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Abstract—Multi-antenna GNSS-over-fiber system is considered
an effective solution for three-dimension (3D) baseline measure-
ment. By precisely determining the transmission time delays be-
tween the antennas and the receiver, the vertical precision can be
improved based on the single difference (SD) model. This method,
however, would encounter problems if the baseline is too long, since
a high precision measurement of the time delay of a long fiber link
is usually time-consuming. Here, we propose and demonstrate a
high-speed phase-stabilized GNSS-over-fiber system for large-scale
3D baseline measurement. A relatively slow but accurate time delay
measurement module is used to calibrate the link delay, then a
fast active compensation device is employed to keep the time delay
constant. If the delay variation exceeds the compensation range,
the time delay measurement module would measure the link delay
again and bias the active compensation device at a new operating
state. In a proof-of-concept experiment, the precision of the 3D
baseline measurement obtained by the proposed system with a
20-km optical fiber is around 2.82 mm thanks to the rigid active
compensation and the high-precision time delay measurement. If
the active compensation device is disabled, the vertical precision
of the baseline measurement obtained would be degraded from
2.82 mm to 16.46 mm in 10 minutes.

Index Terms—3D baseline, GNSS-over-fiber, phase-stabilized
configuration, single difference model.

I. INTRODUCTION

HE GLOBAL navigation satellite system (GNSS) has been
widely adopted for positioning, navigation and timing for
civil aviation, shipping, railways, 5G communication networks
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and other industries [1]-[3]. In order to meet the demand of
high precision measurements, such as attitude determination
of vehicles [4], [5] and displacement monitoring [6]-[9] of
bridges, towers, and dams, GNSS carrier phase measurement
can be implemented to estimate the relative position between
two antennas, also known as the multi-direction baseline [10]. In
order to reduce the complexity and cost, a GNSS-based baseline
measurement system using a single receiver with multiple an-
tennas was proposed [11], [12]. With the increase in the baseline
length, a double difference (DD) model based GNSS-over-fiber
system was proposed to provide a solution to transfer the GNSS
signals with ultralow loss, which also takes advantage of the
immunity to electromagnetic interference of optical fiber [13],
[14].

Regarding the measurement precision, single difference (SD)
model can be utilized to reduce the vertical standard deviation by
afactor of about three compared to the standard DD model while
clock difference error should be eliminated and the transmission
time delay between the antennas and the receiver, also called
the line bias, must be calibrated to be within mm level [12]. The
former condition can be achieved by utilizing a multi-channel
receiver with the same common clock reference source [15]. In
order to satisfy the second condition, time delay measurement
techniques [16], [17] could be utilized to precisely monitor
the line bias variation. Several line bias measurement schemes
have been proposed in GNSS-over-fiber systems, which can be
generally classified into two categories: phase-derived method
[18], [19] and frequency-derived method [20].

In order to obtain a large monitoring range, a long optical
fiber should be employed, which will introduce large line bias
variations and bring new integer ambiguities to the GNSS car-
rier phase measurement. The line bias measurement methods
mentioned above would encounter problems in such application
scenarios. The phase-derived method is implemented based
on phase detection of a single frequency signal and thus the
effective range is limited to the wavelength of the carrier signal
[18], [19]. Although sweeping the frequency in a certain range
can overcome the integer ambiguity problem and result in a
large measurement range [16], the time needed for an effective
measurement would cost more than tens of millisecond, in which
the drift of the long fiber might exceed the mm level. On the
other hand, in the frequency-derived method, there is a tradeoff
between the measurement range and measurement precision.

In this paper, to achieve simultaneously long range and
high precision 3D baseline measurement, a phase-stabilized
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configuration based GNSS-over-fiber system is proposed. The
round-trip delay correction mechanism can eliminate the phase
variation within the delay compensation range. In addition, a
time delay measurement is applied to calibrate the line bias if
the line bias variation exceeds the delay compensation range.
The single frequency signal based active correction method is
fast but leads to the integer ambiguity problem if the delay
variation exceeds the compensation range, while the time delay
measurement is relatively slow due to the frequency sweeping
but unambiguous. Thus, the advantage of the combination in
the proposed configuration is that it can simultaneously keep the
line bias stabilized in a short time and calibrate the unambiguous
line bias parameter in a long time to achieve high precision, large
range, and stable 3D baseline measurement.

