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Chapter 2 Linear Time-Invariant Systems 
 

2.0 Introduction 
 
• Many physical systems can be modeled as linear time-invariant (LTI) systems  
• Very general signals can be represented as linear combinations of delayed impulses. 
• By the principle of superposition, the response ][ny  of a discrete-time LTI system is the sum 

of the responses to the individual shifted impulses making up the input signal ][nx . 
 

2.1 Discrete-Time LTI Systems: The Convolution Sum 
 

2.1.1 Representation of Discrete-Time Signals in Terms of Impulses 
 
A discrete-time signal can be decomposed into a sequence of individual impulses. 
 
Example :  
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Fig. 2.1 Decomposition of a discrete-time signal into a weighted sum of shifted impulses. 
 

The signal in Fig. 2.1 can be expressed as a sum of the shifted impulses: 
 

...]2[]2[]1[]1[][]0[]1[]1[]2[]2[]3[]3[...][ +−+−+++−++−++−+= nxnxnxnxnxnxnx δδδδδδ
 

(2.1) 
or in  a more compact form 
 

∑
∞

−∞=

−=
k

knkxnx ][][][ δ .          (2.2) 

This corresponds to the representation of an arbitrary sequence as a linear combination of shifted 
unit impulse ][ kn −δ , where the weights in the linear combination are ][kx . Eq. (2.2) is called 
the sifting property of the discrete-time unit impulse. 



ELG 3120 Signals and Systems  Chapter 2 

2/2 Yao 

 

2.1.2 Discrete-Time Unit Impulse Response and the Convolution – Sum Representation of LTI 
Systems 
 
Let ][nhk  be the response of the LTI system to the shifted unit impulse ][ kn −δ , then from the 
superposition property for a linear system, the response of the linear system to the input ][nx  in 
Eq. (2.2) is simply the weighted linear combination of these basic responses: 
 

∑
∞

−∞=

=
k

k nhkxny ][][][ .          (2.3) 

 
If the linear system is time invariant, then the responses to time-shifted unit impulses are all 
time-shifted versions of the same impulse responses: 
 

][][ 0 knhnhk −= .          (2.4) 
 
Therefore the impulse response ][][ 0 nhnh =  of an LTI system characterizes the system 
completely. This is not the case for a linear time-varying system: one has to specify all the 
impulse responses ][nhk  (an infinite number) to characterize the system. 
 
For the LTI system, Eq. (2.3) becomes 
 

∑
∞

−∞=

−=
k

knhkxny ][][][ .        (2.5) 

 

This result is referred to as the convolution sum or superposition sum and the operation on the 
right-hand side of the equation is known as the convolution of the sequences of ][nx  and ][nh . 
 
The convolution operation is usually represented symbolically as 
 

][][][ nhkxny ∗= .          (2.6) 
 

2.1.3 Calculation of Convolution Sum 
 
 
• One way to visualize the convolution sum of Eq. (2.5) is to draw the weighted and shifted 

impulse responses one above the other and to add them up. 
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Example : Consider the LTI system with impulse response ][nh  and input ][nx , as illustrated in 
Fig. 2. 2. 
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The output response based on Eq. (2.5) can be expressed  
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=

nhnhnhxnhxknhkxny
k

. 

 

2
n

0.5

10

x[0]h[n]=0.5h[n]

 
 

                3
n

2

21

x[1]h[n-1]=2h[n-1]

0  
(b) 

 

         3
n

2.5

21

y[n]

0

2

0.5

2.5

 
(c) 

 
Fig. 2.2 (a) The impulse response ][nh  of an LTI system and an input ][nx  to the system; (b) the 

responses to the nonzero values of the input; (c) the overall responses. 
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• Another way to visualize the convolution sum is to draw the signals ][kx  and ][ knh −  as 

functions of k (for a fixed n), multiply them to form the signal ][kg , and then sum all 
values of ][kg . 

