ELG 3120 Signals and Systems Chapter 5

Chapter 5 The Discrete-Time Fourier Transform

5.0 Introduction

There are many similarities and strong parallels in analyzing continuous-time and discrete-
time signals.

There are aso important differences. For example, the Fourier series representation of a
discrete-time periodic signal is finite series, as opposed to the infinite series representation
required for continuous-time period signal.

In this chapter, the analysis will be carried out by taking advantage of the similarities
between continuous-time and discrete-time Fourier analysis.

5.1 Representation of Aperiodic Signals: The discrete-Time Fourier
Transform

5.1.1 Development of the Discrete-Time Fourier Transform

Consider ageneral sequence that is afinite duration. That is, for someintegers N, and N,, Xn]
equalsto zero outside therange N, £ n £ N,, as shown in the figure below.

x[n]

il

-N, 0

()

X[n]

il il

-N Ny 0 Ny N n

()

We can construct a periodic sequence X[n] using the aperiodic sequence X n] as one period. As
we choose the period N to be larger, X[n] isidentical to X{n] over alonger interval, as N ® ¥,
X[n] = x[n] .

Based on the Fourier series representation of a periodic signal given in Egs. (3.80) and (3.81), we
have
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)?[n] — é akejk(Zp/N)n ’

k=<N>

— é i[n]e' jk(@p IN)n
k=(N)

If the interval of summation is selected to include the interval

replaced by X[n] in the summation,

Chapter 5

(5.1)

(5.2)

N, £n£N,, so X[n] can be

1 . 1 ¥ _
a, =— Q x[nje’ @M = — 7 x[n]e K@M (5.3)
k=N, N k=-¥
Defining the function
. ¥ .
X(e™)=a «qnle ™, (5.4)
So a, can bewritten as
=1 X (e™") (5.5)
N ’ '
Then X[n] can be expressed as
~ o 1 ikw, B 1 o ikw .
X[n] = a —X(e' o)eJk(2p/N)ﬂ :2_ a (el °)ejk(2p/N)nWO. (5.6)
k=<N> k=<N>
As N ® ¥ X[n]=x[n], and the above expression passes to an integral,
X(n] -1 X (e")e"dw (5.7)
2p Q ’
The Discrete-time Fourier transform pair:
1 \ jw jwn
Xn] = EQ) X(e™)e™dw (5.8)
_ ¥ _
wy — - jwn
X(€e")=a {nle ™ (5.9)
n=-¥
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Eq. (5.8) isreferred to as synthesis equation, and Eq. (5.9) isreferred to as analysis equation
and X(e™") isreferred to as the spectrum of X{n].

5.1.2 Examples of Discrete-Time Fourier Transforms

Example: Consider X{n] =a"u[n], [a|<1. (5.10)
. ¥ : g , d w\on 1
XEe")=a {ne ™ = q a"unle’™ =g (ae' ‘W) = (5.11)
n=-¥ n=- ¥ n=0 1- ae .

The magnitude and phase for this example are show in the figure below, where a>0 and a< 0
are shown in (a) and (b).

x|
1

1+a

! 1 1-a l |

—2m - 0 ™ 21

£ X(e)

\ /\I o tan! aA - aZ)\V\

@ (b;\ —tan™" (jal/1 — a?)

Example: xn] =al, |a| <1. (5.12)

¥ -1 ¥
. o i [e) _ o [o] _i
X(e"y= g dlune™ = a"e™+3 a%e ™
n=-¥ n=-¥ n=0

Let m =-n inthefirst summation, we obtain

¥ ¥ ¥
X(e™)= § dunle ™ =§ a"eM™ +§ a"e M
n=-¥ m=1 n=0

(5.13)
_ ae'" P 1- a2
1- ae™ 1- ae’’™ 1- 2acosw +a?
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x[n]

...,mﬂ”l |||lhn,...