This paper is divided into four sections. In Section II, an
analytical model of the 3D baseline measurement based on the
SD and the DD carrier phase measurement is established, after
which the carrier phase observations in the DD model and the
SD model are comparatively analyzed. Simulation analysis of
the line bias influence on the precision of the baseline mea-
surement is also implemented, and the principle of the proposed
phase-stabilized configuration is introduced. In Section III, a 3D
baseline measurement is carried out to compare the 3D baseline
measurement results with and without the phase-stabilized con-
figuration. In Section IV, concluding remarks and discussions
are provided.

II. PRINCIPLE
A. GNSS-Based 3D Baseline Measurement

The measurement model of the GNSS carrier phase can be
expressed as [20], [21]:

Ak = pk — IF £ TF + ¢(6t; — 6t*) + LB; + ANF + ¥
(1

where A denotes the wavelength of the GNSS signal, ¢¥ repre-
sents the measured carrier phase of the signal transfers from the
kth satellite to the ith antenna, pf is the true distance between the
antenna and the satellite, / represents the ionosphere, T denotes
the tropospheric delay, ¢ represents the speed of light in vacuum,
0t is the time shift of the clock, L B; is the line bias between the
receiver and the ith antenna, N is the integer ambiguity of the
carrier phase, and ef denotes the noise.

The SD model with a common clock reference source can be
established by the differentiation of carrier phases come from
the kth satellite to the ith and the jth antennas, i.e.,

A} = s*bT +ALB;; + AAN] +Ael; )

where T represents the transpose symbol, A denotes the SD
operation, b = [bx by b, ]is the 3D baseline, sk = [sfﬁ 55 sk ]
represents the normalized line of sight vector between the anten-
nas and the kth satellite. The SD model with n observed satellites

can be expressed as
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The DD model is obtained by making differences between the
reference satellite and other satellites based on the SD model:

AVAQT = (s¥ —s")b” + AVAN/T+VAelT  (4)

where VA denotes the DD operation. (4) shows that only the
baseline parameter and the integer ambiguity parameter are left
after the DD operation. Similar to (3), the DD model with n
observed satellites can be expressed as

1r
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In the DD model, the integer ambiguities can be treated as
constant once they are fixed as long as the satellites are kept
tracking [10]. In the SD model, the existence of the line bias
variation could affect the baseline result, and the large line bias
variation could even introduce new integer ambiguities into the
raw integer ambiguities. Therefore, the main principle of the
proposed work is to utilize a phase-stabilized configuration to
maintain the line bias constant within limits. Besides, the integer
ambiguities can also be calibrated by a time delay measurement
in the situation of large line bias variation.

B. Comparative Analysis of Carrier Phase Observations in
the SD Model and the DD Model

After giving the carrier phase measurement principle of the
baseline measurement, the theoretical precision of the SD and
the DD carrier phases is analyzed without the consideration of
the influence of the line bias.

For simplicity, the observation matrix ® A of the carrier phases
in the SD model is defined,

6]
Ay, q%.
N ol e ®)
N S
L9 L ons
where
1 -1 0 0 0 0
G- o 0 1 -1 --- 0 O 7
0O 0 0 O 1 -
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Fig. 1. The zero baseline experiment setup. VDL: variable delay line.

Supposing that the precision of the raw carrier phase (¢?)
measurement is 0'(21), the variance-covariance matrix of the raw
carrier phase measurement can be obtained,

[0} o} @2 97 - o7 97" ~ I,02 ®)

According to (6), (7), (8) and the variance-covariance propa-
gation law, the variance-covariance matrix Q¢ , of ®a can be
written as

Qe, = G(1,03)G" =2071, )

Similarly, the observation matrix ®ya in the DD model is
defined as

VAgH! AP
_ | VAg? _ | A%
(n—1)x1 oA
where
1{ -1 0 0
e I (an
1 0 0 -1 (n—=1)xn

According to (9), (10), (11) and the variance-covariance prop-
agation law, the variance-covariance matrix @) ¢, of ®ya can
be written as

2 1 1

2 1

Qe., = H(20JI,)H" =20
1 2

(12)

Compared (12) with (9), the raw measurement error of the

carrier phase aﬁ is multiplied by a transfer matrix with larger

diagonal elements. Thus, the precision of the carrier phase

measurements of the DD model is lower than that of the SD
model as long as the line bias maintains constant.

C. The Simulation Analysis of the Line Bias Influence

To investigate the impact of the line bias error on the precision
of the baseline measurement, a zero baseline experiment was
carried out as shown in Fig. 1 and the fiber used was only about
1 m. There are two significant advantages of the zero baseline
experiment. Firstly, the zero baseline is the most ideal reference
in theory, thus no other external reference is needed. Secondly,
all errors can be eliminated except the line bias error. Thus any
departure is an indication of the line bias error and the error of
the original carrier phase measurement.