 
Example : Calculate the convolution of ][kx  and ][nh  shown in Fig. 2.2 (a). 
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Fig. 2.3 Interpretation of Eq. (2.5) for the signals ][kx  and ][nh . 
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For 0<n , 0][ =ny  

For 0=n , ∑
∞

−∞=

=−=
k

khkxy 5.0]0[][]0[  

For 1=n , ∑
∞

−∞=

=+=−=
k

khkxy 5.225.0]1[][]1[  

For 1=n , ∑
∞

−∞=

=+=−=
k

khkxy 5.225.0]2[][]2[  

For 1=n , ∑
∞

−∞=

=−=
k

khkxy 2]2[][]3[  

For 3>n , 0][ =ny  
 
The resulting output values agree with those obtained in the preceding example. 
 
 
 
Example : Compute the response of an LTI system described by its impulse response 
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To do the analysis, it is convenient to consider five separate intervals: 
 
For 0<n , there is no overlap between the nonzero portions of ][nx  and ][ knh − , and 
consequently, .0][ =ny  
 

For 40 ≤≤ n , 


 ≤≤

=−
−

otherwise
nk

knhkx
kn

,0
0,

][][
α

, 

James
Pencil

James
Pencil



ELG 3120 Signals and Systems  Chapter 2 

6/2 Yao 

Thus, in this interval 
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For 64 ≤< n , 
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For 106 ≤< n , 
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For 46 >−n , or 10>n , there is no overlap between the nonzero portions of ][kx  and ][ knh − , 
and hence, 0][ =ny . 
 
The output is illustrated in the figure below. 
 

y[n]

n
1 20 3 4 5 6 7 8 9 10  
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2.2 Continuous-Time LTI systems: the Convolution Integral 
 
The response of a continuous-time LTI system can be computed by convolution of the impulse 
response of the system with the input signal, using a convolution integral, rather than a sum. 
 

2.2.1 Representation of Continuous-Time Signals in Terms of Impulses 
 
 A continuous-time signal can be viewed as a linear combination of continuous impulses: 
 

∫
∞

∞−
−= ττδτ dtxtx )()()( .         (2.7) 

 
The result is obtained by chopping up the signal )(tx  in sections of width ∆ , and taking sum  
 
 

∆∆− ∆2 ∆30
t

)(tx

 
 
Recall the definition of the unit pulse )(t∆δ ; we can define a signal )(ˆ tx  as a linear combination 
of delayed pulses of height ∆kx( ) 
 

∑
∞

−∞=
∆ ∆∆−∆=

k

ktkxtx )()()(ˆ δ          (2.8) 

 
Taking the limit as 0→∆ , we obtain the integral of Eq. (2.7), in which when 0→∆  
 

(1) The summation approaches to an integral 
(2) τ→∆k  and )()( τxkx →∆  
(3) τd→∆  
(4) )()( τδδ −→∆−∆ tkt  

 
Eq. (2.7) can also be obtained by using the sampling property of the impulse function. If we 
consider t  is fixed and τ  is time variable, then we have )()( τδτ −tx  

)()())(()( ttxtx −=−−= τδτδτ . Hence 
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)()()()()()()( txdttxdtxdtx =−=−=− ∫∫∫
∞

∞−

∞

∞−

∞

∞−
ττδττδτττδτ .    (2.9)  

 
 
As in discrete time, this is the sifting property of continuous-time impulse. 
 

2.2.2 Continuous-Time Unit Impulse Response and the Convolution Integral Representation 
of an LTI system 
 
The linearity property of an LTI system allows us to calculate the system response to an input 
signal )(ˆ tx  using Superposition Principle. Let )(ˆ thk∆  be the pulse response of the linear-varying 

system to the unit pulses )( ∆−∆ ktδ  for +∞<<∞− k . The response of the system to )(ˆ tx  is 
 

∑
∞

−∞=
∆ ∆∆−∆=

k
k kthkxty )()()(ˆ .         (2.10) 

 
Note that the response )(ˆ thk∆  tends to the impulse response )(thτ  as 0→∆ . Then at the limit, 
we obtain the response of the system to the input signal )(ˆlim)(

0
txtx

→∆
= : 

 

∫
+∞

∞−→∆
== ττ τ dthxtyty )()()(ˆlim)(

0
.        (2.11) 

 
For an LTI system, the impulse responses )(thτ  are the same as )(0 th , except they are shifted by 
τ , that is, )()( 0 kthth −=τ . Then we may define the unit impulse response of the LTI system 
 

)()( 0 thth = ,           (2.12) 
 
and an LTI system is completely determined by its impulse response. 
 
