Abstract—An optoelectronic oscillator (OEO) is a microwave photonic system consisting of an amplified optoelectronic feedback loop to generate a microwave signal. To reduce the phase noise, the feedback loop must be long to ensure a high Q factor, which is usually implemented by incorporating a long optical fiber in the loop. The key limitation of using a long fiber is that a large number of closely spaced longitudinal modes exist in the feedback loop, which makes single-frequency oscillation difficult to achieve. In this article, we propose to incorporate a photonic integrated microdisk resonator (MDR) in an OEO to implement parity-time (PT) symmetry as well as frequency tuning. By employing the reciprocity of light propagation in the MDR, two mutually coupled optoelectronic loops having an identical geometry with one having a gain coefficient and the other a loss coefficient, identical in magnitude, to form a PT-symmetric OEO that support single-frequency oscillation, are implemented. The tuning of the frequency is realized by thermally tuning the MDR. Experimental results show a microwave signal with a frequency that is tunable from 2 to 12 GHz is realized. The phase noise of the generated microwave signal at a frequency of 11.5 GHz is -117.3 dBc/Hz at a 10-kHz frequency offset. The use of a photonic integrated microdisk resonator makes the entire PT symmetric system have high potential for full photonic integration.

Index Terms—Optoelectronic oscillator, photonic signal generation, parity-time symmetry, silicon photonics.

I. INTRODUCTION

MICROWAVE signals having an ultra-low phase noise is of fundamental importance for high-performance operation of systems such as communications systems, radar, and modern instruments [1], [2]. A microwave signal generated based on electronics has relatively high phase noise, especially at high frequencies due to a relatively small Q factor [3], [4]. To reduce the phase noise, a solution is to generate a microwave signal in the optical domain. For instance, by beating two optical comb lines from an optical comb generator, a microwave signal with an ultra-low phase noise can be generated [5]–[7]. Based on photonics, a microwave signal with a wide frequency tunable range can also be generated. For example, a microwave signal with a frequency tunable range from 0.5 to 110 GHz was generated based on optical sideband injection locking [8]. In addition to the generation of a microwave signal using an optical comb generator, a microwave signal with a low phase noise can also be generated by an optoelectronic oscillator (OEO). An OEO is a microwave photonic system consisting of a hybrid optical and electronic feedback loop [9]. By using a long fiber in the loop, a microwave signal with a low phase noise can be generated. For example, by using a fiber with a length of 16 km in the feedback loop, a microwave signal with an ultra-low phase noise of -163 dBc/Hz at an offset frequency of 6 kHz was generated [10], [11]. One important feature of an OEO for microwave generation is that the phase noise performance is not affected by the frequency tuning. This feature provides the possibility of generating a highly frequency-tunable microwave signal with a constant phase noise over the entire frequency tunable range.

However, the key limitation of using a long fiber in an OEO is that a large number of closely spaced longitudinal modes exist in the loop, making single-frequency oscillation difficult to implement [9], [12]. The use of an optical or microwave filter with an ultra-narrow bandwidth may make an OEO operate in a single frequency, but the implementation is extremely difficult, especially for tunable microwave generation [13]–[17]. To ease the requirement for narrow bandwidth, an OEO with dual or multiple loops was proposed and demonstrated [18]–[20]. Thanks to the Vernier effect, single-mode oscillation is implemented while maintaining a low phase noise. However, an OEO with dual or multiple loops has very limited tunability because the loop lengths of the two or multiple loops should be re-adjusted if the oscillation frequency is tuned, to make the resonance frequency of the OEO loop match the OEO oscillation frequency. Recently, parity-time (PT) symmetry, an effective solution for mode selection [21]–[23], was employed in an OEO to achieve single-mode oscillation [24], [25]. In a PT-symmetric OEO, two mutually coupled optoelectronic loops having an identical geometry with one having a gain coefficient and the other an equal amount of loss coefficient, were formed to achieve single-frequency oscillation. Stable oscillation with very low phase noise was realized. The limitation of the technique reported in [24], [25]
is that the frequency of the generated microwave signal is fixed with no frequency tunability.

To implement a frequency-tunable PT-symmetric OEO, one solution is to have a frequency-tunable microwave photonic bandpass filter (MPBF) in the OEO. Recently, we proposed and experimentally demonstrated a frequency-tunable PT-symmetric OEO, incorporating an MPBF implemented based on phase modulation to intensity modulation (PM-IM) conversion using a phase modulator (PM) and an integrated microdisk resonator (MDR) [26]. The frequency tunability was realized by thermally tuning the MDR, to change the center frequency of the MPBF. The work reported in this article is an extension of the work in [26]. Specifically, in this paper an in-depth study of the frequency-tunable PT-symmetric OEO including a detailed theoretical analysis and more experimental results is performed.