X(e*)
(1+a)/(1—-a) H

(1—a)/(1+a)

@)

Example: Consider the rectangular pulse

_iL MEN, & 14

X[n]—%o, >N, (5.14)
Ny :

X(jw)= § e’ = sinw(N, +1/2) (5.15)

sin(w/2)

n=- Ny

This function is the discrete counterpart of the sic
function, which appears in the Fourier transform of
the continuous-time pulse.

The difference between these two functions is that

x[n]

—N; 0 Ny n
@

X&)

| /\ |

/\ !
—2m \/—n\/ 0 \/ﬂ\/ 2n

()

the discrete oneis periodic (see figure) with period of 2p , whereas the sinc function is aperiodic.

5.1.3 Convergence

¥
Theequation X(e™)= § Xn]e ™ convergeseither if x[n] isabsolutely summable, that is

n=-¥
X

a [xn] <¥,

n=-¥

or if the sequence hasfinite energy, that is

¥ 2
a IX[n]| <¥.
n=- ¥
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And there is no convergence issues associated with the synthesis equation (5.8).

If we approximate an aperidic signal X n] by anintegral of complex exponentials with

frequencies taken over theinterval Ww|£W,,

XN :%(‘i\:\l X(e")e""dw ,

(5.18)

and X[n] = xn] for W =p . Therefore, the Gibbs phenomenon does not exist in the discrete-time

Fourier transform.

Example: the approximation of the impulse response with different valuesof W .

ForW=p/4,3/8p/2 3p/4, 7p/8,p, the approximations are plotted in the figure below.

We can seethat when W =p, X[n] = Xn].

W = 7/2

A
x[n] W = 77/8

o~

©

W = 3n/4

3

®
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5.2 Fourier transform of Periodic Signals
For a periodic discrete-time signal,

Xn] =™

its Fourier transform of thissignal is periodicin w with period 2p , and isgiven

X(e") = & 2pd(w-w, - ).

Chapter 5

(5.19)

(5.20)

Now consider a periodic sequence X n] with period N and with the Fourier series representation

o .
X[n] = a akejk(Zp/N)n.
k=<N>

The Fourier transform is
W o k
X(e™)= & adw- 2K,
K=-¥ N

Example: The Fourier transform of the periodic signa

1. 1 . .
x[n] = cosw,n ==e"" + = e ™" 'with w, = 2 :
2 3
isgiven as
X(e") = pdg/v-£9+pdg/v & -pEw<p.
!ZI
X(el*)
™
Pt Pt P 1
2% —wg 0 o 2w
(—27—wg) (—27+wmp) R7—wg @mtwg)
Discrete-time Fourier transform of x[n] = cos wyn.

6/5

(5.21)

(5.22)

(5.23)

(5.24)

Yao



ELG 3120 Signals and Systems Chapter 5

Example: The periodic impulse train

+¥
xn] = &d[n- kN]J.

k=-¥
The Fourier series coefficients for this signal can be calculated
a, :-[:7é x[n]e‘ jk(2p/Nyn .

n=<N>

Choosing theinterval of summationas O£ n£ N - 1, we have

a.k :ﬁ.

The Fourier transform is

¥ v
k=-¥

(5.25)

(5.26)

(5.27)

(5.28)

21/N
A

g
(b)

(a) Discrete-time periodic impulse train; (b) its Fourier transform.
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5.3 Propertiesof the Discrete-Time Fourier Transform
Notations to be used

X(e™) = F{xnl},

xn] = F{x(e")},

Xn]-%® X(e).