So the response to the input signal )(tx  can be written as a convolution integral: 
 

∫
+∞

∞−
−= τττ dthxty )()()( ,        (2.13) 

 
or it can be expressed symbolically 
 

)()()( thtxty ∗= .         (2.14) 
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2.2.3 Calculation of convolution integral 
 
The output )(ty  is a weighted integral of the input, where the weight on )(τx  is )( τ−th . To 
evaluate this integral for a specific value of t ,  
 
• First obtain the signal )( τ−th (regarded as a function of τ  with t  fixed) from )(τh  by a 

reflection about the origin and a shift to the right by t  if t >0 or a shift to the left by t  is t <0. 

• Then multiply together the signals )(τx  and )( τ−th . 
•  )(ty  is obtained by integrating the resulting product from −∞=τ  to +∞=τ .  
 
Example : Let )(tx  be the input to an LTI system with unit impulse response )(th , where 
 

)()( tuetx at−= , 0>a  and )()( tuth = . 
 
Step1: The functions )(τh , )(τx  and )( τ−th  are depicted  
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t
τ

)( τ−th

0

1

0>t

 
 
Step 2: From the figure we can see that for 0<t , the product of the product )(τx  and )( τ−th  is 
zero, and consequently, )(ty  is zero. For 0>t  
 



 <<

=−
−

otherwise
te

thx
at

,0
0,

)()(
τ

ττ  

 
Step 3: Compute )(ty  by integrating the product for 0>t : 
 

)1(
11

)(
00

attat a e
a

e
a

dety −−− −=−== ∫ ττ τ . 

 
The output of )(ty  for all t  is 
 

)()1(
1

)( tue
a

ty at−−= , and is shown in figure below. 
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Example : Compute the convolution of the two signals below: 
 



 <<

=
otherwise

Tt
tx

,0
0,1

)(  and 


 <<

=
otherwise

Ttt
th

,0
20,

)(  

 
For this example, it is convenient to calculate the convolution in separate intervals. )(τx  is 
sketched and )( τ−th  is sketched in each of the intervals: 
 

James
Text Box
t > 0

James
Text Box
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For  0<t , and Tt 3> , 0)()( =−ττ thx  for all the values of τ , and consequently )(ty =0. 
 
For other intervals, the product )()( ττ −thx  can be found in the figure on the next page. Thus for 
these three intervals, the integration can be calculated with the result shown below: 
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2.3 Properties of Linear Time-Invariant Systems 
 
LTI systems can be characterized completely by their impulse response. The properties can also 
be characterized by their impulse response. 
 

2.3.1 The Commutative Property of LTI Systems 
 
A property of convolution in both continuous and discrete time is a Commutative Operation. 
That is 
 

∑∑
∞

−∞=

∞

−∞=

−=−=∗=∗
kk

knkkhknhkxnxnhnhnx ][][][][][][][][ ,     (2.15) 

 
 

ττττττ dtxhdthxtxththtx ∫∫
∞

∞−

∞

∞−
−=−=∗=∗ )()()()()()()()( .    (2.16) 

 
 

hx y
 

xh y
 

 

2.3.2 The Distributive Property of LTI Systems 
 

2121 )( hxhxhhx ∗+∗=+∗          (2.17) 
 
for both discrete-time and continuous-time systems. The property means that summing the 
outputs of two systems is equivalent to a system with an impulse response equal to the sum of 
the impulse response of the two individual systems, as shown in the figure below. 
 

t

)(ty

0 T T2 T3



ELG 3120 Signals and Systems  Chapter 2 

14/2 Yao 

h 1

x

h2

y+

 
 

x yh1+h2

 
 
 
The distributive property of convolution can be exploited to break a complicated convolution 
into several simpler ones.  
 
For example, an LTI system has an impulse response ][][ nunh = , with an input 

][2][
2
1

][ nununx n
n

−+





= . Since the sequence ][nx  is nonzero along the entire time axis. Direct 

evaluation of such a convolution is somewhat tedious. Instead, we may use the distributive 
property to express ][ny  as the sum of the results of two simpler convolution problems. That is, 

][
2
1

][1 nunx
n







= , ][2][2 nunx n −= , using the distributive property we have 

 
( ) ][][)()()()()()()(][ 212121 nynythtxthtxthtxtxny +=∗+∗=∗+=  

 
 

2.3.3 The Associative Property 
 

( ) ( ) 2121 hhxhhx ∗∗=∗∗ .         (2.18) 
 
for both discrete-time and continuous-time systems. 
 
