Chapter 5 The Discrete-Time Fourier Transform

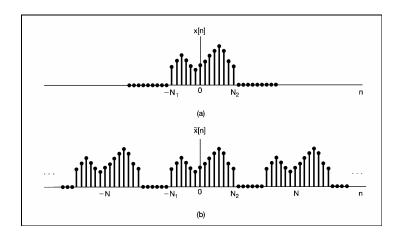
5.0 Introduction

- There are many similarities and strong parallels in analyzing continuous-time and discrete-time signals.
- There are also important differences. For example, the Fourier series representation of a discrete-time periodic signal is finite series, as opposed to the infinite series representation required for continuous-time period signal.
- In this chapter, the analysis will be carried out by taking advantage of the similarities between continuous-time and discrete-time Fourier analysis.

5.1 Representation of Aperiodic Signals: The discrete-Time Fourier Transform

5.1.1 Development of the Discrete-Time Fourier Transform

Consider a general sequence that is a finite duration. That is, for some integers N_1 and N_2 , x[n] equals to zero outside the range $N_1 \le n \le N_2$, as shown in the figure below.



We can construct a periodic sequence $\widetilde{x}[n]$ using the aperiodic sequence x[n] as one period. As we choose the period N to be larger, $\widetilde{x}[n]$ is identical to x[n] over a longer interval, as $N \to \infty$, $\widetilde{x}[n] = x[n]$.

Based on the Fourier series representation of a periodic signal given in Eqs. (3.80) and (3.81), we have

$$\widetilde{x}[n] = \sum_{k=N} a_k e^{jk(2\mathbf{p}/N)n} , \qquad (5.1)$$

$$a_k = \sum_{k=\langle N \rangle} \widetilde{x}[n] e^{-jk \cdot (2\mathbf{p}/N)n} . \tag{5.2}$$

If the interval of summation is selected to include the interval $N_1 \le n \le N_2$, so $\tilde{x}[n]$ can be replaced by x[n] in the summation,

$$a_k = \frac{1}{N} \sum_{k=N_1}^{N_2} x[n] e^{-jk(2\mathbf{p}/N)n} = \frac{1}{N} \sum_{k=-\infty}^{\infty} x[n] e^{-jk(2\mathbf{p}/N)n} , \qquad (5.3)$$

Defining the function

$$X(e^{jw}) = \sum_{n=-\infty}^{\infty} x[n]e^{-jwn} , \qquad (5.4)$$

So a_k can be written as

$$a_k = \frac{1}{N} X(e^{jk\mathbf{w}_0}), (5.5)$$

Then $\tilde{x}[n]$ can be expressed as

$$\widetilde{x}[n] = \sum_{k=< N>} \frac{1}{N} X(e^{jk\mathbf{w}_0}) e^{jk(2\mathbf{p}/N)n} = \frac{1}{2\mathbf{p}} \sum_{k=< N>} X(e^{jk\mathbf{w}_0}) e^{jk(2\mathbf{p}/N)n} \mathbf{w}_0.$$
 (5.6)

As $N \to \infty$ $\tilde{x}[n] = x[n]$, and the above expression passes to an integral,

$$x[n] = \frac{1}{2\mathbf{p}} \int_{2\mathbf{p}} X(e^{j\mathbf{w}}) e^{j\mathbf{w}n} d\mathbf{w}, \qquad (5.7)$$

The Discrete-time Fourier transform pair:

$$x[n] = \frac{1}{2p} \int_{2p} X(e^{jw}) e^{jwn} dw,$$

$$X(e^{jw}) = \sum_{n=-\infty}^{\infty} x[n] e^{-jwn}.$$
(5.8)

$$X(e^{j\mathbf{w}}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\mathbf{w}n}.$$
(5.9)

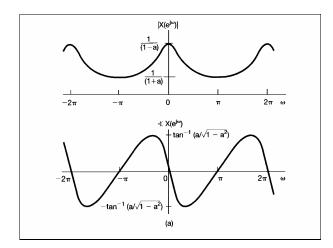
Eq. (5.8) is referred to as *synthesis equation*, and Eq. (5.9) is referred to *as analysis equation* and $X(e^{jkw_0})$ is referred to as the *spectrum* of x[n].

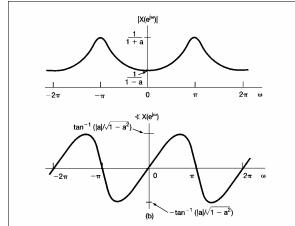
5.1.2 Examples of Discrete-Time Fourier Transforms

Example: Consider
$$x[n] = a^n u[n]$$
, $|a| < 1$. (5.10)

$$X(e^{j\mathbf{w}}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\mathbf{w}n} = \sum_{n=-\infty}^{\infty} a^n u[n]e^{-j\mathbf{w}n} = \sum_{n=0}^{\infty} \left(ae^{-j\mathbf{w}}\right)^{-n} = \frac{1}{1 - ae^{-j\mathbf{w}}}.$$
 (5.11)

The magnitude and phase for this example are show in the figure below, where a > 0 and a < 0 are shown in (a) and (b).