The key to achieve single-frequency oscillation is to employ PT symmetry, which is realized by using two mutually coupled optoelectronic loops that are formed by a shared use of the MDR. The two loops have an identical geometry due to the reciprocity of light propagation in the MDR. By controlling the polarization states of the light waves injected into the MDR from the two ends, the gain and loss coefficients of the two loops can be controlled. When the PT symmetry for a specific oscillation mode is broken, a stable single-mode oscillation at that specific frequency is realized. Again, the frequency tunability is realized by tuning the center frequency of the MPBF through thermal tuning of the MDR. The proposed frequency-tunable PT-symmetric OEO is analyzed theoretically and evaluated experimentally. Single-mode oscillation with a frequency tunable range from 2 to 12 GHz is experimentally demonstrated. The phase noise of the generated microwave signal at 11.5 GHz is measured to be -117.3 dBc/Hz at a 10-kHz frequency offset, which can be further reduced if the length of the OEO loop is further increased.

Fig. 1 shows the schematic diagram of the proposed highly tunable PT-symmetric OEO based on an integrated MDR. As can be seen, a laser diode (LD) is used to generate a light wave that is coupled into a PM via a polarization controller (PC1). Note that PC1 is used to minimize the polarization-dependent loss. The modulated signal at the output of the PM is divided into two branches by an optical divider (OD). In the upper branch, the signal is launched into an MDR via a second PC (PC2) and a circulator (Cir1), transmitted through an MDR, and connected to a polarization beam combiner (PBC) via a second circulator (Cir2) and a third PC (PC3). In the lower branch, the signal is launched into the other end of the MDR via a fourth PC (PC4) and Cir2, transmitted through the MDR, and connected to the PBC via Cir1 and a fifth PC (PC5). Note that PC3 and PC5 are employed to make the polarization directions of the optical signals at the inputs of the PBC orthogonal to eliminate the interferences between the two optical signals. The two signals are combined at the PBC. After being amplified by an erbium-doped fiber amplifier (EDFA), the signals are sent to a single-mode fiber (SMF) and detected at a PD. The microwave signal at the output of the PD is amplified by an electrical amplifier (EA) and fed back to the PM. An electrical divider is used to tap part of the generated microwave signal for performance evaluation, including the spectrum analysis through an electrical spectrum analyzer (ESA) and the phase noise analysis through a signal analyzer (SA). The OEO has two identical and mutually coupled feedback loops which are implemented due to the reciprocity of light propagation in the MDR. Since only the transverse electronic (TE) mode can be excited in the bus waveguide in the MDR, the gain and loss of the two loops can be controlled by adjusting the polarization states of the light waves by tuning PC2 and PC4. It should be noted that the joint operation of the LD, the PM, the MDR, and the PD...
Fig. 2. Principle of mode suppression in the PT-symmetric OEO. (a) The selective oscillation mode under broken PT-symmetry. (b) Gain difference enhancement with PT-symmetry.

corresponds to a microwave photonic bandpass filter (MPBF) with its center frequency equal to the wavelength difference between the optical carrier and the notch of the MDR [27].

In the proposed PT-symmetric OEO, two mutually coupled feedback loops having an identical geometry are implemented due to the reciprocity of light propagation in the MDR, thus PT-symmetry is realized. Mathematically, the nth-eigenfrequencies are given by [22]

$$\omega_n^{(1,2)} = \omega_n \pm \frac{g_{an} + g_{bn}}{2} \pm \sqrt{\kappa_n^2 - \left(\frac{g_{an} - g_{bn}}{2}\right)^2}$$

(1)

where ω_n is the nth-eigenfrequency of the two loops, g_{an} and g_{bn} denote the gain coefficients of the two loops for the nth modes, κ_n indicates the coupling coefficient between the two loops for the nth mode.