 

h1 h 2x y
 

 

h 1*h2x y
 

 

 
• For LTI systems, the change of order of the cascaded systems will not affect the response. 
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• For nonlinear systems, the order of cascaded systems in general cannot be changed. For 

example, a two memoryless systems, one being multiplication by 2 and the other squaring the 
input, the outputs are different if the order is changed, as shown in the figure below. 

 
 

2x y=4x2w 2
w=2x

 
 

x2x y=2x22
w=x2

 

2.3.4 LTI system with and without memory 
 
A system is memoryless if its output at any time depends only on the value of its input at the 
same time. This is true for a discrete-time system, if 0][ =nh  for 0≠n . In this case, the impulse 
response has the form 
 

][][ nKnh δ= ,           (2.19) 
 
where ]0[hK =  is a constant and the convolution sum reduces to the relation 
 

][][ nKxny = .           (2.20) 
 
Otherwise the LTI system has memory. 
 
For continuous-time systems, we have the similar results if it is memoryless: 
 

)()( tKth δ= ,           (2.21) 
 

)()( tKxty = .           (2.22) 
 
Note that if 1=K  in Eqs. (2.19) and (2.21), the systems become identity systems, with output 
equal to the input. 
 

2.3.5 Invertibility of LTI systems 
 
We have seen that a system S is invertible if and only if there exists an inverse system S-1 such 
that S-1S is an identity system.  
 

hx y=xh1
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Since the overall impulse response in the figure above is 1hh ∗ , 1h  must satisfy for it to be the 
impulse response of the inverse system, namely δ=∗ 1hh . 
 

identity
system

x y=x
 

 
 
Applications - channel equalization: for transmission of a signal over a communication channel 
such as telephone line, radio link and fiber, the signal at the receiving end is often processed 
through a filter whose impulse response is designed to be the inverse of the impulse response of 
the communication channel. 
Example : Consider a system with a pure time shifted output )()( 0ttxty −= . 
 
The impulse response of this system is )()( 0ttth −= δ , since )()()( 00 tttxttx −∗=− δ , that is, 
convolution of a signal with a shifted impulse simply shifts the signal 
 
To recover the signal from the output, that is, to invert the system, all that is required is to shift 
the output back. So the inverse system should have a impulse response of )( 0tt +δ , then 
 

)()()( 00 ttttt δδδ =+∗−  
 
Example : Consider the LTI system with impulse response ][][ nunh = . 
 
The response of this system to an arbitrary input is 
 

∑
+∞

∞−

−= ][][][ knukxny . 

 
Considering that ][ knu −  is 0 for 0<− kn  and 1 for 0≥− kn , so we have 
 

∑
∞−

=
n

kxny ][][ . 

 
This is a system that calculates the running sum of all the values of the input up to the present 
time, and is called a summer or accumulator. This system is invertible, and its inverse is given as 
 

]1[][][ −−= nxnxny , 
 
It is a first difference operation. The impulse response of this inverse system is 
 

]1[][][1 −−= nnnh δδ , 

J-P Yao
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We may check that the two systems are really inverses to each other: 
 

{ } ][]1[][]1[][*][][*][ 1 nnununnnunhnh δδδ =−−=−−=  
 

2.3.6 Causality for LTI systems 
 
A system is causal if its output depends only on the past and present values of the input signal. 
Specifically, for a discrete-time LTI system, this requirement is ][ny  should not depend on ][kx  
for nk > . Based on the convolution sum equation, all the coefficients ][ knh −  that multiply 
values of ][kx  for nk >  must be zero, which means that the impulse response of a causal 
discrete-time LTI system should satisfy the condition 

0][ =nh , for 0<n           (2.23) 
 
A causal system is causal if its impulse response is zero for negative time; this makes sense as 
the system should not have a response before impulse is applied. 
 