In the simulation, the line bias error was artificially added
by a step of 1 mm, the results of the baseline measurement

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 21, NOVEMBER 1, 2021

TABLE I
THE RELATIONSHIP BETWEEN THE LINE BIAS ERROR AND THE BASELINE
ERROR IN THE SD MODEL

Line bias East error North error Vertical
error (mm) (mm) (mm) error (mm)

1 0.25 0.69 -2.56
2 0.64 1.51 -5.04
3 1.04 2.34 -7.51
4 1.43 3.16 -9.98
5 1.83 3.99 -12.46
6 2.22 4.81 -14.93
7 2.62 5.64 -17.41
8 3.02 6.47 -19.88
9 3.41 7.29 -22.35
10 3.81 8.12 -24.83
11 4.20 8.94 -27.30
12 4.60 9.77 -29.77
13 4.99 10.59 -32.25
14 5.39 11.42 -34.72
15 5.78 12.25 -37.20
16 6.18 13.07 -39.67
17 6.57 13.90 -42.12
18 6.97 14.72 -44.62
19 7.36 15.55 -47.09
20 7.76 16.37 -49.56

S~ Mzl
Antennal . [

ocf—="""y
E—3 i /LD

ey iy =

MzMm2

Remote site

B ,, ,Llﬂ.‘alslgtigu7 g

Fig.2. Schematic diagram of the phase-stabilized configuration based GNSS-
over-fiber system. OC: Optical coupler; LD: Laser diode; PD: Photodetector;
MZM: Mach-zehnder modulator; C: Circulator; M-VODL: Motorized variable
optical delay line.

solved by the SD model were recorded. To reduce the influence
of satellite constellation distribution, the results were calculated
by the same raw observation data under the same distribution
situation of satellites. Table I shows the relationship between
the line bias error and the baseline error in the SD model. The
error propagation coefficients of the three components can be
calculated as 0.38, 0.81 and 2.48 separately. It can be concluded
that the line bias error has a great influence on the results of
the three components of the baseline solved by the SD model,
especially in the vertical component.

D. The Principle of the Proposed Phase-Stabilized
Configuration

In order to eliminate the huge influence of line bias on the
measurement precision, a phase-stabilized configuration is pro-
posed to make the line bias parameter constant in this section.

The schematic diagram of the phase-stabilized configura-
tion based GNSS-over-fiber system is shown in Fig. 2, which
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Fig. 3. The control process of the proposed phase-stabilized configuration.

contains multiple GNSS-over-fiber transmission links, phase-
stabilized modules, and a multi-channel receiver. At the remote
site, GNSS signals are received by the antennas. A lightwave
generated by a laser diode (LD) is intensity-modulated by the
GNSS signal through a Mach-Zehnder modulator (MZM). As
the GNSS signal is very weak, the GNSS signal should be
significantly amplified before driving the MZM. A low noise
amplifier with large gain and small noise figure can significantly
reduce the influence of noise introduced by the GNSS link. The
modulated optical signal is transmitted to the local station via an
optical fiber and eventually detected by a photodetector (PD).

As shown in Fig. 2, GNSS signals are received by PD3
and PD4. The multi-channel GNSS receiver is responsible for
decoding navigation data and measuring the carrier phase.

The control process of the proposed phase-stabilized config-
uration is shown in Fig. 3. The phase change of the highest
frequency signal is continuously measured as the feedback con-
trol signal of a motorized variable optical delay line (M-VODL).
Thus the line bias can maintain constant within the delay com-
pensation range. The new integer ambiguity calibration of the
line bias is based on the time delay measurement in which
several other auxiliary signals help to solve the ambiguity of
the highest frequency signal. Firstly, the initialization process
is performed which consists of M-VODL initialization and
time delay measurement. To make full use of the range of the
M-VODL, we center the M-VODL in the middle. Then the
phase-stabilized module starts to run continuously in which
the control parameter is calculated according to the phase change
of the highest frequency signal. If the variation of the line bias
is beyond the range of the M-VODL, the initialization process
will be performed.

The relationship between the time delay and the phase of the
highest frequency signal can be written as:

B+ 360N,,,
360,

13)

Here 0,,, and f,,, are the phase and the frequency of the highest
frequency signal.