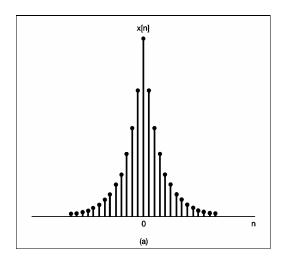
Example:
$$x[n] = a^{|n|}, |a| < 1.$$
 (5.12)

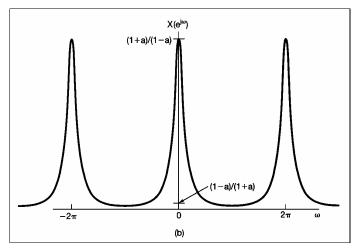
$$X(e^{j\mathbf{w}}) = \sum_{n=-\infty}^{\infty} a^{|n|} u[n] e^{-j\mathbf{w}n} = \sum_{n=-\infty}^{-1} a^{-n} e^{-j\mathbf{w}n} + \sum_{n=0}^{\infty} a^{n} e^{-j\mathbf{w}n}$$

Let m = -n in the first summation, we obtain

$$X(e^{j\mathbf{w}}) = \sum_{n=-\infty}^{\infty} a^{|n|} u[n] e^{-j\mathbf{w}n} = \sum_{m=1}^{\infty} a^m e^{j\mathbf{w}m} + \sum_{n=0}^{\infty} a^n e^{-j\mathbf{w}n}$$

$$= \frac{ae^{j\mathbf{w}}}{1 - ae^{j\mathbf{w}}} + \frac{1}{1 - ae^{-j\mathbf{w}}} = \frac{1 - a^2}{1 - 2a\cos\mathbf{w} + a^2}$$
(5.13)



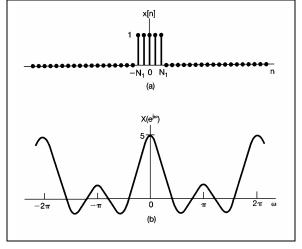


Example: Consider the rectangular pulse

$$x[n] = \begin{cases} 1, & |n| \le N_1 \\ 0, & |n| > N_1 \end{cases}$$
 (5.14)

$$X(j\mathbf{w}) = \sum_{n=-N_1}^{N_1} e^{-j\mathbf{w}n} = \frac{\sin \mathbf{w} (N_1 + 1/2)}{\sin (\mathbf{w}/2)}.$$
 (5.15)

This function is the discrete counterpart of the sic function, which appears in the Fourier transform of the continuous-time pulse.



The difference between these two functions is that

the discrete one is periodic (see figure) with period of 2p, whereas the sinc function is aperiodic.

5.1.3 Convergence

The equation $X(e^{j\mathbf{w}}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\mathbf{w}n}$ converges either if x[n] is absolutely summable, that is

$$\sum_{n=-\infty}^{\infty} \left| x[n] \right| < \infty, \tag{5.16}$$

or if the sequence has finite energy, that is

$$\sum_{n=-\infty}^{\infty} \left| x[n] \right|^2 < \infty . \tag{5.17}$$

Yao

And there is no convergence issues associated with the synthesis equation (5.8).

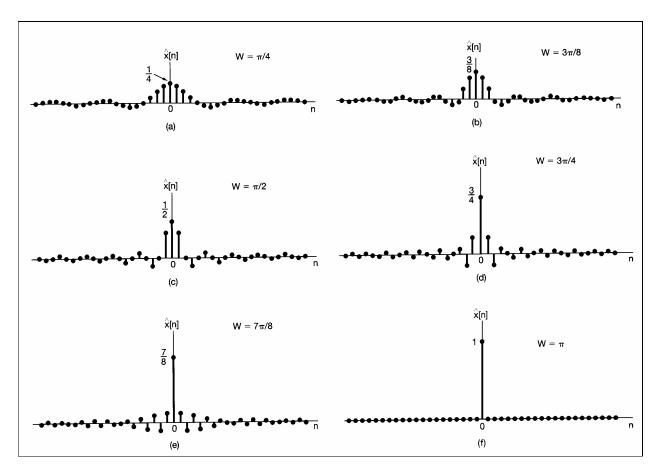
If we approximate an aperidic signal x[n] by an integral of complex exponentials with frequencies taken over the interval $|\mathbf{w}| \leq W$,

$$\hat{x}[n] = \frac{1}{2p} \int_{-W}^{W} X(e^{jw}) e^{jwn} dw, \qquad (5.18)$$

and $\hat{x}[n] = x[n]$ for $W = \mathbf{p}$. Therefore, the Gibbs phenomenon does not exist in the discrete-time Fourier transform.

Example: the approximation of the impulse response with different values of W.

For $W = \mathbf{p}/4$, $3\mathbf{p}/8$, $\mathbf{p}/2$, $3\mathbf{p}/4$, $7\mathbf{p}/8$, \mathbf{p} , the approximations are plotted in the figure below. We can see that when $W = \mathbf{p}$, $\hat{x}[n] = x[n]$.



5.2 Fourier transform of Periodic Signals

For a periodic discrete-time signal,

$$x[n] = e^{j\mathbf{w}_0 n}, (5.19)$$

its Fourier transform of this signal is periodic in w with period 2p, and is given

$$X(e^{jw}) = \sum_{l=-\infty}^{+\infty} 2pd(w - w_{_0} - 2pl).$$
 (5.20)

Now consider a periodic sequence x[n] with period N and with the Fourier series representation

$$x[n] = \sum_{k=} a_k e^{jk(2\mathbf{p}/N)n}.$$
 (5.21)

The Fourier transform is

$$X(e^{j\mathbf{w}}) = \sum_{k=-\infty}^{+\infty} 2\mathbf{p}a_k \mathbf{d}(\mathbf{w} - \frac{2\mathbf{p}k}{N}).$$
 (5.22)