A similar conclusion can be arrived for continuous-time LTI systems, namely 
 

0)( =th , for 0<t           (2.24) 
 
Examples: The accumulator ][][ nunh = , and its inverse ]1[][][ −−= nnnh δδ  are causal. The 
pure time shift with impulse response )()( 0ttxty −=  for 00 >t  is causal, but is not causal 
for 00 <t . 
 

2.3.7 Stability for LTI Systems 
 
Recall that a system is stable if every bounded input produces a bounded output. 
 
For LTI system, if the input ][nx  is bounded in magnitude 
 

Bnx ≤][ , for all n  
 
If this input signal is applied to an LTI system with unit impulse response ][nh , the magnitude of 
the output 
 

∑∑∑
+∞

−∞=

+∞

−∞=

+∞

−∞=

≤−≤−=
kkk

khBknxkhknxkhny ][][][][][][      (2.25) 

 
][ny  is bounded in magnitude, and hence is stable if  
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∞<∑
+∞

−∞=k

kh ][ .           (2.26) 

 
So discrete-time LTI system is stable is Eq. (2.26) is satisfied. 
 
The similar analysis applies to continuous-time LTI systems, for which the stability is equivalent 
to 
 

∞<∫
+∞

∞−
ττ dh )( .          (2.27) 

 
Example: consider a system that is pure time shift in either continuous time or discrete time. 
 

In discrete time, 1[][ 0 =−= ∑∑
+∞

−∞=

+∞

−∞= kk

nnkh δ , 

 

while in continuous time, 1)()( 0 =−= ∫∫
+∞

∞−

+∞

∞−
τδττ dttdh , 

 
and we conclude that both of these systems are stable. 
 

Example : The accumulator ][][ nunh =  is unstable because ∞== ∑∑
+∞

=

+∞

−∞= 0

][][
kk

nukh . 

 

2.3.8 The Unit Step Response of an LTI System 
 
The step response of an LTI system is simply the response of the system to a unit step. It conveys 
a lot of information about the system. For a discrete-time system with impulse response ][nh , the 
step response is ][][][ nhnuns ∗= . However, based on the commutative property of convolution, 

][][][ nunhns ∗= , and therefore, ][ns  can be viewed as the response to input ][nh  of a discrete-
time LTI system with unit impulse response. We know that ][nu  is the unit impulse response of 
the accumulator. Therefore, 
 

∑
−∞=

=
n

k

khns ][][ .          (2.28) 

 
From this equation, ][nh  can be recovered from ][ns  using the relation 
 

]1[][][ −−= nsnsnh .          (2.29) 
 
It can be seen the step response of a discrete-time LTI system is the running sum of its impulse 
response. Conversely, the impulse response of a discrete-time LTI system is the first difference 
of its step response. 
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Similarly, in continuous time, the step response of an LTI system is the running integral of its 
impulse response, 
 

∫ ∞−
=

t
dhts ττ )()( ,          (2.30) 

 
and the unit impulse response is the first derivative of the unit step response, 
 

)('
)(

)( ts
dt

tds
th == .          (2.31) 

 
Therefore, in both continuous and discrete time, the unit step response can also be used to 
characterize an LTI system. 
 
 

2.4 Causal LTI Systems Described by Differential and Difference Equations 
 
This is a class of systems for which the input and output are related through  
 
• A linear constant-coefficient differential equation in continuous time, or  
 
• A linear constant-coefficient difference equation in discrete-time. 
 

2.4.1 Linear Constant-Coefficient Differential Equations 
 
In a causal LTI difference system, the discrete-time input and output signals are related 
implicitly through a linear constant-coefficient differential equation. 
 
Let us consider a first-order differential equation, 
 

)()(2
)(

txty
dt

tdy
=+ ,          (2.32) 

 
where )(ty  denotes the output of the system and )(tx  is the input. 
 
This equation can be explained as the velocity of a car )(ty  subjected to friction force 
proportional to its speed, in which )(tx  would be the force applied to the car. 
 
In general, an Nth-order linear constant coefficient differential equation has the form 
 

∑∑
==

=
M

k
k

k

k

N

k
k

k

k dt
txd

b
dt

tyd
a

00

)()(
,         (2.33) 
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The solution of the differential equation can be obtained if we have the N initial conditions (or 
auxiliary conditions) on the output variable and its derivatives. 
 