6799

In the phase-stabilized process, the control parameter C' is
calculated to control the time delay of the M-VODL according
to the accumulation of the time delay variation and can be
expressed as:

Here, df,,, is the phase change of the highest frequency signal.

To calibrate the new integer ambiguity of the line bias, the time
delay value needs to be achieved [22]. Here, we give the principle
of the time delay measurement. First, two auxiliary signals
f1 and fo with a small frequency interval Af are chosen to
guarantee that their integer ambiguities are equal. So the phases
of the two ‘relatively unambiguous’ signals can be expressed as

91 = (—flT — Nl) x 360
92 = (—fQT — Ng) x 360

(14)

15)

Here, the integer ambiguities of the two auxiliary signals are
equal, Nj = Nz . Thus, an initial delay estimation 79 can be
obtained as

0y — 01
(f2 = f1) x 360
Next, 7; is utilized to solve the relative integer ambiguity N7, |

between the next auxiliary signal f;11 and f; by a rounding
operation,

(16)

Tg — —

N, =round[(6y — kg x 7

i —0i11)/360] (17

It should be noted that the choice of the next auxiliary signal
is based on a predefined ‘extension coefficient k’, which can
be expressed as

fiv1 — f1

kf=—-—7-"—
fi—h
With the known relative integer ambiguity between f;; and
f1, the next delay estimation 7;1 can be obtained,
- _ (91'_;,_1 — 0 + 360N{_‘_1
i1 = —
’ (firr = f1) x 360
By extending the frequency of the auxiliary signals gradually,
we can obtain a delay estimation 7,,, with enough precision to
determine the ambiguity of the highest frequency signal, which
can be expressed as:

Ny, = round(—T7m fm)

(18)

19)

(20)

Finally, the time delay can be calculated based on the mea-
sured phase and the integer ambiguity of the highest frequency
via (13).

E. The Flowchart of the 3D Baseline Solution

Fig. 4 gives the flowchart of the 3D baseline solution with the
proposed phase-stabilized configuration. The raw observation
data of the distributed antenna is transmitted to the receiver via
an optical fiber. Then, the receiver outputs the carrier phases,
the ephemeris of the satellites, and the rough position of the
antenna after decoding the raw observation data. In the data
processing center, the SD model is performed with a constant
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Fig. 4. Flowchart of the 3D baseline solution based on the proposed phase-
stabilized configuration.
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Fig. 5. The phase variation (1575.42 MHz) and temperature variation in one
day.

line bias parameter with the help of the phase-stabilized module
as described in Section D. Finally, the 3D baseline can be
obtained with fixed integer ambiguities.

III. EXPERIMENT RESULTS AND DISCUSSION
A. The Line Bias Variation in One Day

To investigate the line bias variation in a GNSS-over-fiber
link, a single-frequency signal with 1575.42 MHz was utilized
to monitor the phase variation. In the experiment, a 2.01-km
single-mode fiber was utilized as transmission link under test.
Meanwhile, a temperature sensor was put inside the optical fiber
disk to monitor the temperature variation.

Fig. 5 shows the phase variation of the 1575.42-MHz signal
and temperature change in one day, which leads to the following
remarks,

1) There is a high degree of consistency between the phase
variation of the transmission signal and temperature vari-
ation.

2) The range of the line bias variation reaches 1.6 ns in
a 2.01-km single-mode fiber with a temperature change
of 8 degrees. Thus, the line bias will increase to several
nanoseconds or even tens of nanoseconds with the increase
of the fiber length, which would exceed the delay compen-
sation range of an M-VODL.

B. The Performance of the Phase-Stabilized Configuration

First, an experiment was designed to test the performance of
the time delay measurement for the line bias calibration.

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 39, NO. 21, NOVEMBER 1, 2021

TABLE II
THE RAW AND THE CORRECTED PHASES OF THE FIVE
SIGNALS IN THE MEASUREMENT

Frequencies Raw phases Corrected phases with relative
(MHz) (degree) integer ambiguities (degree)
990 54.87 54.87
990.002 -76.83 -76.83
990.02 78.97 -1361.03
990.2 -132.87 -14172.87
992 -112.61 -142312.61
1000 -106.59 -711826.59
105
104
. 103
8102}
S 101}
Tl A A _
5 100 A - A Sac A
> 9
© 98f
a
97
96
95

Groups

Fig. 6. The calculated delay variations in the time delay measurement.