5.3.1 Periodicity of the Discrete-Time Fourier Transform

The discrete-time Fourier transform is always periodic in w with period 2p , i.e.,

X(e®) = x(e™). (5.29)
5.3.2 Linearity

If x[n]-%® X,(e"),and x,[n]-%® X, ("),

then

ax[n] +bx,[n] -%® ax,(e™) +bX,(e") (5.30)

5.3.3 Time Shifting and Frequency Shifting

If [n]-%® X(e™),

then

X[n- no]_‘%® e jwnox(ejw) (5.31)
and

™[ n]-%® X (&™) 5%)
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5.3.4 Conjugation and Conjugate Symmetry

If {n]-%® X(eM),

then

X*[N]-%2® X * (e )

If X[n] isrea valued, itstransform X(e) is conjugate symmetric. That is

X(@Ee")=X*@E")

From this, it follows that Re{X(eiW)} isan even function of w and Im{X (ejW)} isan odd

(5.33)

(5.34)

function of w . Similarly, the magnitude of X(e') isan even function and the phase angle is

an odd function. Furthermore,

E{Xn]}-%® Re{X ("},

and

od{X{nl}-%® jim{X(e"}.

5.3.5 Differencing and Accumulation

If {n]-%® X(e"),

then

x[n]- x[n- N-%® (1- e )X (e")]

For signal

vinl= & i,

m=- ¥

its Fourier transform is given as

9/5
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a><[m] _® i X(e™) +pX (%) & d(w- 20K)| 539

m=- ¥

The impulse train on the right-hand side reflects the dc or average value that can result from
summation.

For example, the Fourier transform of the unit step X{n] =u[n] can be obtained by using the
accumulation property.

We know g[n] =d[n]-%:® G(e") =1, so
- 0y & 1 &
-%® —G(e" G(e'®)qd(w- 2pk) = . d(w - 2pk).
Xn] = mg g[m] (1—.,W) (™) +pG(e )k§¥ (W - 2pk) m+pk§¥ (W - 2pk)
(5.40)
5.3.6 Time Reversal
If (n]-%® X(e'),

then

X[- n]-%® X(-e")| (5.41)

5.3.7 Time Expansion

For continuous-time signal, we have

x(at) ~¥%® aer 0 (5.42)

Ial

For discrete-time signals, however, a should be an integer. Let usdefine asigna with k a
positive integer,

i X[n/K], if nisa multiple of k

= . 5.43
Xwlnl = ' if nis not a multiple of k (543)

X4 [N] isobtained from Xn] by placing k - 1 zeros between successive values of the original
signal.

The Fourier transform of x,,[n] is given by
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+¥ +¥

. _ o i _ o i k _
X (") = a¥X(k)[n]e = a¥X(k)[rk]e =
n= r=

That is,

x(k)[n] -34® X(e”“”) .

+¥
a X[rle 1®r = X (e,
r=-¥

(5.44)

Chapter 5

(5.45)

For k >1, the signal is spread out and slowed down in time, while its Fourier transform is

compressed.

Example: Consider the sequence X[n] displayed in the figure (a) below. This sequence can be
related to the simpler sequence y[{n] asshownin (b).

Xn] = y(z)[n] + ZY(z)[n‘ 1],
where

iy[n/2], if niseven

nl =
Al =1 if nisodd

Thesignas y,[n] and 2y, [n- 1 are depicted in (c) and (d).

As can be seen from the figure below, y[n] is a rectangular pulse with N, =2, its Fourier

transformis given by

i o SN(5w /2
Y(e'W):e"a”g.
sn(w/2)
2 xIn] 1 yeln]
1
=[‘I|I|II]I== 01 2 3 45 6 7 8 9 n
01 23 45 67 8 9 n © 2yigin—1]
@ 2
; yln]
61 2 3 4 5 6 7 8 9 n 0 1t 2 3 4 5 6 7 8 9 n
(b) )

Using the time-expansion property, we then obtain

11/5

Yao



ELG 3120 Signals and Systems Chapter 5

sin(Sw)

Vol =@ & o w)

g fow SINEW)

2y(2) [n-1 ~¥4® sin(w)

Combining the two, we have

X(@E")=e'*"@1+2e ™ )?;—:S(WBN)) %.

