Q 4.2

4.2. The sequence

\[x[n] = \cos \left(\frac{\pi}{4} n \right), \quad -\infty < n < \infty, \]

was obtained by sampling the continuous-time signal

\[x_c(t) = \cos (\Omega_0 t), \quad -\infty < t < \infty, \]

at a sampling rate of 1000 samples/s. What are two possible positive values of \(\Omega_0 \) that could have resulted in the sequence \(x[n] \)?
4.4. The continuous-time signal
\[x_c(t) = \sin(20\pi t) + \cos(40\pi t) \]
is sampled with a sampling period \(T \) to obtain the discrete-time signal
\[x[n] = \sin\left(\frac{\pi n}{5}\right) + \cos\left(\frac{2\pi n}{5}\right). \]

(a) Determine a choice for \(T \) consistent with this information.
(b) Is your choice for \(T \) in part (a) unique? If so, explain why. If not, specify another choice of \(T \) consistent with the information given.
4.5. Consider the system of Figure 4.10, with the discrete-time system an ideal lowpass filter with cutoff frequency $\pi/8$ radians/s.

(a) If $x_c(t)$ is bandlimited to 5 kHz, what is the maximum value of T that will avoid aliasing in the C/D converter?

(b) If $1/T = 10$ kHz, what will the cutoff frequency of the effective continuous-time filter be?

(c) Repeat part (b) for $1/T = 20$ kHz.

Figure 4.10 Discrete-time processing of continuous-time signals.
Q 4.25

4.25. Two bandlimited signals, \(x_1(t) \) and \(x_2(t) \), are multiplied, producing the product signal \(w(t) = x_1(t)x_2(t) \). This signal is sampled by a periodic impulse train yielding the signal

\[
wp(t) = w(t) \sum_{n=-\infty}^{\infty} \delta(t - nT) = \sum_{n=-\infty}^{\infty} w(nT)\delta(t - nT).
\]

Assume that \(x_1(t) \) is bandlimited to \(\Omega_1 \), and \(x_2(t) \) is bandlimited to \(\Omega_2 \); that is,

\[
X_1(j\Omega) = 0, \quad |\Omega| \geq \Omega_1
\]

\[
X_2(j\Omega) = 0, \quad |\Omega| \geq \Omega_2.
\]

Determine the maximum sampling interval \(T \) such that \(w(t) \) is recoverable from \(wp(t) \) through the use of an ideal lowpass filter.