Q 7.9

9. Suppose we design a discrete-time filter using the impulse invariance technique with an ideal
continuous-time lowpass filter as a prototype. The prototype filter has a cutoff frequency of
¢ = 2m(1000) rad/s, and the impulse invariance transformation uses 7 = 0.2 ms. What is the

cutoff frequency w. for the resulting discrete-time filter?
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Q 7.10

10. We wish to design a discrete-time lowpass filter using the bilinear transformation on a
continuous-time ideal lowpass filter. Assume that the continuous-time prototype filter has
cutoff frequency 2. = 2m(2000) rad/s, and we choose the bilinear transformation parameter
T = 0.4 ms. What is the cutoff frequency w, for the resulting discrete-time filter?
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Q 7.17

17. Suppose that we wish to design a bandpass filter satisfying the following specification:

—0.02 < |H(e/®)] < 0.02, 0 < |o| <0.27,
0.95 < |H(e/?)| < 1.05, 037 < |o| < 0.7,
—0.001 < |H(e/®)| < 0.001, 0.757 < |o| < .
The filter will be designed by applying impulse invariance with 7 = 5 ms to a prototype

continuous-time filter. State the specifications that should be used to design the prototype
continuous-time filter.
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Q7.2 (a)

2. A discrete-time lowpass filter is to be designed by applying the impulse invariance method
to a continuous-time Butterworth filter having magnitude-squared function

1
1+ (Q/Qc)2N’

|Ho(jQ)) =

The specifications for the discrete-time system are those of Example 2, i.e.,

0.89125 < |H(e/®)] <1, 0 < |w| < 0.27,
|H(eJ®)| < 0.17783, 037 < |o| < 7.

Assume, as in that example, that aliasing will not be a problem; i.e., design the continuous-
time Butterworth filter to meet passband and stopband specifications as determined by the
desired discrete-time filter.

(a) Sketch the tolerance bounds on the magnitude of the frequency response, | H-(j€2)|, of
the continuous-time Butterworth filter such that after application of the impulse invari-
ance method (i.e., h[n] = T ;h-(nTy)), the resulting discrete-time filter will satisfy the
given design specifications. Do not assume that 7; = 1 as in Example 2.
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Q 7.2 (b-c)

(b) Determine the integer order N and the quantity 7,;2. such that the continuous-time
Butterworth filter exactly meets the specifications determined in part (a) at the passband
edge.

(¢) Note thatif 7; = 1, your answer in part (b) should give the values of N and 2. obtained
in Example 2. Use this observation to determine the system function H.(s) for T; # 1
and to argue that the system function H(z) which results from impulse invariance design
with T; # 1 is the same as the result for 7; = 1 given by Eq. (17).
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Q 7.28

28. Consider a continuous-time lowpass filter H ~(s) with passband and stopband specifications

I =481 = |H(jQ)| = 1446y, 2] = Qp,
[He(j)| < 82, Qs = [2].

This filter 1s transformed to a lowpass discrete-time filter H | (z) by the transformation

H(z) = Hc(s)‘sz(l—z-‘)/(lﬂ“)’

and the same continuous-time filter is transformed to a highpass discrete-time filter by the
transformation

H>(z) = HC(S)‘S:(I‘FZ_])/!(]—Z_])'

(a) Determine a relationship between the passband cutoff frequency €2, of the continuous-
time lowpass filter and the passband cutoff frequency w,| of the discrete-time lowpass
filter.

(b) Determine a relationship between the passband cutoff frequency €2, of the continuous-

time lowpass filter and the passband cutoff frequency w of the discrete-time highpass
filter.

(¢) Determine a relationship between the passband cutoff frequency w ), of the discrete-
time lowpass filter and the passband cutoff frequency w,,, of the discrete-time highpass
el filter.
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Q 7.23

23. Consider a continuous-time system with system function
1
Hq(s) = —.
s

This system is called an integrator, since the output y.(¢) is related to the input x.(r) by

t
V() = f re(D)dr.
—00

Suppose a discrete-time system is obtained by applying the bilinear transformation to H.(s).