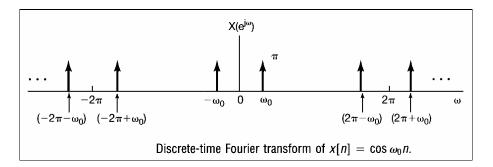
Example: The Fourier transform of the periodic signal

$$x[n] = \cos \omega_0 n = \frac{1}{2} e^{j\omega_0 n} + \frac{1}{2} e^{-j\omega_0 n}, \text{ with } \mathbf{w}_0 = \frac{2\mathbf{p}}{3},$$
 (5.23)

is given as

$$X(e^{jw}) = pd\left(w - \frac{2p}{3}\right) + pd\left(w + \frac{2p}{3}\right), \qquad -p \le w < p.$$

$$(5.24)$$



Example: The periodic impulse train

$$x[n] = \sum_{k=-\infty}^{+\infty} \mathbf{d}[n-kN]. \tag{5.25}$$

The Fourier series coefficients for this signal can be calculated

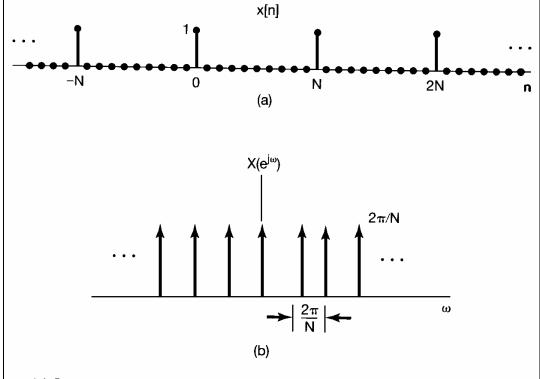
$$a_k = \sum_{N=N} x[n] e^{-jk (2\mathbf{p}/N)n} . \tag{5.26}$$

Choosing the interval of summation as $0 \le n \le N-1$, we have

$$a_k = \frac{1}{N}. ag{5.27}$$

The Fourier transform is

$$X(e^{j\mathbf{w}}) = \frac{2\mathbf{p}}{N} \sum_{k=-\infty}^{\infty} \mathbf{d} \left(\mathbf{w} - \frac{2\mathbf{p}k}{N} \right). \tag{5.28}$$



(a) Discrete-time periodic impulse train; (b) its Fourier transform.

5.3 Properties of the Discrete-Time Fourier Transform

Notations to be used

$$X(e^{j\mathbf{w}}) = F\{x[n]\},\,$$

$$x[n] = F^{-1} \{ X(e^{jw}) \},$$

$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{jw}).$$

5.3.1 Periodicity of the Discrete-Time Fourier Transform

The discrete-time Fourier transform is always periodic in \mathbf{w} with period $2\mathbf{p}$, i.e.,

$$X\left(e^{j(\mathbf{w}+2\mathbf{p})}\right) = X\left(e^{j\mathbf{w}}\right). \tag{5.29}$$

5.3.2 Linearity

If
$$x_1[n] \stackrel{F}{\longleftrightarrow} X_1(e^{jw})$$
, and $x_2[n] \stackrel{F}{\longleftrightarrow} X_2(e^{jw})$,

then

$$ax_1[n] + bx_2[n] \stackrel{F}{\longleftrightarrow} aX_1(e^{jw}) + bX_2(e^{jw})$$
(5.30)

5.3.3 Time Shifting and Frequency Shifting

If
$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\mathbf{w}})$$
,

then

$$x[n-n_0] \stackrel{F}{\longleftrightarrow} e^{-j\omega n_0} X(e^{j\omega})$$
(5.31)

and

$$e^{j\omega_0 n} x[n] \stackrel{F}{\longleftrightarrow} X(e^{j(\omega - \omega_0)})$$
(5.32)

5.3.4 Conjugation and Conjugate Symmetry

If
$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\mathbf{w}})$$
,

then

$$x^*[n] \xleftarrow{F} X^*(e^{-jw})$$
(5.33)

If x[n] is real valued, its transform $X(e^{jw})$ is conjugate symmetric. That is

$$X(e^{j\mathbf{w}}) = X * (e^{-j\mathbf{w}})$$
 (5.34)

From this, it follows that $\operatorname{Re}\{X(e^{j\mathbf{w}})\}$ is an even function of \mathbf{w} and $\operatorname{Im}\{X(e^{j\mathbf{w}})\}$ is an odd function of \mathbf{w} . Similarly, the **magnitude** of $X(e^{j\mathbf{w}})$ is an even function and the phase angle is an odd function. Furthermore,

$$Ev\{x[n]\} \stackrel{F}{\longleftrightarrow} \operatorname{Re}\{X(e^{jw}\}, \tag{5.35}$$

and

$$Od\{x[n]\} \stackrel{F}{\longleftrightarrow} j\operatorname{Im}\{X(e^{jw}\}\}. \tag{5.36}$$

5.3.5 Differencing and Accumulation

If
$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{jw})$$
,

then

$$x[n] - x[n-1] \stackrel{F}{\longleftrightarrow} (1 - e^{-jw}) X(e^{jw})$$
(5.37)

For signal

$$y[n] = \sum_{m=-\infty}^{n} x[m],$$
 (5.38)

its Fourier transform is given as

$$\sum_{m=-\infty}^{n} x[m] \xleftarrow{F} \frac{1}{1-e^{-j\mathbf{w}}} X(e^{j\mathbf{w}}) + \mathbf{p}X(e^{j0}) \sum_{m=-\infty}^{+\infty} \mathbf{d}(\mathbf{w} - 2\mathbf{p}k)$$
(5.39)

The impulse train on the right-hand side reflects the dc or average value that can result from summation.

For example, the Fourier transform of the unit step x[n] = u[n] can be obtained by using the accumulation property.

We know $g[n] = \mathbf{d}[n] \stackrel{F}{\longleftrightarrow} G(e^{jw}) = 1$, so

$$x[n] = \sum_{m=-\infty}^{n} g[m] \stackrel{F}{\longleftrightarrow} \frac{1}{\left(1 - e^{-j\mathbf{w}}\right)} G(e^{j\mathbf{w}}) + \mathbf{p}G(e^{j0}) \sum_{k=-\infty}^{+\infty} \mathbf{d}(\mathbf{w} - 2\mathbf{p}k) = \frac{1}{\left(1 - e^{-j\mathbf{w}}\right)} + \mathbf{p}\sum_{k=-\infty}^{+\infty} \mathbf{d}(\mathbf{w} - 2\mathbf{p}k).$$

$$(5.40)$$

5.3.6 Time Reversal

If
$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{jw})$$
,

then

$$\left| x[-n] \stackrel{F}{\longleftrightarrow} X(-e^{j\mathbf{w}}) \right|$$
 (5.41)

5.3.7 Time Expansion

For continuous-time signal, we have

$$x(at) \stackrel{F}{\longleftrightarrow} \frac{1}{|a|} X \left(\frac{j\mathbf{w}}{a} \right).$$
 (5.42)

For discrete-time signals, however, a should be an integer. Let us define a signal with k a positive integer,

$$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n \text{ is a multiple of } k \\ 0, & \text{if } n \text{ is not a multiple of } k \end{cases}$$
 (5.43)

 $x_{(k)}[n]$ is obtained from x[n] by placing k-1 zeros between successive values of the original signal.

