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Filter Design

Techniques

Problems: 7.2,7.5,7.6,7.9,7.10, 7.11, 7.12, 7.15, 7.16, 7.17, 7.18, 7.22, 7.28, 7.30
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7.2. A discrete-time lowpass filter is to be designed by applying the impulse invariance method
to a continuous-time Butterworth filter having magnitude-squared function

1
1+ (Q/ Q)2

|He(jQ)P? =

The specifications for the discrete-time system are those of Example 7.2, 1.e.,

0.89125 < [H('?)| < 1. 0 < |w| <02,
|H(e/®)| < 0.17783, 037 < |w| < 7.

Assume, as in that example, that aliasing will not be a problem:; i.e.. design the continuous-
time Butterworth filter to meet passband and stopband specifications as determined by the
desired discrete-time filter.

(a) Sketch the tolerance bounds on the magnitude of the frequency response, |H(j€2)|,
of the continuous-time Butterworth filter such that after application of the impulse
invariance method (1.e.. h[n] = Tyhe(nTy)). the resulting discrete-time filter will satisfy
the given design specifications. Do not assume that Ty = 1 as in Example 7.2.

(b) Determine the integer order N and the quantity T, such that the continuous-time
Butterworth filter exactly meets the specifications determined in part (a) at the pass-
band edge.
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Recall that 2 = w/Ty.
(a) Then
0.89125 < |H(jQ)| <1, 0< |9 < 0.2r/Ty
|H (i) < 0.17783, 0.37/Ta < |9 < 7/Ty

The plot of the tolerance scheme is

I H(j) |
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(b) As in the book’s example, since the Butterworth frequency response is monotonic, we can solve

——alz&—ﬁ = (0.89125)"

L+ ( . :rr)
0.1y

1

14 0.3
L

|H(70.27 [ T4)|?

|He(70.37 /Ta)l* — = (0.17783)?

to get 1.Tq = 0.70474 and N = 5.8858. Rounding up to N = 6 yields (2.T; = 0.7032 to meet the

specifications.

From the magnitude-squared function in eq.

(B.1}), we observe by substituting j$2 = s that

H.(s)H.(—s) must be of the form
1

1+ (8/70.)2N°

The roots of the denominator polynomial are

therefore located at values of s satisfving 1 <+

(5/792.07Y = 0: ie.,

sp = (ﬁl)lfzh'(‘}szc) — szce{jﬁj21\’}{2k+f\'—1]% (B‘gj_

where, £ = 0,1,....2N — 1.

Thus, there are 2N poles equally spaced in

angle on a circle of radius 2. in the s-plane.

The poles are symmetrically located with re-

spect to the imaginary axis.
N

We consider the system function of a casual continuous-time filter expressed in
terms of a partial fraction expansion, so that

N |
Ho(sp> A (1.7)

5— 5

H.(s)H.(—s) = (B.2)

Filter design by impulse invariance (II)

The corresponding impulse response is
— E}ivzl Akeé;k!:r t 2 0:
helt) = { 0, t<0. (7.8)

The impulse response of the causal discrete-time filter obtained by sampling
Tdhc(t} is

N N

h[n) = Tyho(nTy) = Y Tydees aufn] = Y TyAg(e™ ™) ufn].  (7.9)
k=1 k=1

The system function of the causal discrete-time filter is therefore given hy

N
TJA]G
H(z)=Y, o (710)
k=1
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7.5. We wish to use the Kaiser window method to design a discrete-time filter with generalized
linear phase that meets specifications of the following form:

|H(e/?)] <001, 0<|w| <025,
095 < |H(e/?) < 1.05,  0.357 < |w| < 0.6m7,
|H(e/?)| <0.01, 0.657 < |o| <.
(a) Determine the minimum length (M + 1) of the impulse response and the value of the
Kaiser window parameter g for a filter that meets the preceding specifications.