At the remote site, a 1550-nm laser source (TeraXion) and
a 10-GHz MZM (Lucent 2623NA) were used for electrical-to-
optical modulation. At the local station, 10-GHz PDs (CON-
QUER) with a responsivity of 0.65 A/W were utilized for
optical-to-electrical conversion. In the phase-stabilized module
at the local station, a signal generator (Keysight N5S183B MXG)
generated the single-tone signals to detect the line bias variation.
A phase detector compared the phase difference between the
reference and the round-trip signals. An M-VODL with an
OEM controller board executed the commands from the control
unit and the range of the M-VODL is 560 ps. The length of
the transmission optical fiber was about 20 km. The highest
frequency was set as 1 GHz. The frequencies of the auxiliary
signals were 990 MHz, 990.002 MHz, 990.02 MHz, 990.2 MHz,
and 992 MHz, respectively. In the experiment, the M-VODL was
utilized to introduce a certain line bias variation within 100 ps.
With a precision of 10 fs, the M-VODL can also be used as a
delay variation reference. The M-VODL was moved from O to
100 ps for 10 times, the raw and the corrected phases of the five
signals in the measurement are shown in Table II.

According to the corrected phases of 990 MHz and 1000 MHz,
the delay can be calculated with high enough precision to obtain
the integer ambiguity of the 1000 MHz signal which is -197745.
Thus, the round-trip delay can be obtained as 197745296.09
ps. All the delay variations calculated by the time delay mea-
surement in the 20-km optical fiber are shown in Fig. 6. The
standard deviation of the 10 measurements is 0.364 ps which is
high enough for the high precision line bias calibration.

Next, a zero baseline configuration similar to Fig. 1 was set
up to test the phase-stabilized performance. Similarly, a 20-km
optical fiber was introduced as one of the transmission links.
The highest frequency of the probe signal was set as 1 GHz. The
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Fig. 8. Phase variation when the delay variation exceeds compensation range.

phase variation of the 1 GHz signal was depicted in Fig. 7. The
phase maintained relatively constant and the phase jitter was
less than 0.3 degrees with the phase-stabilized configuration. If
the phase-stabilized configuration was disabled, the phase drifts
significantly.

The experimental result when the link delay variation exceeds
the compensation range is presented in Fig. 8. During stage 1,
the phase of the 1 GHz signal was stabilized at about 48.20
degrees and the delay calibration result was 98069866.12 ps.
When the delay variation exceeded the compensation range, the
delay calibration was carried out and the result was 98070144.21
ps, then the phase of the 1 GHz signal was restabilized at about
-51.92 degrees. The recalibration process consists of the reset
of the compensation device and the time delay measurement.
During the recalibration, the high precision baseline measure-
ment by the SD solution cannot be realized. Thus, the baseline
measurement obtained by the DD solution is recommended to
replace that obtained by the SD solution.

C. The SD and DD Carrier Phase Measurements in a Zero
Baseline Experiment

To investigate the impact of the line bias variation on the SD
and DD carrier phase measurements, zero baseline experiments
were carried out with and without the phase-stabilized config-
uration, as shown in Fig. 9 and Fig. 10. It can be observed that
the vibrations introduced by the line bias directly affected all the
SD carrier phase measurements in Fig. 9(b). Nevertheless, the
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Fig. 10. The DD carrier phase measurements with (a) and without (b) the
phase-stabilized configuration.
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TABLE IIT
THE STANDARD DEVIATIONS OF THE SD CARRIER PHASE MEASUREMENTS
‘WITH THE PHASE-STABILIZED CONFIGURATION IN THE ZERO
BASELINE EXPERIMENT
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Satellite number

Standard deviations

No.2 1.95 mm
No.4 2.66 mm
No.6 1.97 mm
No.12 2.91 mm

TABLE IV

THE STANDARD DEVIATIONS OF THE SD CARRIER PHASE MEASUREMENTS
‘WITHOUT THE PHASE-STABILIZED CONFIGURATION IN THE ZERO BASELINE
EXPERIMENT

Satellite number

Standard deviations

No.1 4.48 mm
No.11 4.02 mm
No.17 3.69 mm
No.28 3.82 mm

TABLE V

THE STANDARD DEVIATIONS OF THE DD CARRIER PHASE MEASUREMENTS
‘WITH THE PHASE-STABILIZED CONFIGURATION IN THE ZERO
BASELINE EXPERIMENT

Satellite number Standard deviations

No.4-No.2 3.26 mm
No.6-No.2 2.83 mm
No.12-No.2 3.45 mm

TABLE VI
THE STANDARD DEVIATIONS OF THE DD CARRIER PHASE MEASUREMENTS
WITHOUT THE PHASE-STABILIZED CONFIGURATION IN THE ZERO
BASELINE EXPERIMENT

Satellite number Standard deviations

No.11-No.1 3.41 mm
No.17-No.1 3.40 mm
No.28-No.1 3.18 mm

DD carrier phase measurements were not disturbed by the line
bias variation as shown in Fig. 10.