The Fourier transform of $x_{(k)}[n]$ is given by

$$X_{(k)}(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x_{(k)}[n]e^{-j\omega n} = \sum_{r=-\infty}^{+\infty} x_{(k)}[rk]e^{-j\omega rk} = \sum_{r=-\infty}^{+\infty} x[r]e^{-j(k\omega)r} = X(e^{jk\omega}).$$
 (5.44)

That is,

$$x_{(k)}[n] \stackrel{F}{\longleftrightarrow} X(e^{jk\mathbf{w}})$$
 (5.45)

For k > 1, the signal is spread out and slowed down in time, while its Fourier transform is compressed.

Example: Consider the sequence x[n] displayed in the figure (a) below. This sequence can be related to the simpler sequence y[n] as shown in (b).

$$x[n] = y_{(2)}[n] + 2y_{(2)}[n-1],$$

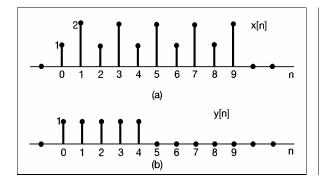
where

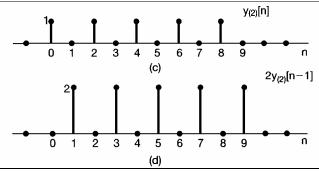
$$y_2[n] = \begin{cases} y[n/2], & \text{if } n \text{ is even} \\ 0, & \text{if } n \text{ is odd} \end{cases}$$

The signals $y_{(2)}[n]$ and $2y_{(2)}[n-1]$ are depicted in (c) and (d).

As can be seen from the figure below, y[n] is a rectangular pulse with $N_1 = 2$, its Fourier transform is given by

$$Y(e^{j\mathbf{w}}) = e^{-j2\mathbf{w}} \frac{\sin(5\mathbf{w}/2)}{\sin(\mathbf{w}/2)}$$





Using the time-expansion property, we then obtain

$$y_{(2)}[n] \stackrel{F}{\longleftrightarrow} e^{-j4w} \frac{\sin(5w)}{\sin(w)}$$

$$2y_{(2)}[n-1] \stackrel{F}{\longleftrightarrow} 2e^{-j5w} \frac{\sin(5w)}{\sin(w)}$$

Combining the two, we have

$$X(e^{j\mathbf{w}}) = e^{-j4\mathbf{w}} (1 + 2e^{-j\mathbf{w}}) \left(\frac{\sin(5\mathbf{w})}{\sin(\mathbf{w})} \right).$$

5.3.8 Differentiation in Frequency

If
$$x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\mathbf{w}})$$
,

Differentiate both sides of the analysis equation $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$

$$\frac{dX(e^{j\mathbf{w}})}{d\mathbf{w}} = \sum_{n=-\infty}^{+\infty} -jnx[n]e^{-j\mathbf{w}n}$$
(5.46)

The right-hand side of the Eq. (5.46) is the Fourier transform of -jnx[n]. Therefore, multiplying both sides by j, we see that

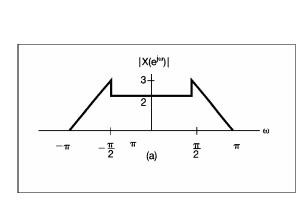
$$nx[n] \longleftrightarrow j \frac{dX(e^{j\mathbf{w}})}{d\mathbf{w}}$$
 (5.47)

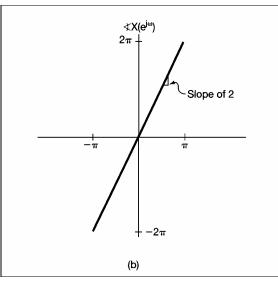
5.3.9 Parseval's Relation

If $x[n] \stackrel{F}{\longleftrightarrow} X(e^{jw})$, then we have

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\mathbf{p}} \int_{2\mathbf{p}} |X(e^{j\mathbf{w}})|^2 d\mathbf{w}$$
(5.48)

Example: Consider the sequence x[n] whose Fourier transform $X(e^{jw})$ is depicted for $-p \le w \le p$ in the figure below. Determine whether or not, in the time domain, x[n] is periodic, real, even, and /or of finite energy.





- The periodicity in time domain implies that the Fourier transform has only impulses located at various integer multiples of the fundamental frequency. This is not true for $X(e^{jw})$. We conclude that x[n] is not periodic.
- Since real-valued sequence should have a Fourier transform of even magnitude and a phase function that is odd. This is true for $|X(e^{jw})|$ and $\angle X(e^{jw})$. We conclude that x[n] is real.
- If x[n] is real and even, then its Fourier transform should be real and even. However, since $X(e^{jw}) = |X(e^{jw})|e^{-j2w}$, $X(e^{jw})$ is not real, so we conclude that x[n] is not even.
- Based on the Parseval's relation, integrating $\left|X(e^{jw})\right|^2$ from $-\boldsymbol{p}$ to \boldsymbol{p} will yield a finite quantity. We conclude that x[n] has finite energy.