(b) What is the delay of the filter?
(¢) Determine the ideal impulse response hg[n] to which the Kaiser window should be

applied.
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Example 7.7 Linear-Phase Lowpass Filter
28 The desired frequency response is defined as

e"j“’Mlz, || < e,

jwy _
Hple )= lO, o < |o| <7, (769)

£ where the generalized linear-phase factor has been incorporated into the definition of
i the ideal lowpass filter. The corresponding ideal impulse response is

1 (o . ; sinfoc(n — M/2)]
o JoM{2 Jon g, o 7T LIl
hpln] = 7 /_ A T 77

;:;; for —00 < n < o0. Itis easily shown that hlp[M -n)= hlp{n], 50 if we use a symmetric
2% window in the equation

(7.70)

Hin] = %wm' (1.71)

§ then a linear-phase system will result.
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(a) We must use the minimum specifications!

5 = 001 T, [ Q/( ‘ *[%JT)J

_ . oSNNS
Aw = 0.057 Wiy = () bl
- A-8 — O oW
M+1= 2985 A +1=90.2 = 91
B = 0.5842(A — 21)°* + 0.07886(A — 21) = 3.395 Q AW = Wy~ P
(b) Since it is a linear phase filter with order 90, it has a delay of 90/2 = 45 samples.
(<) () A=-30dey .0
H (') Q) Pa oo (A~82) 250
O
1 0:-58%2 (A~21) +0.062886 ¢A ~21)  21LASSe
o A<\
| . 4 =3
-7 -0.625nr -0.3n 0 0.3n 0.625¢ T C@ M = 2. 2850w e TS

sin(.6257(n — 45)) — sin(.37w(n — 45))

han] = n(n — 45)
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7.6. We wish to use the Kaiser window method to design a symmetric real-valued FIR filter with
zero phase that meets the following specifications:

0.9 < H(e/?) < 1.1, 0 < |w| < 0.2,
—0.06 < H{e{m] < 0.06, 0.37 < |w| < 04757,
1.9 <« H(e?) < 2.1, 03257 < |w| = .

This specification is to be met by applving the Kaiser window to the ideal real-valued
impulse response associated with the ideal frequency response Hg(e/®) given by

I[. 0<|w| <0257,
Hije’?y =10, 0257 <|w| <0.5x,

2, 057 < |w| <m.

(a) What is the maximum value of § that can be used to meet this specification? What is
the corresponding value of 87 Clearly explain your reasoning.

(b) What is the maximum value of Aw that can be used to meet the specification? What is
the corresponding value of M + 1, the length of the impulse response? Clearly explain
your reasoning.
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(a) The Kaiser formulas say that a discontinuity of height 1 produces a peak error of 4. If a filter has
a discontinuity of a different height the peak error should be scaled appropriately. This filter can
be thought of as the sum of two filters. This first is a lowpass filter with a discontinuity of 1 and
a peak error of §. The second is a highpass filter with a discontinuity of 2 and a peak error of 24.
In the region 0.3 < |w| < 0.4757, the two peak errors add but must be less or equal to than 0.06.

5+2 < 0.06
bmax = 0.02

A = -2010g(0.02) = 33.9794
B = 0.5842(33.9794 — 21)* 4 0.07886(33.9794 - 21) = 2.65
(b) The transition width can be

Aw = 037-027 Aw = 0.5257 - 0.4757
= (.lrrad o = 0.057 rad
We must choose the smallest transition width so Awmpax = 0.057 rad. The corresponding value of
Mis
339794 -8
M=—m7m7m7m—=T72382T73
2.285(0.057)

. (i~ [%JT)J

W) = Io(p) S
0 SIN)
Q Aw=Ws-up
(5 A=-30fsy 0
@ (52 o.uoz(A~8~23 350
0:58¢2 (A-21) +0.02886 (A -21) 21SASSH
° A<z
A -3
@ w = 2. 2858w ELG4177 -- Winter 2021
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7.9. Suppose we design a discrete-time filter using the impulse invariance technique with an ideal
continuous-time lowpass filter as a prototype. The prototype filter has a cutoff frequency
of Q. = 2x(1000) rad/s, and the impulse invariance transformation uses 7 = 0.2 ms. What
1s the cutoff frequency w, for the resulting discrete-time filter?