5.3.8 Differentiation in Frequency

If [n]-%® X(e™),

Differentiate both sides of the analysis equation X(e™™) = é nje "

dX (eJVV
dw

The right-hand side of the Eq. (5.46) is the Fourier transform of - jnx{n] . Therefore, multiplying
both sidesby |, we seethat

) _ wn
a - jn{nle’ (5.46)

dx(e')

n{n]-%® j——* dw | (5.47)

5.3.9 Parseval’s Relation

If {n]-%® X(e"), then we have

jw)
e ‘ dw (5.48)

a \x[n]\
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Example: Consider the sequence xn] whose Fourier transform X(e') is depicted for
- p £w £p inthefigure below. Determine whether or not, in the time domain, X n] isperiodic,
real, even, and /or of finite energy.

LX)
2%+

ALSIope of 2

()

The periodicity in time domain implies that the Fourier transform has only impulses located
at various integer multiples of the fundamental frequency. This is not true for X(e). We
concludethat X[n] isnot periodic.

Since real-valued sequence should have a Fourier transform of even magnitude and a phase

function that is odd. Thisistrue for ‘X(e‘w)‘ and DX (). We concludethat x{n] isreal.
If x[n] isreal and even, then its Fourier transform should be real and even. However, since
X(e™) :‘X(eiw)‘e' 12w X (e™) isnot real, so we concludethat x[n] is not even.

Based on the Parseval’s relation, integrating \X(eJ'W)\2 from - p to p will yield a finite
quantity. We conclude that Xx[n] has finite energy.

5.4 The convolution Property

If x{n], h[n] and y[n] are the input, impulse response, and output, respectively, of an LTI
system, so that

yin] = Xn]* h[n], (5.49)
then,
Y(e"™)=X(€")H(e"), (5.50)
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where X(e"), H(e") and Y(e") are the Fourier transforms of Xn], h[n] and y{n],
respectively.

Example: Consider the discrete-time ideal lowpass filter with a frequency response H(e'")

illustrated in the figure below. Using - p £w £p astheinterval of integration in the synthesis
eguation, we have

i =%d H (e™)e ™ dw

2p pn
hn]
The frequency response of the discrete-time 0 n
ideal lowpassfilter is shown in the right figure. )

Example: Consider an LTI system with impul se response
h[n] =a "u[n], a| <1,

and suppose that the input to the system is

Xn] =b"u[n], Ib| <1.

The Fourier transforms for h[n] and Xn] are

, 1
HE")= ———:—,
(™) 1-ae
ad
, 1
Xe")=s———r,
™) 1- be'™
so that

1
(l-ae™)@- be™)’

Y(e")=H(e")X(e")=

14/5 Yao
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If a * b, the partia fraction expansion of Y(e'') isgiven by

a b
A N B __a-b 4+ a- b
l-ae™) (1-be™) @-ae™) (1-be™)’

Y(E") =

We can obtain the inverse transform by inspection:

yin] = a"ufn] - aLb un] = b( a"u[n] - bb "u[n]).
Fora =b,

Y(Ee™) = m, which can be expressed as

v(e") | de 1 O

=W = +
a dw gl ae ™y

Using the frequency differentiation property, we have

de 1 0

na"un]-¥%® j— .
L] =% Jd §1 ae’Wg

To account for the factor e/, we use the time-shifting property to obtain

de 1 0

n+1a "™ u[n+1-%® je™
N+t U+ 470 1ot vl ae ™ 5

Finaly, accounting for the factor 1/a , we have

yin] =(n+1a"un+1].

Sincethefactor n+1 iszeroat n=-1, so y[n] can be expressed as
yin] =(n+2)a"u[n].

Example: Consider the system shown in the figure below. The LTI systems with frequency
response H,, (e'") areideal lowpass filters with cutoff frequency p /4 and unity gain in the

passband.

