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Abstract—We demonstrate a novel technique for the interroga-
tion of grating-based fiber optic sensors. The proposed technique
is based on space-to-wavelength mapping using an arrayed wave-
guide grating (AWG). The beam position along the AWG input
coupler is controlled by a closed-loop piezoelectric motor. By em-
ploying a real-time position feedback encoder, the absolute position
of the input light beam can be accurately obtained, which would
yield a precise interrogation of the wavelength due to a fixed re-
lationship between the beam position and the transmission wave-
length of the AWG channel. The proposed system for the inter-
rogation of fiber Bragg grating (FBG) sensors and a tilted-FBG
sensor is experimented. An interrogation resolution of 3 pm and
an interrogation range of 18 nm are demonstrated as well as the
multichannel measurement capability. Initial results show that the
proposed interrogation system has the potential of being packaged
into a compact, light weight, and cost-effective interrogator with
good performance.

Index Terms—Arrayed waveguide grating (AWG), fiber Bragg
grating (FBG), tilted fiber Bragg grating (TFBG), wavelength.

I. INTRODUCTION

N arrayed waveguide grating (AWG) is a key device in

wavelength division multiplexed (WDM) optical com-
munication systems, in which the AWG is used to implement
wavelength multiplexing or de-multiplexing, to increase the
transmission capacity of the communication system [1]. An
AWG can also be used in an interrogation system. The key
advantages of using an AWG in an interrogation system are the
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small size, light weight, good stability and multichannel mea-
surement capability [2]. Numerous interrogation techniques
implemented using an AWG have been proposed [3]—[8]. Sano
et al. [3] proposed to interrogate a fiber Bragg grating (FBG)
sensor by measuring the power ratio of the light powers from
two adjacent AWG channels. Since only two AWG channels
are used, the measurement range is limited. To increase the
measurement range, Niewczas et al.. [4] proposed to measure
the powers of more than two AWG channels. The measure-
ment range can also be increased based on a technique using
interferometric wavelength shift detection [5]. To overcome the
low interrogation resolution associated with these techniques
in [3]-[5], Cheben et al. [6] proposed to use a high-resolution
silicon-on-insulator AWG. The interrogation resolution can
also be increased by using a thermally tunable AWG [7].

To increase the interrogation flexibility and the interrogation
wavelength range, a technique for wavelength interrogation
based on space-to-wavelength mapping was first proposed and
demonstrated by us [8], in which an open-loop piezoelectric
(piezo) motor was employed to scan the input light beam
along the AWG input coupler. Since the beam position was
not known, an additional wavelength reference device, such
as a sampled chirped FBG in [8], was used. The use of an
additional wavelength reference made the system complicated
and the interrogation wavelength range limited. To overcome
these technical challenges, we propose and demonstrate an
AWG-based interrogation technique based on space-to-wave-
length mapping using a closed-loop piezo motor.

The proposed interrogation technique is evaluated under both
small- and large-scale wavelength ranges. First, a single fiber
Bragg grating (FBG) sensor is successfully interrogated under
a small-scale wavelength range. Since the proposed technique
provides an absolute position of the input light beam, experi-
mental results indicate that an accurate measurement with a high
resolution of 3 pm is achieved. Then, a multichannel measure-
ment of our proposed interrogation technique is tested by si-
multaneously interrogating four-distributed FBG sensors with
the use of four designated AWG channels. Finally, the interro-
gation under large-scale wavelength range is tested by recon-
structing the transmission spectrum of a tilted-FBG (TFBG)
sensor, a 18-nm wavelength range is achieved by setting the
travel range of the piezo motor to 540 pm. A TFBG sensor is
one kind of short-period grating with the grating planes slanted
or blazed with respect to the fiber axis [9]. Due to the tilt of
the grating, multiple resonances within a large-scale wavelength
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Fig. 1. Enlarged view of the second focusing slab region.

range are generated which are sensitive to the refractive index of
surrounding medium and make it ideal for biomedical applica-
tions [10]. However, these multiple resonances require a wave-
length interrogation technique to have a high bandwidth with
light weight and miniaturized size. Our proposed interrogation
technique is poised to provide the solution to these challenges.
The proposed interrogation unit can be packaged into a light
weight, small size, cost-effective interrogator with a high reso-
lution and a broad wavelength interrogation range.

