the wavelength-to-time mapping. Assuming the value of the
dispersion of the LCFBG is ® (ps/nm), for an input light
pulse g(t), the reflected light wave at the 3rd port of OC2 is
given by [10]

y(0) = e (i ) <G 0)

= 2
2%, @)

__t
w= by

where G(w) is the Fourier transform of g(¢), and the dispersion
®, (ps?) is calculated by &, = %(I)

From (2), it can be seen that the envelope of the reflected
light wave is proportional to the Fourier transform of the input
light wave, which is the spectrum of the random grating. By
applying the reflected optical pulse to a PD, an electrical random
waveform is obtained. When a strain or temperature change
is applied to the random grating, the wavelength shift will be
translated to a temporal shift, given by

AT = AN (3)

where A7 is the temporal shift and AA is the wavelength shift.

For a HBRG, the refractive indices of the fast axis and slow
axis are different because of the birefringence of the fiber. Then,
(1) can be rewritten as

Arpl _|9n gr2| |Ac @)
AV gs1 Gs2 | |[AT
where g1, g2 and g1, gso are the coefficients for the fast axis
and slow axis, respectively, and AA s, AL, are the wavelength
shifts along the fast and slow axes, respectively.

The relationship between the wavelength shifts and the strain
and temperature is given by

Aé‘ _ gfl gfg - A)\.f (5)

AT gs1 9s2 A)W
As shown in Fig. 1, an optical pulse entering the optical loop
will be split into two orthogonally polarized pulses, and the two

pulses will experience complementary dispersion introduced by
the LCFBG. Thus, (3) can be rewritten as

JAV 2 A)»f
an) =% ®
where A7, and A7, are the time shifts of the correlation peaks

for the horizontally and vertically polarized pulses, respectively.
Substitute (6) into (5), we get

-1
Ae — l gri  9gr2 AT, @)
AT CI) gs1 9s2 *ATy

As can be seen, the strain and the temperature information

can be measured by measuring the time shifts of the correlation
peaks of the horizontally and vertically polarized pulses.
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Fig. 3. (a) Reflection spectrum of the fabricated HBRG; (b) Reflection spec-

trum and group delay response of the LCFBG.

III. EXPERIMENTAL RESULTS

An experiment based on the setup shown in Fig. 1 is per-
formed. An ultrashort light pulse train with a repetition rate
of 20 MHz generated by a tunable MLL (PriTel FFL-1550-20)
with a 3-dB bandwidth of 8 nm and a pulse width of less than
600 fs is applied to a HBRG via a programmable bandpass op-
tical filter (Waveshaper 4000S) and OC1. The random grating
is fabricated in a polarization maintaining fiber (PMF) with a
length of 50 mm. The reflection spectrum of the random grating
is measured by a joint use of a tunable laser source (Yokogawa
AQ2201) and an optical spectrum analyzer (Ando AQ6312B),
as shown in Fig. 3(a). As can be seen, the random reflection
spectrum over 30 nm is obtained.

Then an optical pulse reflected from the HBRG is sent to the
optical loop, where the horizontally polarized optical pulse is
directed by the PBS to the left path, and the vertically polarized
optical pulse is directed to the right path. The optical pulses are
then experiencing wavelength-to-time mapping at the LCFBG.
The LCFBG used in the experiment is fabricated in a single-
mode fiber (SMF) with a length of 1 m. Its reflection spectrum
is measured by an optical vector analyzer (OVA, Luna Technolo-
gies) and is shown in Fig. 3(b). As can be seen, the LCFBG has a
bandwidth of 4 nm and a central wavelength of 1551.4 nm. The
group delay responses measured from its short and long wave-
length ends are also shown in Fig. 3(b). It can be seen that two
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Fig. 4. (a) Generated random waveforms; (b) auto-correlation of the wave-
form from the horizontal direction; (c) cross-correlation between the waveforms
from the two directions; (d) auto-correlation of the waveform from the vertical
direction.

group delay responses are complementary and the dispersion
coefficients are +2500 ps/nm and —2500 ps/nm, respectively.
The central wavelength of the ultrashort light pulse is tuned at
1551.4 nm, which is identical to the central wavelength of the
LCFBG, and the bandwidth of the optical filter is set as 3 nm,
to get a higher optical power density for effective photodetec-
tion. Thus, the pulse width of the generated waveform should be
7.5 ns. The repetition rate of the pulse train is 20 MHz. To avoid
overlap between two adjacent pulses, the time delay introduced
by the delay line in the optical loop should be greater than 7.5 ns
and smaller than 35 ns.