5.4 The convolution Property

If x[n], h[n] and y[n] are the input, impulse response, and output, respectively, of an LTI system, so that

$$y[n] = x[n] * h[n],$$
 (5.49)

then,

$$Y(e^{jw}) = X(e^{jw})H(e^{jw}),$$
 (5.50)

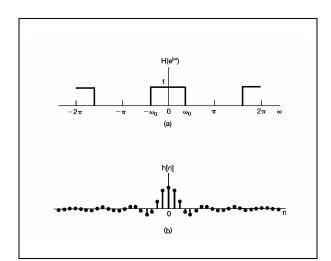
where $X(e^{jw})$, $H(e^{jw})$ and $Y(e^{jw})$ are the Fourier transforms of x[n], h[n] and y[n], respectively.

Example: Consider the discrete-time ideal lowpass filter with a frequency response $H(e^{jw})$ illustrated in the figure below. Using $-\mathbf{p} \le \mathbf{w} \le \mathbf{p}$ as the interval of integration in the synthesis equation, we have

$$h[n] = \frac{1}{2\boldsymbol{p}} \int_{-\boldsymbol{p}}^{\boldsymbol{p}} H(e^{j\boldsymbol{w}}) e^{j\boldsymbol{w}n} d\boldsymbol{w}$$

$$=\frac{1}{2\boldsymbol{p}}\int_{-p}^{p} e^{j\boldsymbol{w}\boldsymbol{n}}d\boldsymbol{w} = \frac{\sin\boldsymbol{w}_{c}\boldsymbol{n}}{\boldsymbol{p}\boldsymbol{n}}$$

The frequency response of the discrete-time ideal lowpass filter is shown in the right figure.



Example: Consider an LTI system with impulse response

$$h[n] = \mathbf{a}^n u[n], \qquad |\mathbf{a}| < 1,$$

and suppose that the input to the system is

$$x[n] = \boldsymbol{b}^{n} u[n], \qquad |\boldsymbol{b}| < 1.$$

The Fourier transforms for h[n] and x[n] are

$$H(e^{j\mathbf{w}}) = \frac{1}{1 - \mathbf{a} e^{-j\mathbf{w}}},$$

and

$$X(e^{j\mathbf{w}}) = \frac{1}{1 - \mathbf{b} e^{-j\mathbf{w}}},$$

so that

$$Y(e^{jw}) = H(e^{jw})X(e^{jw}) = \frac{1}{(1-\mathbf{a}e^{-jw})(1-\mathbf{b}e^{-jw})}.$$

If $\mathbf{a} \neq \mathbf{b}$, the partial fraction expansion of $Y(e^{j\mathbf{w}})$ is given by

$$Y(e^{j\mathbf{w}}) = \frac{A}{(1-\mathbf{a}e^{-j\mathbf{w}})} + \frac{B}{(1-\mathbf{b}e^{-j\mathbf{w}})} = \frac{\frac{\mathbf{a}}{\mathbf{a}-\mathbf{b}}}{(1-\mathbf{a}e^{-j\mathbf{w}})} + \frac{-\frac{\mathbf{b}}{\mathbf{a}-\mathbf{b}}}{(1-\mathbf{b}e^{-j\mathbf{w}})},$$

We can obtain the inverse transform by inspection:

$$y[n] = \frac{a}{a-b} a^n u[n] - \frac{b}{a-b} b^n u[n] = \frac{1}{a-b} (a^{n+1} u[n] - bb^{n+1} u[n]).$$

For $\mathbf{a} = \mathbf{b}$,

$$Y(e^{jw}) = \frac{1}{(1-ae^{-jw})^2}$$
, which can be expressed as

$$Y(e^{j\mathbf{w}}) = \frac{j}{\mathbf{a}} e^{j\mathbf{w}} \frac{d}{d\mathbf{w}} \left(\frac{1}{1 - \mathbf{a} e^{-j\mathbf{w}}} \right).$$

Using the frequency differentiation property, we have

$$n\mathbf{a}^n u[n] \stackrel{F}{\longleftrightarrow} j\frac{d}{d\mathbf{w}} \left(\frac{1}{1-\mathbf{a}\,e^{-j\mathbf{w}}}\right),$$

To account for the factor $e^{j\mathbf{w}}$, we use the time-shifting property to obtain

$$(n+1)a^{n+1}u[n+1] \stackrel{F}{\longleftrightarrow} je^{jw} \frac{d}{dw} \left(\frac{1}{1-ae^{-jw}}\right),$$

Finally, accounting for the factor 1/a, we have

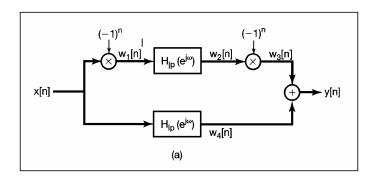
$$y[n] = (n+1)a^n u[n+1].$$

Since the factor n+1 is zero at n=-1, so y[n] can be expressed as

$$y[n] = (n+1)a^n u[n].$$

Example: Consider the system shown in the figure below. The LTI systems with frequency response $H_{lp}(e^{jw})$ are ideal lowpass filters with cutoff frequency p/4 and unity gain in the passband.

- $w_1[n] = (-1)^n x[n] = e^{jpn} x[n]$
- $\Rightarrow W_1(e^{j\mathbf{w}}) = X(e^{j(\mathbf{w}-\mathbf{p})}).$
- $W_2(e^{j\mathbf{w}}) = H_{lp}(e^{j\mathbf{w}})X(e^{j(\mathbf{w}-\mathbf{p})}).$
- $w_3[n] = (-1)^n w_2[n] = e^{j\mathbf{p}n} w_2[n]$



$$\Rightarrow W_3(e^{j\mathbf{w}}) = W_2(e^{j(\mathbf{w}-\mathbf{p})}) = H_{lp}(e^{(j\mathbf{w}-\mathbf{p})})X(e^{j(\mathbf{w}-2\mathbf{p})}).$$