II. THEORY

An AWG is a passive optical device based on planar lightwave
circuits and consists of input/output waveguides, two focusing
slab regions, and a phase array of multiple channel waveguides
located between the two slab regions (input and output cou-
plers) with a constant path difference, AL, between adjacent
waveguides. Different wavelengths experience different phase
retardations within each channel waveguide. The wavelengths
are spatially separated at the second focusing slab region. The
phase retardations of two light beams passing through the :th
and (i+ 1)th channel waveguide within the region of the second
focusing slab are well documented in [1], [11] with an illustra-
tion shown in Fig. 1.

The channel waveguide separation is d, and the radius of cur-
vature is f. After two light beams, Beam a and b, are introduced
into the first focusing slab region at the position of 1 (not shown
in the figure) and travel through the ith and (i + 1)th channel
waveguide respectively, the two beams will constructively inter-
fere at the focal point x. In order to satisfy the condition of con-
structive interference, the difference between the total phase re-
tardations of the two beams passing through the th and (¢ +1)th
channels should be an integer multiple of 27r. Then, the interfer-
ence condition can be described as [1]

d1$1 dx
— js )\C -
PR

where d; and f; are the channel waveguide separation and the
radius of curvature in the first focusing slab region, 5, and (3,
denote the propagation constants in the slab region and channel
waveguide, \. is the center wavelength of the AWG, and m is
an integer.

By differentiating (1), we obtain the relationship between the
output focal point z and the wavelength X for a fixed input po-
sition x1, shown as
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Fig. 2. Schematic methodology of the proposed approach.

where n; is the refractive index of the slab region and NV, is
the group refractive index of the channel waveguides. Since an
AWG is a reciprocal device, the dependence of the wavelength
A on the input position z; for a fixed output focal point z, that
is the space-to-wavelength mapping, could be expressed by

Aa(z1) = Aa(mo) + kala 3)

where A 4 (o) and A 4(z1) are the transmission wavelengths of
the designated AWG channel with the input light beam at po-
sitions z¢ and z1, respectively; Az is the spatial position dif-
ference between zg and x1; and k4 is the space-to-wavelength
mapping coefficient that is determined by the material and struc-
ture of the AWG as defined by the right part of (2).

From (3), the wavelength of a fixed output channel of an
AWG will be tuned if the input light position is scanning along
the first focusing slab region (input coupler). Since the geomet-
rical profile of the slab region is a Rowland Circle, significant
loss will be generated if directly coupling light from a fiber to
the slab region. In our proposed approach, we cut the Rowland
Circle into a slab waveguide in a small region to reduce the
losses. Further experimental results reveal that the error induced
by the slight structure changes in the operation of an AWG is
small and negligible. A schematic of the methodology is shown
in Fig. 2.

By employing a closed-loop controlled piezo motor, the real-
time position of the input light beam can be accurately obtained.
Thus, the wavelength can be interrogated by substituting the
beam position into (3) without the need for an additional wave-
length [8].

III. EXPERIMENTAL SETUP AND RESULTS

The relationship between a beam spatial position and the
transmission wavelength of a designated AWG channel is
tested, with the result shown in Fig. 3.

First, the proposed interrogation technique is evaluated for
measuring small-scale wavelength shift. When the position
of the input light beam is varied from 0 to 15 pm, we obtain
the transmission spectrum. The AWG transmission spectrum
is measured using a photodetector (PD) and a tunable laser
source with a tuning step of 1 pm. As shown in the inset of
Fig. 3, a linear fitting function is obtained which gives the
space-to-wavelength mapping coefficient « 4

Aa(z1) = 1543.000 + 0.0327Az, )
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Fig. 3. Spectrum and wavelength shift of a designated AWG channel as a func-
tion of the beam position.
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Fig. 4. Experimental setup of the proposed interrogation technique based on
space-to-wavelength mapping using a closed-loop piezo motor.

The unchanged transmission spectrum with respect to the
input light beam position and its linear relationship validate the
assumption that the operation of an AWG is not affected by the
structure changes when cutting the Rowland Circle into a slab
waveguide in a small region.

A tuning spectral range of 0.49 nm is obtained withina 15-m
travel range of the input light beam and the coefficient is mea-
sured to be 0.0327 nm/pm.