After amplified by an EDFA, the optical pulses after
wavelength-to-time mapping are fed into a PD (Newport, model
1014, 45 GHz) and the generated electrical waveforms are
monitored by a real-time oscilloscope (Keysight, DSOZ504A,
50 GHz bandwidth, 160 GSa/s). Fig. 4(a) shows the generated
electrical waveforms, from which we could see that the pulse
widths are around 7.5 ns. Fig. 4(b), (¢) and (d) shows the auto-
correlation of the waveform from the horizontal polarization di-
rection, cross-correlation between the waveforms from the two
directions, and the auto-correlation of the waveform from the
vertical polarization direction, respectively. As can be seen, the
pulses are significantly compressed for auto-correlation, and
no correlation peak is observed for cross-correlation. The re-
sults confirm that a random waveform can be significantly com-
pressed for autocorrelation, and no compressed pulse is obtained
for cross-correlation since the two waveforms used for cross-
correlation are different due to the complementary wavelength-
to-time mapping.

Fig. 5 shows the compressed pulses from the horizontal direc-
tion when a different temperature is applied to the HBRG sensor
while maintaining the strain constant. The reference waveform
is one generated at 82 °C. As can be seen, the height of the
cross-correlation peak is reducing when the temperature ap-
plied to the HBRG is decreasing. This is because the overlap
regions between the measured random waveform and the ref-
erence random waveform are reducing when the temperature is
decreasing, leading to a reduced cross-correlation peak. If the
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Fig. 6. (a) Time shifts versus temperature changes with no strain applied;

(b) Time shifts versus strain changes at a fixed room temperature (23.2 °C).

length of the random waveform is much longer than the time
shift due to a strain or temperature change, the reduction in the
cross-correlation peak will be small and negligible.

Fig. 6(a) shows the time shifts of the compressed pulses versus
temperature change with no strain applied, and Fig. 6(b) shows
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the time shifts of the compressed pulses versus strain change at a
fixed room temperature (23.2 °C). Based on the measurements in
Fig. 6, we get the relationship between the strain and temperature
and the time shifts,

| 0.398 pe/ps

Ae —0.422 pe/ps | | Aty
AT| = | —3.291 °C/ps

3.793 °C /ps —ATJ ®)

As can be seen, for this system, once the temporal shifts are
measured, the strain and temperate information can be retrieved
simultaneously.

Based on Fig. 6, the sensitivities are calculated to be
31.48 ps/°C and 3.5 ps/pe, which can be further improved if
an LCFBG with a greater dispersion coefficient is used. The
minimum width of the compressed pulses is 25 ps, correspond-
ing to a temperature resolution of 0.79 °C and strain resolution of
7.1 pe, which can be improved if a PD with a wider bandwidth,
an LCFBG with a greater dispersion, and a random grating with
a higher randomness are employed. The minimum detectable
wavelength shift is determined by the sampling rate of the os-
cilloscope and the dispersion coefficient of the LCFBG. The
sampling rate of the oscilloscope is 160 GSa/s, and the disper-
sion coefficient of the LCFBG is 2500 ps/nm, so the minimum
detectable wavelength shift is calculated to be 2.5 pm. The inter-
rogation speed is determined by the repetition rate of the MLL,
which is 20 MHz. The experimental errors are within £0.8 °C
and 49 pe. Comparing with the results reported in [15], [21], this
system shows a higher sensitivity and higher accuracy. Without
using an interferometric structure, the system is ultra-stable.

IV. CONCLUSION

We have proposed and experimentally demonstrated a new
approach to achieve high-speed and high-resolution interro-
gation of a HBRG sensor based on spectral shaping and
wavelength-to-time mapping and pulse compression for simul-
taneous measurement of strain and temperature. The key con-
tribution of the work was the use of a HBRG to generate a
random spectrum, which was compressed in the time domain
after wavelength-to-time mapping. Since the spectrums were
converted to the time domain, high speed and high resolution
integration using a DSP is possible. In addition, pulse compres-
sion enabled the interrogation with an increased resolution. The
approach was verified experimentally. Simultaneous measure-
ments of strain and temperature with a resolution of 7.1 pe and
0.79 °C at an ultra-high speed of 20 MHz were demonstrated.
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