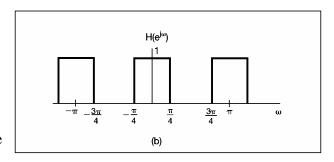
- \Rightarrow $W_3(e^{j\mathbf{w}}) = W_2(e^{j(\mathbf{w}-\mathbf{p})}) = H_{lp}(e^{j\mathbf{w}-\mathbf{p})}X(e^{j\mathbf{w}})$ (Discrete-Fourier transforms are always periodic with period of $2\mathbf{p}$).
- $W_4(e^{jw}) = H_{lp}(e^{jw})X(e^{jw}).$
- $Y(e^{j\mathbf{w}}) = W_3(e^{j\mathbf{w}}) + W_4(e^{j\mathbf{w}}) = \left[H_{lp}(e^{(j\mathbf{w}-\mathbf{p})}) + H_{lp}(e^{j\mathbf{w}})\right]X(e^{j\mathbf{w}}).$

The overall system has a frequency response

$$H_{lp}(e^{j\mathbf{w}}) = \left[H_{lp}(e^{(j\mathbf{w}-\mathbf{p})}) + H_{lp}(e^{j\mathbf{w}})\right]X(e^{j\mathbf{w}}),$$

which is shown in figure (b).

The filter is referred to as bandstop filter, where the stop band is the region $\mathbf{p} / 4 < |\mathbf{w}| < 3\mathbf{p} / 4$.



It is important to note that not every discrete-time LTI system has a frequency response. If an LTI system is stable, then its impulse response is absolutely summable; that is,

$$\sum_{n=-\infty}^{+\infty} \left| h[n] \right| < \infty, \tag{5.51}$$

5.5 The multiplication Property

Consider y[n] equal to the product of $x_1[n]$ and $x_2[n]$, with $Y(e^{jw})$, $X_1(e^{jw})$, and $X_2(e^{jw})$ denoting the corresponding Fourier transforms. Then

$$y[n] = x_1[n]x_2[n] \stackrel{F}{\longleftrightarrow} \frac{1}{2\boldsymbol{p}} \int_{2\boldsymbol{p}} X_1(e^{j\boldsymbol{w}}) X_2(e^{j(\boldsymbol{w}-\boldsymbol{q})}) d\boldsymbol{q}$$
(5.52)

Eq. (5.52) corresponds to a periodic convolution of $X_1(e^{jw})$ and $X_2(e^{jw})$, and the integral in this equation can be evaluated over any interval of length 2p.

Example: Consider the Fourier transform of a signal x[n] which the product of two signals; that is

$$x[n] = x_1[n]x_2[n]$$

where

$$x_1[n] = \frac{\sin(3pn/4)}{pn}$$
, and

$$x_2[n] = \frac{\sin(\mathbf{p}n/2)}{\mathbf{p}n}.$$

Based on Eq. (5.52), we may write the Fourier transform of x[n]

$$X(e^{j\mathbf{w}}) = \frac{1}{2\mathbf{p}} \int_{-p}^{p} X_1(e^{j\mathbf{w}}) X_2(e^{j(\mathbf{w}-\mathbf{q})}) d\mathbf{q} . \tag{5.53}$$

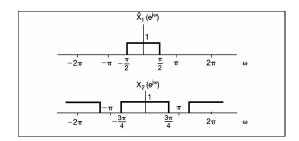
Eq. (5.53) resembles aperiodic convolution, except for the fact that the integration is limited to the interval of -p < q < p. The equation can be converted to ordinary convolution with integration interval $-\infty < q < \infty$ by defining

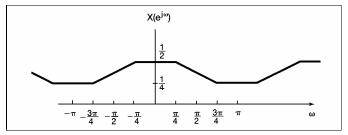
$$\hat{X}_{1}(e^{j\mathbf{w}}) = \begin{cases} X_{1}(e^{j\mathbf{w}}) & \text{for } -\mathbf{p} < \mathbf{w} < \mathbf{p} \\ 0 & \text{otherwise} \end{cases}$$

Then replacing $X_1(e^{jw})$ in Eq. (5.53) by $\hat{X}_1(e^{jw})$, and using the fact that $\hat{X}_1(e^{jw})$ is zero for $-\mathbf{p} < \mathbf{w} < \mathbf{p}$, we see that

$$X(e^{jw}) = \frac{1}{2 \boldsymbol{p}} \int_{-\boldsymbol{p}}^{\boldsymbol{p}} X_1(e^{jw}) X_2(e^{j(w-\boldsymbol{q})}) d\boldsymbol{q} = \frac{1}{2 \boldsymbol{p}} \int_{-\infty}^{\infty} \hat{X}_1(e^{jw}) X_2(e^{j(w-\boldsymbol{q})}) d\boldsymbol{q} \; .$$

Thus, $X(e^{j\mathbf{w}})$ is $1/2\mathbf{p}$ times the aperiodic convolution of the rectangular pulse $\hat{X}_1(e^{j\mathbf{w}})$ and the periodic square wave $X_2(e^{j\mathbf{w}})$. The result of thus convolution is the Fourier transform $X(e^{j\mathbf{w}})$, as shown in the figure below.