Solution

Using the relation w = QT, the cutoff frequency w, for the resulting discrete-time filter is
we = N.T

[2m(1000)][0.0002]

= 0.4w rad
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7.10. We wish to design a discrete-time lowpass filter using the bilinear transformation on a
continuous-time ideal lowpass filter. Assume that the continuous-time prototype filter has
cutoff frequency Q. = 27(2000) rad/s, and we choose the bilinear transformation parameter

T = 0.4 ms. What is the cutoff frequency w. for the resulting discrete-time filter?

Frequency warping ”

Figure 7.8 Frequency warping inherent in the bilinear

transformation of a continuous-time = ”
lowpass filter info a discrete-time lowpass filter.
i To achieve the desired discrete-time cutoff
S o I u t ion frequencies, the continuous-time cutoff ,:
Using the bilinear transform frequency mapping equation, PRSIl e
-1 ﬂc T & & \\\
we = 2tan \ \
2 o 2 T (!:,;” tan (';)
_, (27(2000)(0.4 x 10~?) S i v 8 N
= 2tan oo S
2 |#e ’i"n i
= 0.7589r rad il
A
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7.11. Suppose that we have an i1deal discrete-time lowpass filter with cutoff frequency w,. = 7 /4.
In addition, we are told that this filter resulted from applying impulse invariance to a
continuous-time prototype lowpass filter using 7 = 0.1 ms. What was the cutoff frequency
Q. for the prototype continuous-time filter?

Solution
Using the relation w = QT

We
T
/4
0.0001
= 2500
rad

= 2n(1250) —

o~
v}
I
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7.12. Anideal discrete-time highpass filter with cutoff frequency o, = 7 /2 was designed using the
bilinear transformation with 7 = 1 ms. What was the cutoff frequency Q. for the prototype
continuous-time ideal highpass filter?

Solution
Using the bilinear transform frequency mapping equation,

0. - 2un(%)

2 an (2
0.001 "\ g
= 2000%

I
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7.15. We wish to design an FIR lowpass filter satisfying the specifications

0.95 < H(e/®) < 1.05, 0 <|w| <0.257,
—0.1 < He'?) < 0.1, 0357 < |w| <,

by applying a window w[n] to the impulse response hy[n] for the ideal discrete-time lowpass
filter with cutoff w. = 0.37. Which of the windows listed in Section 7.5.1 can be used to
meet this specification? For each window that you claim will satisfy this specification, give
the minimum length M + 1 required for the filter.

TABLE7.2 COMPARISON OF COMMONLY USED WINDOWS

Peak Transition

Peak Approximation  Equivalent Width

Side-Lobe  Approximate Error, Kaiser of Equivalent

Type of Amplitude Width of 201ogyp d Window, Kaiser
Window (Relative) Main Lobe (dB) B Window
Rectangular —13 dr /(M + 1) =21 0 .81z /M
Bartlett =25 Sm/M -25 1.33 23a /M
Hann =31 St/M —44 3.86 S0la/M

Hamming —41 8r/M =53 4.86 6.277/M S,
Blackman —57 122/ M —74 7.04 919z /M u Ottawa
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This filter requires a maximal passband error of 4, = 0.05, and a maximal stopband error of §, = 0.1.
Converting these values to dB gives

dp = —26 dB
ds = -20 dB

This requires a window with a peak approximation error less than -26 dB. Looking in Table 7.1, the
Hanning, Hamming, and Blackman windows meet this criterion.

Next, the minimum length L required for each of these filters can be found using the ”approximate
width of mainlobe” column in the table since the mainlobe width is about equal to the transition width.
Note that the actual length of the filter is L = M + 1.

Hanning:
8w
0.1 = H
M = 80

Hamming:
8
0.1r = _ﬂ-{f
M = 80

Blackman:

0.1r = i
mi| uy Ottawa
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7.16. We wish to design an FIR lowpass filter satisfying the specifications

0.98 < H(e/?) < 1.02, 0 < |ow| < 0.63x,
—0.15 < H(e/?) < 0.15,  0.657 < |ow| < 7,

by applying a Kaiser window to the impulse response /h,[n] for the i1deal discrete-time
lowpass filter with cutoff w, = 0.64x. Find the values of g and M required to satisfy this
specification.