Table III, Table IV, Table V and Table VI are the statistical
results of the SD and the DD carrier phase measurements in the
zero baseline experiment. On the one hand, the mean standard
deviation of the SD and the DD carrier phase measurements are
2.37 mm and 3.18 mm with the phase-stabilized configuration.
Thus, the precision of the SD carrier phase measurements is
more precise than that of the DD carrier phase measurements.
Meanwhile, the statistical results agree well with the prediction
of (9) and (12). On the other hand, the standard deviations of
the DD carrier phase measurements are almost the same in both
cases which are 3.18 mm and 3.33 mm, respectively. Therefore,
our analysis shows that the SD model outperforms the DD
model only when the line bias variation is obtained or eliminated
precisely.

— SD model
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Fig. 11. Baseline measurement results using the conventional DD model and
the SD model (a) without and (b) with the phase-stabilized configuration.

D. The Performance of the Proposed GNSS-Based 3D
Baseline Measurement System

In the experiment, remote GNSS antennas were fixedly in-
stalled on the roof of a building. To emulate the practical
large-scale measurement application, a 20-km optical fiber was
utilized to connect one of the remote GNSS antennas and the
local receiver. The phase-stabilized module and other processing
units including a multi-channel GNSS receiver and a computer
were placed indoors.

Two groups of experiments were conducted to investigate
the performance of the proposed system by comparing the 3D
baseline results of the conventional DD model and the SD model.
Fig. 11(a) shows the baseline measurement results without the
phase-stabilized configuration. The east component of the base-
line measurement results achieved by the SD model and the
DD model is very close, which means the line bias variation
has little effect on the east component which is due to the good
symmetry of the satellites in the east-west direction. The north
component of the baseline measurement results achieved by the
SD model shows an obvious drift compared with that of the DD
model. That means the symmetry of the satellites is poorer in
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TABLE VII
THE STANDARD DEVIATIONS OF THE 3D BASELINE MEASURED BY THE
CONVENTIONAL DD MODEL AND THE SD MODEL WITH AND WITHOUT THE
PHASE-STABILIZED CONFIGURATION

3D baseline D D .SD D.D S.D
(without)  (without) (with) (with)

East (mm) 2.58 2.20 3.01 2.82

North (mm) 3.63 6.61 458 430

Vertical (mm) 7.29 16.46 8.61 2.82

the north-south direction. In the vertical direction, because the
vertical distribution of the satellites is completely asymmetric,
a more obvious drift can be observed. The standard deviation
increases to 16.46 mm as shown in Table VII, which is much
worse than that of the DD model.

Fig. 11(b) shows the baseline measurement results with the
phase-stabilized configuration. The east and the north compo-
nents of the baseline measurement results obtained by the SD
model and the DD model are very close. From the statistical
results in Table VII, it can be found that the horizontal precision
of the baseline obtained by the SD model is slightly better than
that of the DD model. Regarding the vertical component of the
baseline, the standard deviations obtained by the DD model and
the SD model are 8.61 mm and 2.82 mm separately, indicating
an improvement of 205%.

These experimental results show that the baseline measure-
ment results of the DD model are independent of the line bias
variation, but the precision of the vertical component is always
2-3 times poorer than those of the horizontal components. The
baseline measurement results of the SD model are strongly
affected by the line bias variation. Under the circumstance
without compensation, the line bias variation will transfer to
the three components of the baseline measurement according to
the distribution of satellites in the SD model.

IV. CONCLUSION

A multi-antenna GNSS-over-fiber system with a phase-
stabilized configuration was proposed for large-scale 3D base-
line measurement. By utilizing the phase-stabilized configura-
tion, the 3D baseline measurement obtained by the SD model
enables highly precise results in all three directions. In addition, a
time delay method is proposed to calibrate the unambiguous line
bias parameter both in the initial stage and in the case when the
line bias variation exceeds the delay compensation range. In the
proof-of-concept experiment, the phase jitter of the monitoring
signal was less than 0.3 degrees and the line bias calibration pre-
cision reached 0.364 ps. The 3D baseline measurement results
showed that the SD model outperformed the DD model with the
assistance of the phase-stabilized configuration.
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