5.6 Tables of Fourier Transform Properties and Basic Fourier Transform Paris

TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Section	Property	Aperiodic Signal	Fourier Transform
5.3.2	Linearity	x[n] $y[n]$ $ax[n] + by[n]$	$X(e^{j\omega})$ periodic with $Y(e^{j\omega})$ period 2π $aX(e^{j\omega}) + bY(e^{j\omega})$
5.3.2 5.3.3	Time Shifting	$x[n] + by[n]$ $x[n - n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
5 .3.3	Frequency Shifting	$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
5.3.4 T	Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$
5.3.4 ¹	Time Reversal	x[n] $x[-n]$	$X(e^{-j\omega})$
3.3.0		(x[n/k], if n = multiplication for the following formula:	
5.3.7	Time Expansion	$x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple} \\ 0, & \text{if } n \neq \text{multiple} \end{cases}$	$\sum_{k=0}^{\infty} X(e^{jk\omega})$
5.4	Convolution	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
5.5	Multiplication	x[n]y[n]	$\frac{1}{2\pi}\int_{2\pi}X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
5.3.5	Differencing in Time	x[n] - x[n-1]	$\frac{1}{1-e^{-j\omega}}X(e^{j\omega})$
5.3.5	Accumulation	$\sum_{k=-\infty}^{n} x[k]$	1 6 .
5.3.8	Differentiation in Frequency	nx[n]	$+\pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(e^{j\omega})}{d\omega}$
5.3.4	Conjugate Symmetry for Real Signals	x[n] real	$egin{array}{l} X(e^{j\omega}) &= X^*(e^{-j\omega}) \ \Re e\{X(e^{j\omega})\} &= \Re e\{X(e^{-j\omega})\} \ \Im m\{X(e^{j\omega})\} &= -\Im m\{X(e^{-j\omega})\} \ X(e^{j\omega}) &= X(e^{-j\omega}) \ orall X(e^{j\omega}) &= - otin X(e^{-j\omega}) \end{array}$
5.3.4	Symmetry for Real, Even Signals	x[n] real an even	$X(e^{j\omega})$ real and even
5 .3.4	Symmetry for Real, Odd Signals	x[n] real and odd	$X(e^{j\omega})$ purely imaginary and odd
5.3.4	Even-odd Decomposition	$x_e[n] = \mathcal{E}_{v}\{x[n]\} [x[n] \text{ real}]$	$\Re\{X(e^{j\omega})\}$
	of Real Signals	$x_o[n] = \mathcal{O}d\{x[n]\}$ [x[n] real]	$j\mathcal{G}m\{X(e^{j\omega})\}$
5.3.9	Parseval's Relation for Aperiodic Signals		
	$\sum_{n=-\infty}^{+\infty} x[n] $	$ z ^2=rac{1}{2\pi}\int_{2\pi} X(e^{j\omega}) ^2d\omega$	

 TABLE 5.2
 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal	Fourier Transform	Fourier Series Coefficients (if periodic)
$\sum_{k=\langle N\rangle} a_k e^{jk(2n/N)n}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	a_k
$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$	(a) $\omega_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi m}{N}$ $\omega_0 = a_k = \begin{cases} \frac{1}{2}, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{1}{2\pi}$ irrational \Rightarrow The signal is aperiodic
$\sin \omega_0 n$	$\frac{\pi}{j} \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l)\}$	(a) $\omega_0 = \frac{2\pi r}{N}$ $a_k = \begin{cases} \frac{1}{2j}, & k = r, r \pm N, r \pm 2N, \dots \\ -\frac{1}{2j}, & k = -r, -r \pm N, -r \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$ (b) $\frac{\omega_0}{2\pi}$ irrational \Rightarrow The signal is aperiodic
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$
Periodic square wave $x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$ and $x[n+N] = x[n]$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N \sin[2\pi k/2N]}, \ k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N}, \ k = 0, \pm N, \pm 2N, \dots$
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$rac{2\pi}{N}\sum_{k=-\infty}^{+\infty}\deltaigg(\omega-rac{2\pi k}{N}igg)$	$a_k = \frac{1}{N}$ for all k
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-J\omega}}$	_
$x[n] \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+\frac{1}{2})]}{\sin(\omega/2)}$	
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$	_
δ[n]	1	_
u[n]	$\frac{1}{1-e^{-j\omega}}+\sum_{k=-\infty}^{+\infty}\pi\delta(\omega-2\pi k)$	_
$\delta[n-n_0]$	$e^{-j\omega n_0}$	_
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^2}$	_
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\omega})^r}$	_

5.7 Duality

For continuous-time Fourier transform, we observed a symmetry or duality between the analysis and synthesis equations. For discrete-time Fourier transform, such duality does not exist. However, there is a duality in the discrete-time series equations. In addition, there is a duality relationship between the discrete-time Fourier transform and the continuous-time Fourier series.

5.7.1 Duality in the discrete-time Fourier Series

Consider the periodic sequences with period *N*, related through the summation

$$f[m] = \frac{1}{N} \sum_{r=\langle N \rangle} g(r) e^{-jr(2\mathbf{p}/N)m} . \tag{5.54}$$

If we let m = n and r = -k, Eq. (5.54) becomes

$$f[n] = \sum_{k=< N>} \frac{1}{N} g(-r) e^{jr(2\mathbf{p}/N)n} . \tag{5.55}$$

Compare with the two equations below,

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\mathbf{p}/N)n} , \qquad (3.80)$$

$$a_k = \frac{1}{N} \sum_{k=\langle N \rangle} x[n] e^{-jk(2\mathbf{p}/N)n} . \tag{3.81}$$

we fond that $\frac{1}{N}g(-r)$ corresponds to the sequence of Fourier series coefficients of f[n]. That is

$$f[n] \stackrel{FS}{\longleftrightarrow} \frac{1}{N} g[-k]. \tag{5.56}$$

This duality implies that every property of the discrete-time Fourier series has a dual. For example,

$$x[n-n_0] \stackrel{FS}{\longleftrightarrow} a_k e^{-jk(2\mathbf{p}/N)n_0} \tag{5.57}$$

$$e^{jm(2\mathbf{p}/N)n} \longleftrightarrow a_{k-m} \tag{5.58}$$

are dual.

Example: Consider the following periodic signal with a period of N = 9.

$$x[n] = \begin{cases} \frac{1}{9} \frac{\sin(5\mathbf{p}n/9)}{\sin(\mathbf{p}n/9)}, & n \neq multiple \ of \ 9\\ \frac{5}{9}, & n = multiple \ of \ 9 \end{cases}$$
(5.59)

We know that a rectangular square wave has Fourier coefficients in a form much as in Eq. (5.59). Duality suggests that the coefficients of x[n] must be in the form of a rectangular square wave.