(a) What is the system function H(z) of the resulting discrete-time system? What is the
impulse response hi[n]?

(b) If x[n] 1s the input and y[n] 1s the output of the resulting discrete-time system, write
the difference equation that is satisfied by the input and output. What problems do you
anticipate in implementing the discrete-time system using this difference equation?

(¢) Obtain an expression for the frequency response H(e/®) of the system. Sketch the mag-
nitude and phase of the discrete-time system for 0 < |w| < w. Compare them with the
magnitude and phase of the frequency response H .(j€2) of the continuous-time integra-
tor. Under what conditions could the discrete-time “integrator” be considered a good
approximation to the continuous-time integrator?
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Q 7.5

7.5. We wish to use the Kaiser window method to design a discrete-time filter with generalized
linear phase that meets specifications of the following form:

|H(e/®)] <0.01, 0<|ow| <025,
0.95 < |H(/®)| <1.05, 0357 < |o| < 0.6,
|H(e/®)] <0.01, 0.657 < |o| < 7.

(a) Determine the minimum length (M + 1) of the impulse response and the value of the

Kaiser window parameter g for a filter that meets the preceding specifications.
(b) What is the delay of the filter?

(¢) Determine the ideal impulse response h;[n] to which the Kaiser window should be
applied.
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Q 7.15

7.15. We wish to design an FIR lowpass filter satisfying the specifications
0.95 < H(e/®) <1.05, 0 < |w| <0.257,
—0.1 < He/®) <01, 0357 < |o| <,

by applying a window w(n] to the impulse response /1 ;[n] for the ideal discrete-time lowpass
filter with cutoff w. = 0.37. Which of the windows listed in Section 7.5.1 can be used to
meet this specification? For each window that you claim will satisfy this specification, give
the minimum length M + 1 required for the filter.

TABLE7.2 COMPARISON OF COMMONLY USED WINDOWS

Peak Transition

Peak Approximation  Equivalent Width

Side-Lobe  Approximate Error, Kaiser of Equivalent

Type of Amplitude Width of 20logq 6 Window, Kaiser
Window (Relative) Main Lobe (dB) B Window
Rectangular —13 4o /(M +1) =21 0 1.817/M
Bartlett =25 8m/M =25 1.33 23T /M
Hann —31 87 /M —44 3.86 5.01lz/M
Hamming —41 8t /M —53 4.86 6277 /M

Hm Blackman —57 12r/M —74 7.04 9197 /M




Q 7.22

7.22. In the system shown in Figure P7.22, the discrete-time system is a linear-phase FIR lowpass
filter designed by the Parks—-McClellan algorithm with 6; = 0.01, §, = 0.001, w, = 0.4x,
and wy = 0.67r. The length of the impulse response is 28 samples. The sampling rate for the
ideal C/D and D/C converters is 1/T = 10000 samples/sec.

x (1) Ideal | x[n] | LTISystem | y[n] |  Ideal y(1)
E— C/D > h[n), H(efw) > D/C >
Converter Converter
r T Figure P7.22

(a) What property should the input signal have so that the overall system behaves as an
LTI system with Y (jQ2) = Hepr(j2) X (j$2)?
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Q 7.22

(b) For the conditions found in (a), determine the approximation error specifications sat-
isfied by |H, ¢ (j€2)|. Give your answer as either an equation or a plot as a function of
Q.

(¢) Whatis the overall delay from the continuous-time input to the continuous-time output
(in seconds) of the system in Figure P7.22?
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Q 7.27

7.27. Suppose that we are given an ideal lowpass discrete-time filter with frequency response

1, |o| <mn/4,
0, 7/4 < |w| <m.

H(e/?) = {

We wish to derive new filters from this prototype by manipulations of the impulse response
h|n].

(a) Plot the frequency response Hl(ej @) for the system whose impulse response is
hq[n] = h[2n]. .
(b) Plot the frequency response H5(e/®) for the system whose impulse response is

| hln/2l, n=0,£2,+4,...,
haln] = {O, otherwise.

(¢) Plot the frequency response Hz(e/®) for the system whose impulse response is
h3[n] = e/ h[n] = (=1)"h[n].
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