By adjusting the gain and the loss of the two loops to make $g_{an} = -g_{bn} = g_0$, PT symmetry condition is satisfied, and the nth-eigenfrequencies given in Eq. (1) can be rewritten as

$$\omega_n^{(1,2)} = \omega_n \pm \sqrt{\kappa_n^2 - g_0^2}$$

(2)

It can be seen from Eq. (2) that there is a transition point when the gain or loss coefficient of the two loops equals to the coupling coefficient ($g_n = \kappa_n$). When the gain or loss coefficient is smaller than the coupling coefficient ($g_n < \kappa_n$), any pair of the oscillation modes in the proposed PT-symmetric OEO undergoes bounded neutral oscillations, which indicates the PT-symmetry is unbroken. In contrast, the gain or loss coefficient exceeds the coupling coefficient ($g_n > \kappa_n$), the proposed PT-symmetric OEO has a conjugate pair of oscillating and decaying modes, which indicates the PT-symmetry is broken. Clearly, when only the PT-symmetry of the mode with the largest gain, we assume it is the 0th mode, is broken ($g_0 > \kappa_0$), and the PT-symmetry of all the other modes is unbroken ($g_n < \kappa_n, n \neq 0$), the broken PT-symmetric 0th mode is selected to oscillate in the proposed OEO, and all the other unbroken modes are suppressed (see Fig. 2(a)). It should be noted that the single-mode oscillation can also be realized by selecting only one mode with the largest gain coefficient to be amplified, where the amplification does not exceed the gain contrast $g_{max} = g_0 - g_1$ (see Fig. 2(a)). Here, g_0 is the gain coefficient of the oscillation mode with the largest gain, g_1 is the gain coefficient of the mode with the next largest gain. Obviously, this condition put forward a strict requirement for the bandwidth of the bandpass filter.

In the proposed PT-symmetric OEO, the joint operation of the LD, the PM, the MDR, and the PD corresponds to an MPBF. In the MPBF, the spectral response of the notch of the MDR is translated to the spectral response of the microwave bandpass filter by using one wavelength through phase-modulation to intensity-modulation (PM-IM) conversion. Its center frequency equals the wavelength difference between the optical carrier and the notch of the MDR. By thermally tuning the MDR, the center frequency of the MPBF is changed. Consequently, the center frequency of the microwave bandpass filter is tuned by thermally tuning the MDR.

In comparison, under the PT-symmetric condition, where the coupling coefficient can be regarded as a virtual loss, the gain contrast g_{PT_max} (see Fig. 2(a)) between the modes with the largest gain and the next largest gain can be deduced from Eq. (1), given by

$$g_{PT_max} = \sqrt{g_0^2 - g_1^2} = G \cdot g_{max}$$

(3)

$$G = \frac{g_{PT_max}}{g_{max}} = \sqrt{\frac{g_0}{g_1 + 1}}$$

(4)

where G is the enhancement factor for the gain contrast. Fig. 2(b) shows the gain contrast enhancement under the PT-symmetric condition. Obviously, the gain contrast g_{PT_max} of the PT-symmetric OEO is significantly increased compared with the gain contrast g_{max} of a single-loop OEO. A sharp increase is found for the enhancement factor G when the gain of the oscillation mode with the largest gain g_0 is close to the gain of the mode with the next largest gain g_1. An extreme enhancement in the gain contrast in the PT-symmetric OEO provides an effective solution for mode selection to ensure a very stable single-mode oscillation.
A proof-of-concept experiment is carried out based on the setup in Fig. 1. The optical carrier with an optical power of 8 dBm from the LD (Anritsu MG9638A) has a wavelength of 1557 nm, which differs from the wavelength of the notch of the MDR by 11.5 GHz. The phase modulator (JDSU 10023874) has a 3-dB bandwidth of 20 GHz. The PD (Optilab LR-12-A-M) and EA (MultiLink modulator driver MTC5515-751) have a 3-dB bandwidth of 12 GHz. The MDR is implemented based on silicon with a diameter of 3.7 μm and has a 3-dB bandwidth of around 20 pm. The fiber in the loop is an SMF of around 70 m. The 3-dB bandwidth of the MPBF is measured to be around 2.7 GHz, which contains around a thousand modes. The spectra of the generated microwave signals are measured by an electrical spectrum analyzer (Agilent E4448A). The phase noise of the generated microwave signals is measured by a signal analyzer (Agilent E5052B). The signal analyzer works with a down-converter (Agilent E5053A) to extend the frequency measurement range from 7 to 26.5 GHz. Fig. 3(a) shows the measured electrical spectra of the OEO without PT symmetry and a multi-mode oscillation is found. A narrowband bandpass filter with a 3-dB bandwidth of less than 3 MHz will be needed to realize a single-mode oscillation in this condition.