The experimental setup is shown in Fig. 4. A light beam from
a broadband source (BBS) is amplified by an erbium-doped
fiber amplifier (EDFA), and then sent to the fiber optic sensors
through a circulator. The output fiber tail of the circulator is
mounted on top of a closed-loop piezo motor, fixed and pro-
tected by a fiber sleeve, which is pre-aligned with the input
coupler of an AWG using a positioning stage. The piezo motor
moves horizontally driving the fiber tail to scan along the input
coupler. A capacitive position encoder is embedded in the piezo
motor to provide the absolute position of the scanning fiber tail.
With the position feedback, an actuator signal is properly set
to drive the piezo motor to reach the specified position. This is
regarded as the closed-loop (servo) control. Due to the tempera-
ture dependence of the AWG transmission wavelength (reported
as 11 pm/°C [12]), a thermal electrical cooler (TEC) is attached
to the base of the AWG to compensate for the thermal variations
due to the temperature drift. The output light power of the AWG
is detected by a PD array. A Labview program is developed to
collect and process the measurement data, and implement servo
control of the piezo motor.

The interrogation of an FBG sensor under four different tem-
peratures (16°C, 19.5°C, 22°C, and 25.5°C controlled by an
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oven) is demonstrated. At each temperature, the position of the
input light beam changes from O to 15 ;sm with a tuning step of
0.1 pm, resulting in a spectral interrogation resolution of ~ 3
pm. Fig. 5 illustrates the output power as a function of the ab-
solute position. The peak value representing the absolute PZT
position in accordance to the transmission wavelength of the
FBG is directly estimated by a standard programming module
from the Labview program with the capability to search the peak
value. By employing (4), we are able to calculate the Bragg
wavelength of the FBG sensor for the four temperatures. For
each temperature, the measurement result is shown in Fig. 6.
The variation between the Bragg wavelengths interrogated by
the proposed technique and the values measured by an Agilent
tunable laser source (81640B) is observed to be within 4 pm.

Only one AWG channel is used in the above experiment. As
discussed, one significant feature of applying an AWG for the
wavelength interrogation is that it has multichannel measure-
ment capability. In a second experiment, the interrogation of
four distributed FBGs using four designated AWG channels is
performed, in which the output powers of the four AWG chan-
nels are monitored. Fig. 7(a) shows the spectrum of each AWG
channel when the input light beam is located at four different
positions (0 ym, 5 pm, 10 pym and 15 pum) along the AWG
input coupler. It is seen that the transmission wavelength of an
AWG channel is shifted while the spectrum shape remains un-
changed and the wavelength shift in each AWG channel keeps
the same. The different power levels of the four AWG channels
are believed to be attributed to the nonuniform gain profile of
the EDFA. The interrogation of the four-FBG-based sensor is
performed by measuring its temperature sensitivity, in which
the sensor temperature is modified by an oven. As shown in
Fig. 7(b), the temperature sensitivity is measured to be ~ 10
pm/°C near the wavelength of 1550 nm for each FBG based
sensor, which accords well with the results reported in [13].

The experimental results in Fig. 7 show that the proposed in-
terrogation technique has the capability of multichannel mea-
surement and all the channels are able to constitute a zoom-in
spectrum to reflect a small-scale wavelength shift. As shown in
(3), a broader wavelength range can be achieved by increasing
the travel range of the closed-loop piezo motor. In the experi-
ment, we extend the travel range to 540 pm instead of 15 pm
to cover a broader wavelength interrogation range of 18 nm (se-
lected according to the TFBG sensor in this experiment).

Next, the proposed interrogation technique is tested to
achieve a large-scale wavelength range by reconstructing the
reflected spectrum of a tilted-FBG sensor. A comparison of the
obtained transmission spectrum of a TFBG is shown in Fig. 8.

Fig. 8(a) shows the transmission spectrum of a TFBG ob-
tained using an optical spectrum analyzer (OSA) as a refer-
ence, and Fig. 8(b) shows the transmission spectrum obtained
using our proposed interrogation technique. Comparing the re-
sults shown in Fig. 8(a) and (b), we can see that the transmission
spectrum of a TFBG can be accurately reconstructed, which val-
idates the ability of the proposed interrogation technique to op-
erate in a large-scale wavelength range. The wavelength range
of 18 nm is limited by the specific TFBG we used in this experi-
ment rather than the proposed interrogation technique. Broader
wavelength interrogation range can be achieved by extending
the travel range of the closed-loop piezo motor over 540 pm.
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Fig. 6. Measured Bragg wavelength by the proposed technique and the use of
a PD and a tunable laser source.