15/5
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w,[n] = (- )" n] = e™xn] G 0
- - > (: :)W1 [n]! HIp (éu)) w2[n] W [n]
P W (e")=X(@Ee"P).
x[n] yln]
W, (e™) = H, (") X (e!®P). o oo
4l

@

ws[n] = (- ) "w,[n] = e wy[n]

b W3(ej"") :Wz(ej(‘”'p)) - Hlp(e“""'p))X(ej(W'z”)).

=} W, (e'") =W,(e!™ ™) =H, (e™ ™)X (e") (Discrete-Fourier transforms are aways
periodic with period of 2p ).

W, (e") =H(e")X (™).

Y(e™) =Wi(e™) +W,(e™) = [H,, (1)) + Hyy ()X (e™).

The overall system has a frequency response y
H(e")
Hyp (") = [H,, (e7) + H, ()X (e™), :
which is shown in figure (b). e . ot -
The filter is referred to as bandstop filter, where 4 4 (b) 4 4

the stop band istheregion p /4 <|w| <3p /4.

It is important to note that not every discrete-time LTI system has a frequency response. If an
LTI system is stable, then itsimpulse response is absolutely summable; that is,

g In[n]| <¥, (5.51)

5.5 The multiplication Property

Consider y[n] equal to the product of x,[n] and x,[n], with Y(€"), X ("), and X,(e")
denoting the corresponding Fourier transforms. Then
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M = %[0 ) X, (e)X,(e)da 552

Eq. (5.52) corresponds to a periodic convolution of X, (e™) and X,(e'), and the integral in
this equation can be evaluated over any interval of length 2p .

Example: Consider the Fourier transform of asignal X[n] which the product of two signals; that
is

x{n] = x[n]x,[n]

where

N LT

sin(pn/2)

X,[n] =
pn

Based on Eg. (5.52), we may write the Fourier transform of X n]
X(e™) -2 e")X, (e dg . (5.53)
2 Q) 1 2

Eq. (5.53) resembles aperiodic convolution, except for the fact that the integration is limited to
the interval of - p <q <p . The equation can be converted to ordinary convolution with
integration interval - ¥ <q <¥ by defining

s T X, (M) for -p<w<

X (e™) =y " g P
10 otherwise

Then replacing X, (e™) in Eq. (5.53) by X,(e"), and using the factthat X,(e™) is zero for

-p <w <p , we see that

1

X (e") =%d X, ()X, (e ) = -

&, X.(e™)X, (" V)dg

Thus, X(e") is1/2p times the aperiodic convolution of the rectangular pulse )A(l(e"w) and the

periodic square wave X,(e). The result of thus convolution is the Fourier transform X (e'),
as shown in the figure below.
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X ")
1
A T . on
Xa (€4)
[1
B [ 1=
~2n -3 S 25

X(

J_

el*)

+< ol

1 1
-r _3n _xm
4 2

o
4

[T
-h‘g’ -
E}
€

1
a
4

5.6 Tablesof Fourier Transform Propertiesand Basic Fourier Transform

Paris
TABLE 5.1 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM
Section Property Aperiodic Signal Fourier Transform
x[n] X(e’”)] periodic with
yln] Y(ej“’_)} period 27
532 Linearity ax[n] + by[n] aX(e’®) + bY(e!?)
5.3.3 Time Shifting x[n — ngl e iom X (e/*)
533 Frequency Shifting e x[n] X(e/@wo)
5§34 T Conjugation x*[n] X'(e ™)
536 Time Reversal x[—n] X(e ™)
537 Time E ) [n] = x[n/k], if n = multiple of k X(e#)
- S Mol =1 o, if n » multiple of k ¢
54 Convolution x[n] * y[n] X(e™)Y(e!)
55 Multiplication x[nly(n] % J X(e’)Y(e/“ M)de
27
535 Differencing in Time x[n] — x[n —1] (1 — e )X (e™)
. < 1 -
535 Accumulation k;m x[k] = X(e™)
+7X(e) > 8w — 2mk)
k=-o
538 Differentiation in Frequency  nx[n] 'd)ii(:jw)
X(e®) = X* (e /?)
Re{X(ei?)} = Re{X(e )}
534 Conjugate Symmetry for x[n] real Im{X(e®)} = —Im{X(e )}
Real Signals IX(e7)| = |X(e™ )|
LX(e’*) = —<X(e /®)
534 Symmetry for Real, Even x[n] real an even X(ei®) real and even
Signals
534 Symmetry for Real, Odd x[n] real and odd X(e’*) purely imaginary and
Signals odd
534 Even-odd Decomposition x[n] = &4x[n]} [x[n] real] Re{X(e™)}
of Real Signals %o[n] = Od{x[n]} [x(n] real] jmX (e}
539 Parseval’s Relation for Aperiodic Signals
+oo 1 )
2 _ jwy|2
>l = o | e pan

