

8.4. Consider the sequence x[n] given by $x[n] = \alpha^n u[n]$. Assume $|\alpha| < 1$. A periodic sequence $\tilde{x}[n]$ is constructed from x[n] in the following way:

$$\tilde{x}[n] = \sum_{r=-\infty}^{\infty} x[n+rN].$$

- (a) Determine the Fourier transform $X(e^{j\omega})$ of x[n].
- **(b)** Determine the DFS coefficients $\tilde{X}[k]$ for the sequence $\tilde{x}[n]$.
- (c) How is $\tilde{X}[k]$ related to $X(e^{j\omega})$?

8.6. Consider the complex sequence

$$x[n] = \begin{cases} e^{j\omega_0 n}, & 0 \le n \le N - 1, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find the Fourier transform $X(e^{j\omega})$ of x[n].
- **(b)** Find the N-point DFT X[k] of the finite-length sequence x[n].
- (c) Find the DFT of x[n] for the case $\omega_0 = 2\pi k_0/N$, where k_0 is an integer.

8.8. Let $X(e^{j\omega})$ denote the Fourier transform of the sequence $x[n] = (0.5)^n u[n]$. Let y[n] denote a finite-duration sequence of length 10; i.e., y[n] = 0, n < 0, and y[n] = 0, $n \ge 10$. The 10-point DFT of y[n], denoted by Y[k], corresponds to 10 equally spaced samples of $X(e^{j\omega})$; i.e., $Y[k] = X(e^{j2\pi k/10})$. Determine y[n].

8.10. The two eight-point sequences $x_1[n]$ and $x_2[n]$ shown in Figure P8.10 have DFTs $X_1[k]$ and $X_2[k]$, respectively. Determine the relationship between $X_1[k]$ and $X_2[k]$.

Figure P8.10

8.12. Suppose we have two four-point sequences x[n] and h[n] as follows:

$$x[n] = \cos\left(\frac{\pi n}{2}\right), \quad n = 0, 1, 2, 3,$$

 $h[n] = 2^n, \quad n = 0, 1, 2, 3.$

- (a) Calculate the four-point DFT X[k].
- **(b)** Calculate the four-point DFT H[k].
- (c) Calculate y[n] = x[n] 4 h[n] by doing the circular convolution directly.
- (d) Calculate y[n] of part (c) by multiplying the DFTs of x[n] and h[n] and performing an inverse DFT.

8.11. Figure P8.11 shows two finite-length sequences $x_1[n]$ and $x_2[n]$. Sketch their six-point circular convolution.

8.14. Two finite-length signals, $x_1[n]$ and $x_2[n]$, are sketched in Figure P8.14. Assume that $x_1[n]$ and $x_2[n]$ are zero outside of the region shown in the figure. Let $x_3[n]$ be the eight-point circular convolution of $x_1[n]$ with $x_2[n]$; i.e., $x_3[n] = x_1[n] \otimes x_2[n]$. Determine $x_3[2]$.

Figure P8.14

8.18. Figure P8.18-1 shows a sequence x[n] for which the value of x[3] is an unknown constant c. The sample with amplitude c is not necessarily drawn to scale. Let

$$X_1[k] = X[k]e^{j2\pi 3k/5},$$

where X[k] is the five-point DFT of x[n]. The sequence $x_1[n]$ plotted in Figure P8.18-2 is the inverse DFT of $X_1[k]$. What is the value of c?

Figure P8.18-1

Figure P8.18-2

8.34. Suppose that $x_1[n]$ and $x_2[n]$ are two finite-length sequences of length N, i.e., $x_1[n] = x_2[n] = 0$ outside $0 \le n \le N - 1$. Denote the z-transform of $x_1[n]$ by $X_1(z)$, and denote the N-point DFT of $x_2[n]$ by $X_2[k]$. The two transforms $X_1(z)$ and $X_2[k]$ are related by:

$$X_2[k] = X_1(z) \Big|_{z=\frac{1}{2}} e^{-j\frac{2\pi k}{N}}$$
, $k = 0, 1, ..., N-1$

Determine the relationship between $x_1[n]$ and $x_2[n]$.

8.24. Figure P8.24 shows a finite-length sequence x[n]. Sketch the sequences

$$x_1[n] = x[((n-2))_4], \qquad 0 \le n \le 3,$$

and

$$x_2[n] = x[((-n))_4], \qquad 0 \le n \le 3.$$

Figure P8.24

- **8.25.** Consider the signal $x[n] = \delta[n-4] + 2\delta[n-5] + \delta[n-6]$.
 - (a) Find $X(e^{j\omega})$ the discrete-time Fourier transform of x[n]. Write expressions for the magnitude and phase of $X(e^{j\omega})$, and sketch these functions.
 - **(b)** Find all values of N for which the N-point DFT is a set of real numbers.
 - (c) Can you find a three-point causal signal $x_1[n]$ (i.e., $x_1[n] = 0$ for n < 0 and n > 2) for which the three-point DFT of $x_1[n]$ is:

$$X_1[k] = |X[k]|$$
 $k = 0, 1, 2$

where X[k] is the three-point DFT of x[n]?

8.33. An FIR filter has a 10-point impulse response, i.e.,

$$h[n] = 0$$
 for $n < 0$ and for $n > 9$.

Given that the 10-point DFT of h[n] is given by

$$H[k] = \frac{1}{5}\delta[k-1] + \frac{1}{3}\delta[k-7],$$

find $H(e^{j\omega})$, the DTFT of h[n].

8.46. Each part of this problem may be solved independently. All parts use the signal x[n] given by

$$x[n] = 3\delta[n] - \delta[n-1] + 2\delta[n-3] + \delta[n-4] - \delta[n-6].$$

(a) Let $X(e^{j\omega})$ be the DTFT of x[n]. Define

$$R[k] = X\left(e^{j\omega}\right)\Big|_{\omega = \frac{2\pi k}{4}}, \qquad 0 \le k \le 3$$

Plot the signal r[n] which is the four-point inverse DFT of R[k].

(b) Let X[k] be the eight-point DFT of x[n], and let H[k] be the eight-point DFT of the impulse response h[n] given by

$$h[n] = \delta[n] - \delta[n-4].$$

Define Y[k] = X[k]H[k] for $0 \le k \le 7$. Plot y[n], the eight-point DFT of Y[k].

8.50. The DFT of a finite-duration sequence corresponds to samples of its z-transform on the unit circle. For example, the DFT of a 10-point sequence x[n] corresponds to samples of X(z) at the 10 equally spaced points indicated in Figure P8.50-1. We wish to find the equally spaced samples of X(z) on the contour shown in Figure P8.50-2; i.e., we wish to obtain

$$X(z)\big|_{z=0.5e^{j[(2\pi k/10)+(\pi/10)]}}.$$

Show how to modify x[n] to obtain a sequence $x_1[n]$ such that the DFT of $x_1[n]$ corresponds to the desired samples of X(z).

Figure P8.50-1

Figure P8.50-2