Let g[n] be a rectangular square wave with period N = 9,

$$g[n] = \begin{cases} 1, & |n| \le 2 \\ 0, & 2 < |n| \le 4 \end{cases}$$
 (5.60)

The Fourier series coefficients b_k for g[n] can be given (refer to example on page 27/3)

$$b_{k} = \begin{cases} \frac{1}{9} \frac{\sin(5\mathbf{p}k/9)}{\sin(\mathbf{p}k/9)}, & k \neq multiple \ of \ 9\\ \frac{5}{9}, & k = multiple \ of \ 9 \end{cases}$$

$$(5.61)$$

The Fourier analysis equation for g[n] can be written

$$b_k = \frac{1}{9} \sum_{n=-2}^{2} (1)e^{-j2\mathbf{p}nk/9} . {(5.62)}$$

Interchanging the names of the variable k and n and noting that $x[n] = b_k$, we find that

$$x[n] = \frac{1}{9} \sum_{k=-9}^{2} (1)e^{-j2pnk/9}$$
.

Let k' = -k in the sum on the right side, we obtain

$$x[n] = \frac{1}{9} \sum_{k=-2}^{2} (1)e^{+j2pnk^{k/9}}$$
.

Finally, moving the factor 1/9 inside the summation, we see that the right side of the equation has the form of the synthesis equation for x[n]. Thus, we conclude that the Fourier coefficients for x[n] are given by

$$a_k = \begin{cases} 1/9, & |k| \le 2 \\ 0, & 2 < |k| \le 4 \end{cases},$$

with period of N = 9.

5.8 System Characterization by Linear Constant-Coefficient Difference Equations

A general linear constant-coefficient difference equation for an LTI system with input x[n] and output x[n] is of the form

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k], \qquad (5.63)$$

which is usually referred to as Nth-order difference equation.

There are two ways to determine $H(e^{j\mathbf{w}})$:

- The first way is to apply an input $x[n] = e^{jwn}$ to the system, and the output must be of the form $H(e^{jw})e^{jwn}$. Substituting these expressions into the Eq. (5.63), and performing some algebra allows us to solve for $H(e^{jw})$.
- The second approach is to use discrete-time Fourier transform properties to solve for $H(e^{jw})$.

Based on the convolution property, Eq. (5.63) can be written as

$$H(e^{jw}) = \frac{Y(e^{jw})}{X(e^{jw})}. (5.64)$$

Applying the Fourier transform to both sides and using the linearity and time-shifting properties, we obtain the expression

$$\sum_{k=0}^{N} a_k e^{-jkw} Y(e^{jw}) = \sum_{k=0}^{M} b_k e^{-jkw} X(e^{jw}).$$
 (5.65)

or equivalently

$$H(e^{j\mathbf{w}}) = \frac{Y(e^{j\mathbf{w}})}{X(e^{j\mathbf{w}})} = \frac{\sum_{k=0}^{M} b_k e^{-jk\mathbf{w}}}{\sum_{k=0}^{N} a_k e^{-jk\mathbf{w}}}.$$
 (5.66)

Example: Consider the causal LTI system that is characterized by the difference equation,

$$y[n] - ay[n-1] = x[n],$$
 $|a| < 1.$

The frequency response of this system is

$$H(e^{jw}) = \frac{Y(e^{jw})}{X(e^{jw})} = \frac{1}{1 - ae^{jw}}.$$

The impulse response is given by

$$h[n] = a^n u[n].$$

Example: Consider a causal LTI system that is characterized by the difference equation

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n].$$

- 1. What is the impulse response?
- 2. If the input to this system is $x[n] = \left(\frac{1}{4}\right)^n u[n]$, what is the system response to this input signal?

The frequency response is

$$H(e^{j\mathbf{w}}) = \frac{1}{1 - \frac{1}{2}e^{-j\mathbf{w}} + \frac{1}{2}e^{-j2\mathbf{w}}} = \frac{2}{(1 - \frac{3}{4}e^{-j\mathbf{w}})(1 - \frac{1}{4}e^{-j\mathbf{w}})}.$$

After partial fraction expansion, we have

$$H(e^{j\mathbf{w}}) == \frac{4}{1 - \frac{1}{2}e^{-j\mathbf{w}}} - \frac{2}{1 - \frac{1}{4}e^{-j\mathbf{w}}},$$

The inverse Fourier transform of each term can be recognized by inspection,

$$h[n] = 4\left(\frac{1}{2}\right)^n u[n] - 2\left(\frac{1}{4}\right)^n u[n].$$

Using Eq. (5.64) we have

$$Y(e^{j\mathbf{w}}) = H(e^{j\mathbf{w}})X(e^{j\mathbf{w}}) = \left[\frac{2}{(1 - \frac{3}{4}e^{-j\mathbf{w}})(1 - \frac{1}{4}e^{-j\mathbf{w}})}\right]\left[\frac{1}{1 - \frac{1}{4}e^{-j\mathbf{w}}}\right]$$
$$= \frac{2}{(1 - \frac{3}{4}e^{-j\mathbf{w}})(1 - \frac{1}{4}e^{-j\mathbf{w}})(1 - \frac{1}{4}e^{-j\mathbf{w}})}$$

After partial-fraction expansion, we obtain

$$Y(e^{j\mathbf{w}}) = H(e^{j\mathbf{w}})X(e^{j\mathbf{w}}) = -\frac{4}{1 - \frac{1}{4}e^{-j\mathbf{w}}} - \frac{2}{\left(1 - \frac{1}{4}e^{-j\mathbf{w}}\right)^2} + \frac{8}{1 - \frac{1}{2}e^{-j\mathbf{w}}}$$

The inverse Fourier transform is

$$y[n] = \left\{ -4\left(\frac{1}{2}\right)^n - 2(n+1)\left(\frac{1}{4}\right)^n + 8\left(\frac{1}{2}\right)^2 \right\} u[n].$$