The key difference between the proposed technique and the
one reported in [8] is that the wavelength is accurately interro-
gated here by reading the beam position provided by the closed-
loop control. While in [8], since the beam position was not
known, a wavelength reference must be used to estimate the
Bragg wavelength. Clearly, the use of the proposed technique
in this paper would increase the interrogation accuracy and res-
olution. Since no wavelength reference device is needed, the
proposed system has a smaller size with a reduced system com-
plexity and an increased system robustness.

To increase the wavelength interrogation range, a solution is
to extend the travel range of the piezo motor, as discussed above.
If the travel range is extended to 2 mm, a wavelength range of
~ 65 nm will be achieved, which covers the entire C band and
part of the L. band—a wavelength range that is wide enough
for most of FBG sensor applications. The wavelength interroga-
tion range can also be extended by cascading multi-AWG-chan-
nels. Our current AWG has a channel spacing of 0.8 nm. Since
all the AWG channels have the same wavelength tuning capa-
bility, a PZT motor travel range of 25 pym will allow each AWG
channel cover an interrogation range of 0.8 nm. In such a case,
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Fig. 7. Interrogation of a four-distributed-FBG sensor. (a) Shifted spectrum of
each AWG channel with changed position of the input light beam. (b) Measured
temperature sensitivity.

cascaded multi-AWG-channels will cover a broader interroga-
tion range. Compared to the first method to increase the inter-
rogation range, this method is not vulnerable to the size of the
cut Rowland Circle and it further decreases the requirements
of the PZT motor and the fiber-to-waveguide coupling due to
reduced PZT motor travel range. Furthermore, the reduced PZT
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motor travel range can increase the interrogation speed. Our cur-
rent PZT motor has a maximum travel speed of 400 mm/s (PI,
M-663.465). It could provide an interrogation speed of 16 kHz
if a travel range of 25 pm is needed as discussed above. The
broad interrogation range and fast interrogation speed are par-
ticularly suitable for the vibration measurement using a TFBG
sensor [14].

In this paper, a positioning stage is still required for the light
coupling from the input fiber into the input coupler of an AWG.
The butt-to-butt coupling results in a high attenuation of 25 dB,
as shown in Fig. 8, which reduces the performance of the en-
tire interrogation system. The use of a recently developed sub-
wavelength grating coupler could be a solution. In a subwave-
length grating coupler, the light is designed to be coupled into
the input coupler of an AWG from its top surface with the cou-
pling grating structure fabricated directly onto the input coupler.
As a result, positioning stage is no longer required. A simple
configuration with better robustness and higher coupling effi-
ciency has been reported [15].

The AWG chip and the piezo motor are compact in size
(e.g., the AWG is about 30 x 50 x 3 mm and the piezo motor is
about 30 x 90 x 15 mm without the controller). The weight for
both AWG chip and piezo motor (controller included) is less
than 500 g. Furthermore, the cost for a closed-loop piezo motor
with 2-mm travel range (60 nm as the wavelength range) and
0.1-pm spatial resolution (3 pm as the wavelength resolution)
is significantly reduced, making the proposed interrogation
technique cost-efficient. Therefore, in addition to an increased
performance, the proposed interrogation technique also features
a smaller size, lighter weight and lower cost, which enables the
design and package of the proposed interrogation system in a
hand-held and light-weight device at a low cost.

IV. CONCLUSION

We have demonstrated a wavelength interrogation technique
based on space-to-wavelength mapping implemented by an
AWG and a closed-loop controlled piezoelectric motor. The
interrogation was performed by scanning the light beam along

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 28, NO. 18, SEPTEMBER 15, 2010

the AWG input coupler, with the beam position controlled by a
closed-loop piezoelectric motor. A fixed relationship between
the beam position and the transmission wavelength of the AWG
channel was established, making it possible to interrogate the
wavelength by simply measuring beam positions. The key
contribution of this technique was the use of a closed-loop con-
trolled piezoelectric motor which could increase the wavelength
range and resolution of the interrogation system. Since no ad-
ditional wavelength reference device was needed, the system
was greatly simplified. The interrogation of distributed FBGs
and a TFBG to show respectively its performance in small-
and large-scale wavelength range was experimented. Four-dis-
tributed FBGs were successfully interrogated, which confirmed
the multichannel measurement capability of the proposed tech-
nique. The proposed AWG-based interrogation technique has a
high potential to be packaged into a miniaturized, light weight
and cost-efficient device with high performance.
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