18/5
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TABLE 5.2 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Chapter 5

Signal Fourier Transform Fourier Series Coefficients (if periodic)
4o
ayelK@nNm 27 Z a;d (w = 217;—]() ay
k=(N) k=—w
(@ wp =22
. 1) 1 = =N,m=2N,...
edwon 2> 8w — wo — 2l) [ AR
I=— 0, otherwise
(b) %‘; irrational 2> The signal is aperiodic
@ w =37
g 1 =
coswyn T Z{B(w—wo—2wl)+3(w+w0—2rrl)} @ g ={2 k=xmmNtm2N,. ..
f E— 0, otherwise
(b) 5, irmrational > The signal is aperiodic
@ wy =3
oo % k=rr*Nr=*2N,...
sinwon %Z{é(w—w0—2wl)—6(w+w0—2wl)} 4 =q -5, k=-r-rxN-rx2N,...
= j
! 0, otherwise
(b) %‘i irrational > The signal is aperiodic
= 1, k=0 *N, *2N,...
x[n] =1 27 Z 8w — 27l) ag = .
P 0, otherwise
Periodic square wave
il 1, | =N . sin[@TKIN)N; + D] f 0 AN 52N
x[n] = i UG = ———— o , =N, 22N, ...
0, Mi<l=N2 | 20> @b (a) = #) k N sin[27k/2N]
and k=-o 2N; +1
a = , k=0, +N,*2N,...
x[n+ N1 = xn] N
L 2 I 2mk 1
;mﬁln—kN] o Ff(““T) a; =  forall k
auln], la| <1 R —
! 1—ae-Jo
(nl L |nl =N sinfw(Ny + )]
x[n et L S o
0, |al >N, sin(w/2)
1, 0= =W
s vae() | e oM
0, W<lw|=m e
O<W<m X(w) periodic with period 27
&l 1 -
1 g
uln) = + k;m 78(w — 27k)
8[n — ngl e Jen —
(n+ Da"uln], l|a|<1 ; —
g (1— age-J»)?
(n+r—-1 1 .
o= ¢ uln), la| <1 Tac iy
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5.7 Duality

For continuous-time Fourier transform, we observed a symmetry or duality between the analysis
and synthesis equations. For discrete-time Fourier transform, such duality does not exist.
However, there is a duality in the discrete-time series equations. In addition, there is a duality
relationship between the discrete-time Fourier transform and the continuous-time Fourier
series.

5.7.1 Duality in the discrete-time Fourier Series

Consider the periodic sequences with period N, related through the summation

fm == & glr)e ", (5.54)
r=<N>
If welet m=n and r =- k, Eq. (5.54) becomes
S 1 jir(2p /N)n
fl[nl= a —a(-re : (5.55)

k=<N>

Compare with the two equations below,

x[n = q ae" ™" , (3.80)
k_(N)
a, = _1 é x[ne K@ /Nn
_ (3.81)
N i)

we fond that % g(- r) corresponds to the sequence of Fourier series coefficientsof f[n]. That is

f[n] ~ %® %g[- K] . (5.56)

This duality implies that every property of the discrete-time Fourier series has a dual. For
example,

XN - n,]~ F® a, e K>/ M (5.57)
"M@ /NN $6® g, (5.58)
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are dual.