Solution

Since filters designed by the window method inherently have §; = §, we must use the smaller value for
J.

§ = 0.02
A = -20log;,(0.02) = 33.9794
B = 0.5842(33.9794 — 21)°* 4 0.07886(33.9794 — 21) = 2.65
A-8 33.9794 - 8

M=

2.2850w _ 2.285(0.657 — 0.63m) _ 1o0-9° = 181
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7.17. Suppose that we wish to design a bandpass filter satisfying the following specification:
—0.02 < |H(e/®)| < 0.02, 0<|wl <02,
0.95 < |H{.{?ﬁ”)| <= 1.05, 0.37 < |w| < 0.7,
—0.001 < |H(.{?—"—“})| < 0.001, 0.757 < |w| < .

The filter will be designed by applying impulse invariance with 7 = 5 ms to a prototype
continuous-time filter. State the specifications that should be used to design the prototype
continuous-time filter.

Solution

. Using the relation w = (2T, the specifications which should be used to design the prototype continuous-
time filter are

~0.02< H(jQ) <0.02, 0<[Q < 27(20)

0.95 < H(jQ) < 1.05, 27(30) <[] < 27(70)
~0.001 < H(jQ) < 0.001,  2r(75) < |2 < 2(100)
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7.18. Suppose that we wish to design a highpass filter satisfying the following specification:
—0.04 < |H(e/?)| < 0.04, 0<|wl <027,
0.995 < |H(_€j“’)| < 1.005, 037 < |w| <.

The filter will be designed using the bilinear transformation and 7= 2 ms with a prototype
continuous-time filter. State the specifications that should be used to design the prototype
continuous-time filter to ensure that the specifications for the discrete-time filter are met.

Solution
Using the bilinear transform frequency mapping equation,

2 wsy _ 2 02wy rad
Q = ~tan (?) = 353 tan( : ) = 2m(51.7126) —

2 wpy) _ 2 0.3y rad
Q, = =tan (?) = s ta.n( = ) = 2m(81.0935) —

Thus, the specifications which should be used to design the prototype continuous-time filter are

|H.(j)] < 0.04, |9 < 27(51.7126)
0.995 < |H.(jQ)] < 1.005, || > 2m(81.0935)
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7.22. In the system shown in Figure P7.22, the discrete-time system is a linear-phase FIR lowpass
filter designed by the Parks—McClellan algorithm with §; = 0.01, 6, = 0.001, w, = 0.4,
and wg = 0.6r. The length of the impulse response i1s 28 samples. The sampling rate for the
ideal C/D and D/C convertersis 1 /7T = 10000 samples/sec.

'TC(F;I IE%EHI _};[}7} LTI S}J'Stem }:[_er] ldeal .]"'IC(I)
———— /D — h[”]_ H(ef‘”) E— D/C g
Converter Converter
r T Figure P7.22

(a) What property should the input signal have so that the overall system behaves as an
LTI system with Yo (j2) = Herr(J2) X (j2)7

(b) For the conditions found in (a), determine the approximation error specifications sat-
isfied by [H, ¢ (j€2)|. Give your answer as either an equation or a plot as a function of

Q2.
(c¢) Whatis the overall delay from the continuous-time input to the continuous-time output

(in seconds) of the system 1n Figure P7.22? uOttawa
O M Az
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A. Strictly speaking, the mput x, (.!) must be bandlimited to 5000 Hz to ensure that there is

no aliasing when sampled at 10000 samples/sec. As a practical matter, it may be
adequate to bandlimit the input to 7000 Hz. Frequency components between 5000 and
7000 Hz will alias to the range Q = 273000 to 275000 rad/s, or @ =0.67 to 7, using
@ = QT . Thus the aliased components will fall in the stopband of the discrete-time
lowpass filter.