Recall that the solution to the differential equation is the sum of the homogeneous solution of the 

differential equation 0
)(

0

=∑
=

N

k
k

k

k dt
tyd

a  (a solution with input set to zero) and of a particular 

solution (a function that satisfy the differential equation). 
 
Forced response of the system = particular solution (usually has the form of the input signal) 
Natural response of the system = homogeneous solution (depends on the initial conditions and 
forced response). 
 

Example : Solve the system described by )()(2
)(

txty
dt

tdy
=+ . Given the input is )()( 3 tuKetx t= , 

where K is a real number.  
 
As mentioned above, the solution consists of the homogeneous response and the particular 
solution: 
 

)()()( tytyty ph += ,           (2.34) 
 

where the particular solution )(ty p satisfies )()(2
)(

txty
dt

tdy
=+  and homogenous solution )(tyh  

satisfies  
 

0)(2
)(

=+ ty
dt

tdy
.          (2.35) 

 
For the particular solution for 0>t , )(ty p  is a signal that has the same form as )(tx  for 0>t , 
that is 
 

t
p Yety 3)( = .           (2.36) 

 

Substituting )()( 3 tuKetx t=  and t
p Yety 3)( =  into )()(2

)(
txty

dt
tdy

=+ , we get 

 
ttt KeYeYe 333 23 =+ ,           (2.37) 

 
Canceling the factor te3 on both sides, we obtain 5/KY = , so that 
 

t
p e

K
ty 3

5
)( = , 0>t           (2.38) 
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To determine the natural response )(tyh  of the system, we hypothesize a solution of the form of 
an exponential, 
 

st
h Aety =)( .           (2.39) 

 
Substituting Eq. (3.38) into Eq. (3.35), we get 
 

02 =+ stst AseAse ,           (2.40) 
 
which holds for 2−=s  . With this value of s, tAe 2−  is a solution to the homogeneous equation 

0)(2
)(

=+ ty
dt

tdy
 for any choice of A. 

 
Combining the natural response and the forced response, we get the solution to the differential 

equation )()(2
)(

txty
dt

tdy
=+ : 

 
tt

ph e
K

Aetytyty 32

5
)()()( +=+= − , 0>t        (2.41) 

 
Because the initial condition on )(ty  is not specified, so the response is not completely 
determined, as the value of A is not known. 
 
For causal LTI systems defined by linear constant coefficient differential equations, the initial 

conditions are always 0
)0(

...
)0(

)0( 1

1

==== −

−

N

N

dt
dy

dt
dy

y , which is called initial rest. 

 

For this example, the initial rest implies that 0)0( =y , so that 
5

0
5

)0(
K

A
K

Ay −=⇒=+= , the 

solution is 
 

)(
5

)( 23 tt ee
K

ty −−= , 0>t          (2.42) 

 
For 0<t , the condition of initial rest and causality of the system implies that 0)( =ty , 0<t , 
since 0)( =tx , 0<t .  

2.4.2 Linear Constant-Coefficient Difference Equations 
 
In a causal LTI difference system, the discrete-time input and output signals are related 
implicitly through a linear constant-coefficient difference equation. 
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In general, an Nth-order linear constant coefficient difference equation has the form 
 

∑∑
==

−=−
M

k
k

N

k
k knxbknya

00

][][ ,         (2.43) 

 
The solution of the differential equation can be obtained when we have the N initial conditions 
(or auxiliary conditions) on the output variable. 
 
The solution to the difference equation is the sum of the homogeneous solution 

0][
0

=−∑
=

N

k
k knya  (a solution with input set to zero, or natural response) and of a particular 

solution (a function that satisfy the difference equation). 
 

][][][ nynyny ph += ,           (2.44) 
 
The concept of initial rest of the LTI causal system described by difference equation means that 

0][ =nx , 0nn <  implies 0][ =ny , 0nn < . 
 
Example : consider the difference equation  
 

][]1[
2
1

][ nxnyny =−− ,          (2.45) 

 
The equation can be rewritten as 
 

][]1[
2
1

][ nxnyny +−= ,          (2.46) 

 
It can be seen from Eq. (2.46) that we need the previous value of the output, ]1[ −ny , to 
calculate the current value. 
 