By tuning PC2 and PC4 to match the gain and loss coefficients of the two feedback loops, single-mode oscillation is implemented. The solid lines in Fig. 3(b) to (e) shows the measured spectra of the single-mode oscillation with different spans and RBWs. As a comparison with the multi-mode oscillation in Fig. 3(a), a purer spectrum with the same span of 1 GHz is
measured in Fig. 3(b) when the OEO is in single-mode oscillation. Fig. 3(c) shows the measured spectrum with a span of 100 MHz, clearly, a single-mode oscillation is observed in the proposed PT-symmetric OEO. Fig. 3(d) shows the spectrum with a 10-MHz span. Note that the solid and the dotted lines represent the measured spectra of the OEO with PT symmetry and operating in a single loop, respectively. Obviously, the side mode suppression ratio (SMSR) of the OEO with PT symmetry is significantly increased as compared with the OEO in a single loop. An enhancement of more than 50 dB is found. In addition, the output power of the OEO with PT symmetry is increased by more than 10 dB to 16.66 dBm. The great enhancement in the SMSR and output power indicates that the PT-symmetric OEO provides an effective solution for mode selection. Further reducing the frequency span to 1 MHz, the spectrum of the generated microwave signal is shown in Fig. 3(e). It shows an extremely narrow bandwidth of the generated microwave signal.

By thermally tuning the MDR, the center frequency of the PM-IM conversion based MPBF is tuned. Meanwhile, the oscillation frequency of the proposed PT-symmetric OEO is measured in Fig. 3(f). Clearly, a tuning range from 2 to 12 GHz is achieved. It should be noted that the maximum oscillation frequency of 12 GHz is limited by the 3-dB bandwidth of the devices used in the OEO (PM, PD, and EA), which can be increased by using devices with a wider bandwidth. Besides, the high-order harmonics are found due to the nonlinearity in the feedback loop.

Theoretically, the phase noise of the OEO will be decreased by using a longer fiber [9], [12]. By increasing the loop length of the OEO with PT symmetry to around 500 m and 1 km, the spectra of the generated signals at an oscillation frequency of 11.5 GHz is measured in Fig. 4. The spectra with a span of 100 MHz in Fig. 4(a) and (b), where the loop lengths are around 500 m and 1 km, respectively, show that the OEO oscillates at single frequency. Fig. 4(c) and (d) show the zoom-in view of the spectra with a 10-MHz span when the loop lengths are around 500 m and 1 km, respectively. The suppression of the side modes in both the OEOs with longer loop lengths is not as good as it is in the OEO with a loop length of around 70 m. That is because the longer loop length causes the smaller mode spacing between the main oscillation mode and the next strongest mode, thus a smaller gain contrast between the two modes. This makes the manually selective breaking the PT symmetry in the OEO more difficult. A solution is to use an electrical feedback electrical loop to detect the change of the loop insertion loss and finely tune the PC for selective breaking the PT symmetry in the OEO.

Fig. 5 shows the phase noise of the generated microwave signals, which is measured by a microwave signal analyzer. When the loop length is around 70 m, the phase noise of the generated microwave signals at different oscillation frequencies of 11.5 GHz and 4.5 GHz are measured and shown in Fig. 5(a). The phase noise of the signals are measured to be \(-78\), \(-102\), \(-122\), and \(-140\) dBc/Hz at an offset frequency of 1, 10, 100, and 1000 kHz, respectively. As can be seen the phase noise measurements between the two signals match quite well, confirming that the phase noise of an oscillation signal is not altered when its frequency is tuned, which is consistent with
the theoretical analysis in [9], [12]. It should be noted, however, there are fluctuations in the measured phase noise spectrum for the 11.5-GHz signal, which are caused due to the environmental disturbance. A solution to eliminate the fluctuations is to package the system to make it isolated from the environment. Fig. 5(b) shows the phase noise measurements of the 11.5-GHz signal generated by the PT-symmetric OEO with different loop lengths of around 70 m, 500 m, and 1 km. As can be seen the phase noise levels at an offset frequency of 10 kHz are -102, -112, and -117.3 dBc/Hz for the OEO with a different loop length of around 70 m, 500 m, and 1 km, respectively. Clearly, a longer loop length enables a lower phase noise, which agrees well with the theoretical analysis in [9], [12].

Multiple peaks are observed in the phase noise measurements in Fig. 5(a) and (b), which are induced by the side modes of the OEO with different loop lengths. As can be seen for the loop lengths of around 70 m, 500 m, and 1 km, the highest peaks for each loop length are measured to be around -105, -86.5, and -79.7 dBc/Hz, respectively. Clearly, a shorter loop length enables a higher side mode suppression, which is consistent with the analysis for the measured spectra in Figs. 3 and 4.