B. For the continuous-time system, the passband edge is
Q= mp/i"" =047 x10000 =272000 rad/s . The stopband edge 1s

Q = [T =0.67x10000=273000 rad/s. Within the passband the specifications are
(1-6)<|H,, (i) <(1+4). |Q<Q,
0.99 < |H,, (jQ)[<1.02, [Q|<272000.
Within the stopband the specifications are
|H,, (jQ)| <5, Q,<Q<275000

|H ; (jQ)|<0.001, 273000 <Q < 275000.

C. The given filter is a linear phase filter whose impulse response has a length of 28
samples. The group delay of the filter is @ =27/2=13.5 samples. Since samples are

spaced 10™ seconds apart, the delay in seconds is 13.5x10™ =1.35 ms.

uOttawa
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7.28. Consider a continuous-time lowpass filter H .(s) with passband and stopband specifications

1 —6) < [He(jQ)| < 146, 2] < ),
[He(jR2)] < 67, Qs < 9.

This filter 1s transformed to a lowpass discrete-time filter H | (z) by the transformation

Hi(z) = Hc(S)‘s:('l —z=1)/(14z"1)

and the same continuous-time filter 1s transformed to a highpass discrete-time filter by the
transformation
H2(@) = He()|,— (1421 /—1):

(a) Determine arelationship between the passband cutoff frequency €2, of the continuous-
time lowpass filter and the passband cutoff frequency w,,| of the discrete-time lowpass
filter.

(b) Determine arelationship between the passband cutoff frequency €2, of the continuous-
time lowpass filter and the passband cutoff frequency w5 of the discrete-time highpass
filter.

(¢) Determine a relationship between the passband cutoff frequency w1 of the discrete-

time lowpass filter and the passband cutoff frequency w,» of the discrete-time highpass dttawa
filter.
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(a) We have
- 1—2"1
. 1421
1—e v
3 = _—
S 1l+e v

ej“’/z - e"""/z

ej“’/z 1 e—j“-’/z

0 = (3

Q, = tan (“%) —F wp, = 2tan"}(R,)

(b)

14271
1—2-1

1+e 3¢

1—e v
eiv/2 | g=iw/2

N =

ejw/2 — e‘.?""/2

Q = —cot(%')
= w(fE)

Q,,:ta.n(wp’_ﬂ) — wp, =7+ 2tan"1(Q,)

(c)

tan (227 ) = van (422) uOttawa
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7.30. Consider designing a discrete-time filter with system function H(z) from a continuous-time
filter with rational system function H .(s) by the transformation

H(z) = He(s) |5:ﬁ[(1—z—ﬂf)/(1 +z79))

where « 1s a nonzero integer and g 1s real.

(a) If @ = 0, for what values of g does a stable, causal continuous-time filter with rational
H.(s) always lead to a stable, causal discrete-time filter with rational H(z)?

(b) If « < 0, for what values of g does a stable, causal continuous-time filter with rational
H.(s) always lead to a stable, causal discrete-time filter with rational H(z)?

(¢) For « = 2 and g = 1, determine to what contour in the z-plane the jQ-axis of the
s-plane maps.

uOttawa
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H(z) = He(s) |, _pazezs)

T z=0

where a is a nonzero integer and 3 is a real number.

(a) It is true for 8 > 0.
Proof:

The poles si of a stable, causal, continuous-time filter satisfy the condition Re {s} < 0. We want
these poles to map to the points z; in the z-plane such that |z;] < 1. With a > 0 it is also true

1-2z7%
= ‘6[1+z'“]

s+sz7% = f-—pz7°%
s—pB = —pBz%—-sz7¢
B-s = z7%(B+s)
27 = b—s
B+s
- 8+ s
2* = 5—s

that if |zx| < 1 then |2¥| < 1. Letting sx = 0 + jw we see that

But since the continuous-time filter is stable we have Re{s;} < 0 or ¢ < 0. That leads to

This can only be true if G > 0.

lze] < 1
lzg| < 1
IB+0+30 < |B-0—30|
B+o)+0? < (8 —0)® +Q*
208 < —20p0

-B<B
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(b) It is true for B < 0. The proof is similar to the last proof except now we have [2%| > 1.

(¢) We have
2 = 1+s
¥ = 1
lz] = 1
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