Example: Consider the following periodic signal with aperiod of N =9.

j&sin(Epn/g)
19 sn(pn/9)
|

2 n=multiple of 9
19

n® multiple of 9

Xn] = (5.59)

We know that arectangular square wave has Fourier coefficientsin aform much asin Eqg. (5.59).
Duality suggests that the coefficients of xn] must be in the form of arectangular square wave.

Let g[n] bearectangular square wave with period N =9,

11, In £2

onl = 10, 2<|i£4’

(5.60)

The Fourier series coefficients b, for g[n] can be given (refer to example on page 27/3)

;;w://gg) k* multiple of 9

b =1, Sin(pk/9) . (5.61)
1> k = multiple of 9
o’ P

The Fourier analysis equation for g[n] can be written

2
b, = % a e 1#we (5.62)

n=-2

Interchanging the names of the variable k and n and noting that x{n] =b, , we find that

2

XN =5 & e 7

k=-2

Let k'= -k inthe sum on theright side, we obtain

2
] :1 é (1)e+jzpnk'/9_
9>
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Finally, moving the factor 1/9 inside the summation, we see that the right side of the equation
has the form of the synthesis equation for X[n]. Thus, we conclude that the Fourier coefficients

for X[n] are given by

jue, |HE2

*Tio, 2<[ded

with period of N =9.

5.8 System Characterization by Linear Constant-Coefficient Difference
Equations

A general linear constant-coefficient difference equation for an LTI system with input x{n] and
output X[n] is of the form

éN a yin- k] :g b.X{n- K], (5.63)

k=0 k=0

which is usually referred to as Nth-order difference equation.
There are two ways to determine H (e'):

The first way is to apply an input X[n] =e™" to the system, and the output must be of the
form H(e')e'™". Substituting these expressions into the Eq. (5.63), and performing some
algebraalows usto solvefor H(e'").

The second approach is to use discrete-time Fourier transform properties to solve for
H(e™).

Based on the convolution property, Eq. (5.63) can be written as

H(e") = % (5.64)

Applying the Fourier transform to both sides and using the linearity and time-shifting properties,
we obtain the expression

M
a ae ™vyE")=3 be ™ Xx(@E"). (5.65)

N
[¢]
k=0 k=0
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or equivaently

Y jw éM b e‘jkW
H(e™) = X(e,-w) = Leod® (5.66)
") a.ae

Example: Consider the causal LTI system that is characterized by the difference equation,
Mnl- ain-g=xn,  |a<1.
The frequency response of this system is

Ye™) 1
X(Ee") 1-ae™’

H(e") =

The impulse response is given by
h[n] =a"u[n].

Example: Consider acausal LTI system that is characterized by the difference equation

wm-gym-u+§Wn-a=2Am.

1. What is the impul se response?

2. If the input to this systemis X n] :ge—lg u[n], what is the system response to this input signal?
e4g

The frequency responseis

1 B 2
- le W le (1 3gvy(1- 1eiv)

H(e"W):1

After partial fraction expansion, we have

" 4 2
H(e )=:1- 1ev 1. 1eg v’

The inverse Fourier transform of each term can be recognized by inspection,

hn] = @Qnu[n] i 2?;@9nu[n] .
e2g ed g
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Using Eq. (5.64) we have

Y(E™)=H(e")X(e") - 2 vt 1 U
S 3o ze )d te
- 2
(- $e7)@- &) je ™)
After partial-fraction expansion, we obtain

YE™)=HEe")X(Ee")=- — + :
( ) ( ) ( ) 1_ %e-JW (1- %e_jW)Z 1_ %e-jW

Theinverse Fourier transform is

M LN N L2 4
fm=}- 422 - 2(n+p B8+ .
-V edg eZzb
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