IV. CONCLUSION

In summary, a highly tunable PT-symmetric OEO based on an integrated MDR was proposed and experimentally demonstrated. A stable single-mode oscillation was implemented in the proposed PT-symmetric OEO thanks to the extremely high enhancement in the gain contrast when the PT symmetry was realized based on the reciprocity of light propagation in an MDR. Two mutually coupled loops having an identical geometry due to the reciprocity of light propagation in the MDR were constructed. The PT-symmetry was realized by controlling the gain and loss of the two loops are identical. The tunability of the proposed OEO was realized by using the frequency tunable MPBF, which consists of an LD, a PM, an MDR, and a PD. By thermally tuning the MDR, the center frequency of the MPBF was tuned and thus the oscillation frequency of the proposed PT-symmetric OEO was tuned. The operation of the PT-symmetric OEO was experimentally evaluated when the OEO has different loop lengths of around 70 m, 500 m, and 1 km. Single-mode oscillation was achieved for all the three loop lengths. For the longest loop length of around 1 km, the phase noise was as low as -117.3 dBc/Hz at an offset frequency of 10 kHz and the phase noise density induced by the side modes of the OEO was suppressed below -79.7 dBc/Hz. In addition, a frequency tuning range from 2 to 12 GHz was implemented by thermally tuning the MDR, which can be extended by using devices (PM, PD, and EA) with a wider bandwidth. The demonstration opens new avenues for highly tunable ultra-low phase noise signal generation.

REFERENCES

Zhiquiang Fan received the B.Eng. degree in electronic science and technology (optoelectronic engineering and optical communication) from the University of Electronic Science and Technology of China (UESTC), Chengdu, China in 2015. He is currently working toward the Ph.D. degree with the School of Optoelectronic Science and Engineering, University of Science and Technology, Wuhan, China. His current research interests include photonic generation of microwave waveforms and integrated microwave photonics.

Weifeng Zhang (‘S’12–M’18) received the B.Eng. degree in electronic science and technology from Xi’an Jiaotong University, Xi’an, China in 2008, the M.A.Sc. degree in electrical engineering from Politecnico di Torino, Turin, Italy, in 2011 and the Ph.D. degree in electrical engineering from the University of Ottawa, Ottawa, ON, Canada in 2017. He is currently a Postdoctoral Fellow with Microwave Photonics Research Laboratory, School of Electrical Engineering and Computer Science, University of Ottawa.

His current research interests include silicon photonics and its applications in microwave photonics.

FAN et al.: HYBRID FREQUENCY-TUNABLE PARITY-TIME SYMMETRIC OPTOELECTRONIC OSCILLATOR

Qi Qiu received the B.S. degree in laser technology from the Huazhong University of Science and Technology, Wuhan, China and the Ph.D. degree in optical engineering with the University of Electronic Science and Technology of China (UESTC), Chengdu, China in 1985 and 2007, respectively. He is currently with the School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada. From 1998 to 2001, he was with the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, as an Assistant Professor. In 2001, he joined the School of Electrical Engineering and Computer Science, University of Ottawa as an Assistant Professor, where he promoted to an Associate Professor in 2003, and a Full Professor in 2006. He was one of the top ten reviewers of IEEE/OSA Journal of Lightwave Technology. He is a Distinguished University Professor and University Research Chair with the School of Electrical Engineering and Computer Science, University of Ottawa, ON, Canada. From 1998 to 2001, he was with the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, as an Assistant Professor. In 2001, he joined the School of Electrical Engineering and Computer Science, University of Ottawa as an Assistant Professor, where he was promoted to an Associate Professor in 2003, and a Full Professor in 2006. He was an IEEE MTT-S Distinguished Microwave Lecturer for 2015–2016. He was an IEEE MTT-S Distinguished Microwave Lecturer for 2015–2016. He was an IEEE MTT-S Distinguished Microwave Lecturer for 2015–2016.

Jianping Yao (M’99–SM’01–F’12) received the Ph.D. degree in electrical engineering from the Université de Toulon et du Var, Toulon, France, in 1997. He is a Distinguished University Professor and University Research Chair with the School of Electrical Engineering and Computer Science, University of Ottawa, ON, Canada. He is a Fellow of the Optical Society of America, the Canadian Academy of Engineering, and the Royal Society of Canada.