Suppose that we impose the condition of initial rest and consider the input 
 

][][ nKnx δ= .           (2.47) 
 
Since 0][ =nx  for 1−≤n , the condition of initial rest implies that 0][ =ny , for 1−≤n , so that 
we have as an initial condition: 0]1[ =−y . Starting from this initial condition, we can solve for 
successive values of ][ny  for 0≥n : 
 

Kxyy =+−= ]0[]1[
2
1

]0[ , 
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Kxyy
2
1

]1[]0[
2
1

]1[ =+= , 

 

Kxyy
2

2
1

]2[]1[
2
1

]2[ 





=+= , 

 

Kxyy
3

2
1

]3[]2[
2
1

]3[ 





=+= , 

… 
 

Knxnyny
n







=+−=

2
1

][]1[
2
1

][ . 

 
Since for an LTI system, the input-output behavior is completely characterized by its impulse 
response. Setting 1=K , , ][][ nnx δ=  we see that the impulse response for the system is 
 

][
2
1

][ nunh
n







= .          (2.48) 

 
Note that the causal system in the above example has an impulse response of infinite duration. In 
fact, if 1≥N  in Eq. (2.43), the difference equation is recursive, it is usually the case that the LTI 
system corresponding to this equation together with the condition of initial rest will have an 
impulse response of infinite duration. Such systems are referred to as infinite impulse response 
(IIR) systems. 
 

2.4.3 Block Diagram Representations of 1st-order Systems Described by Differential and 
Difference Equations 
 
Block diagram interconnection is very simple and nature way to represent the systems described 
by linear constant-coefficient difference and differential equations. 
 
For example, the causal system described by the first-order difference equation is 

][]1[][ nbxnayny =−+ .         (2.49) 
 
It can be rewritten as 
 

][]1[][ nbxnayny +−−=  
 
The block diagram representation for this discrete-time system is show: 
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+

D

][nx

]1[ −ny

][ny
b

a−

 
 
Three elementary operations are required in the block diagram representation: addition, 
multiplication by a coefficient, and delay: 
 

][1 nx +

][2 nx

][][ 21 nxnx +

adder

       

multiplication by
a coefficient

a
][nax][nx  

 

][nx D ]1[ −nx

a unit delay

 
 
 
Consider the block diagram representation for continuous-time systems described by a first-order 
differential equation: 
 

)()(
)(

tbxtay
dt

tdy
=+ .          (2.48) 

 
Eq. (2.48) can be rewritten as 
 

)(
)(1

)( tbx
a
b

dt
tdy

a
ty +−= .         

 
Similarly, the right-hand side involves three basic operations: addition, multiplication by a 
coefficient, and differentiation: 
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+

D

dt

tdy )(

)(ty
ab /

a/1−

)(tx

 
 

+

)(2 tx

)()( 21 txtx +)(1 tx

adder

  

multiplication by
a coefficient

a
)](tax)(tx  

 
 

dt

tdx )(
)(tx D

differentiator

 
 

 
However, the above representation is not frequently used or the representation does not lead to 
practical implementation, since differentiators are both difficult to implemented and extremely 
sensitive to errors and noise. 
 
An alternative implementation is to used integrators rather than the differentiators. Eq. (2.48) can 
be rewritten as 
 

)()(
)(

taytbx
dt

tdy
−= ,          (2.49) 

 
integrating from ∞−  to t , and assuming 0)( =−∞y , then we obtain 
 

[ ] τττ daybxty
t

∫ ∞−
−= )()()( .         (2.50) 

 
In this form, the system can be implemented using the adder and coefficient multiplier, together 
with an integrator, as shown in the figure below. 
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ττ dx
t

∫ ∞−
)()(tx

integrator

∫
 

 
 

)(tx +

a−

b

∫ )(ty

 
 

The integrator can be readily implemented using operational amplifiers, the above 
representations lead directly to analog implementations. This is the basis for both early analog 
computers and modern analog computation systems. 
 
Eq. (2.50) can also express in the form 
 

[ ] τττ daybxtyty
t

t∫ −+=
0

)()()()( 0 ,        (2.51) 

 
where we consider integrating Eq. (2.50) from a finite point in time 0t . It makes clear the fact 
that the specification of )(ty  requires an initial condition, namely )( 0ty . 
 
Any higher-order systems can be developed using the block diagram for the simplest first-order 
differential and difference equations. 
 
 




