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Z-transform

The z-transform operator Z{-}:

o0
Zignl} = Z z[n)z™" = X(2)
n—=—-—0o
The unique correspondence between a sequence and its z-transform can be indi-
cated by:
z[n] 5 X (2)

Two-sided or bilateral z-transform:
00

X(z)= Y a[n]z™"
One-sided or unilateral z-transform:
o0
X(z) = Z z[n]z™"
n=0
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110 Chapter 3 The z-Transform
TABLE3.4 SOME GOMMON z-TRANSFORM PAIRS
Sequence Transform ROC
1. &[n] 1 All z
1
2. uln] —— lz] =1
3 1 ! 7] <1
. —i[—n —1] — lzl <
4. 8[n —m] A All z except 0 (if m = 0) or o0 (if m < 0)
R 1
5. auln] — Iz| = la|
1 —az~
1
6. —a"ul—n —1] _— lz] = lal
1 —az!
1
7. na"uln] f]j;T]}? lz| = la|
az!
8. —Hﬂn&![—ﬂ—ll m |<_| < Iﬂ'l
1 — cos(wy)z ! )
9, cos(won)uln] T 2cos(wg)z 1 £ 12 lz] =1
: sin(wo)z !
10. sin 7]l =1
(wpn)u[n] T Zcos@n)e T 22 lz] =
., 1 — rcos(ayp)z ! i
11. " cos(mpn)uln] T 2r costan)z T 1722 lz] = r
, r sin(eg)z !
12. r" z|
rsinf{won)uln] T 2r costawn)z—1 1222 lz] = r
a", 0=n=<N-1, 1-a"z7 ¥ i
13. {D, otherwise 1—az-1 izl >0

uOttawa
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Type Xiz) x[n]
polynomial in 2 Y orckzF Y i ced[n— k|
- 1 n 1
single real pole $ p" uln|
;}:_] . ]
double real pole m np™ uln|
1
double real ]]I:I'IE.'- m |::J‘! -+ J._]jl_pr “[”‘]
: 1 (n+2)(n+1) ,
triple real pole a—p)p 5 P uln]
.z SN wy

complex conjugate pair

complex conjugate pair
p = |p|er

(z—aerv){z —aeTuwn)

r . r
1—pz!  1-—p*2!

2

a” sinfwyn) w[n]

r| |p|” cos{wyn + £r) uln]

uOttawa
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1. Determine the z-transform, including the ROC, for each of the following sequences:
n
(a) (%) uln]
| il
() —(§) ul-n—1

(c) (%)” i|—nj
(d) é[n]

(e) &[n — 1]
(F) d[n + 1]

(g) (%)” (u[n] — u[n — 10]).

uOttawa.ca u Ottawa



Université d'Ottawa | University of Ottawa

Q.2

g %)
@ Z{ Y ary = T (Wi z (5)

N

- ) 1 i
= 8 Z\7
x-‘/é' "-1‘("

(0 Z7- (LY ur-n- l\"gv——Z_( Dz

N>

S { ('hsn Zn = -2 (2.2)
= -[ {o(zz)n - (2%) ]
= l ‘ -i] loz| <1 = 121l
1-2%

Im(z]
1-2%2 1Y, 27
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replace n=-n

1\" " 1 1
(c) Z [(E) u[—ﬂ]] = ﬂ;ﬂ (2z)" = 1-%; lz] < 3
(@) Z[o[n))=2"=1 all z
(e)

2o -1 =2 |2>0

uOttawa.ca u Ottawa
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3.7. The mput to a causal LTT system 1s
1 n
x[nl=ul—n —-1]1+ (2) uln].

The z-transform of the output of this system 1s

Y(z)= |
(1 — jZ_

(a) Determine H(z), the z-transform of the system impulse response. Be sure to specify
the ROC.

(b) What s the ROC for Y (z)?

(¢) Determine y[n].

I yOttawa
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-1 1 1
= J{(z)_l_z_1+1_%z_1 Ev::|z|<:1
Now to find H(z) we simply use H(z) =Y (2)/X(2); i.e.,
N — 1] - 1,1 s |
H(z] = Y(Z} = - 2% . [1 % )(1 ok ) _ 1-z
X(z) (1-3z"Y)(1+271) —1z-1 1+ 21

H(z) causal = ROC |z| > 1.

(b) Since one of the poles of X(z), which limited the ROC of X (z) to be less than 1, is cancelled by
the zero of H(z), the ROC of Y (z) is the region in the z-plane that satisfies the remaining two
constraints |z| > £ and |z| > 1. Hence Y (z) converges on |z| > 1.

(c)

Y[z]=1_ 3

13_1

leap=

lz] > 1

+
3 1

+z—1

Therefore, n
vt =3 (3) ol + 51"

uOttawa.ca g u Ottawa
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Inverse z-transform

\

_ |
{ Power series

method expansion expansion

Inspection J {Partial fraction

uOttawa
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Inspection Method

This "method" is to basically become familiar with the z-transform pair tables and then "reverse engineer”,

Example 1
When given
z
X(z) =
(2) = —
with an ROC of
|2] >

we could determine "by inspection” that

z[n| = a"un]

uOttawa.ca u Ottawa
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Power Series Expansion Method

When the z-transform is defined as a powsar serias in the form

a1}

X(2) = Z z[n|z "

m =y

then each term of the sequence z|n| can be determined by locking at the coefficients of the respective power of z ™.

Example 2.11 Finite-Length Sequence

Suppose X (z) is given in the form
1
X(z) =2 (1 - §;-'){1 +z7 hir—=z7h. (3.52)
Although X (z) is obviously a rational function of z. it is really not a rational function
in the form of Eq. (3.39). Its only poles are at z = 0, so a partial fraction expansion

according to the technigue of Section 3.3.2 is not appropriate. However, by multiplying
the factors of Eq. (3.52), we can express X (z) as

1 1
X(z) ::2 - 3I- 1+ E:_I.

Therefore, by inspection, x[n] is seen to be

1, n=-—2,
_1 — _
5. n= 1,
x[n]l= 4 =1, n=10,
1 _
7 n=1, |
0, otherwise.

Equivalently,

x[n] =8[n +2] — %6|n+1|—3[n]+ %EIH —1]. o~
uOttawa.ca m u Ottawa
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Example 2.12 Power Series Expansion by Long Division

Consider the z-transform

1 .
X(z2) = ——. |z| = |a]. (3.55)
1—az—
Since the ROC is the exterior of a circle, the sequence is a right-sided one. Furthermore,
since X (z) approaches a finite constant as z approaches infinity, the sequence is causal.

Thus, we divide, so as to obtain a series in powers of z—1. Carrying out the long division,
we obtain

1+az 14aZz—24- .-

1—az 1|1
1—az!
ﬂ:_l
ar—1_ag2.—2
EZI—E

x[n] = 8[n] + ad[n — 1] + a?8[n — 2] + a38[n — 3]+....

or
1

1—az-1

2

=1+az ' +a%z 2 +....

Hence, x[n] = a"uln].

uOttawa.ca u Ottawa
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Partial-Fraction Expansion Method

When dealing with linear time-invariant systems the z-transform is often of the form

B(z)
A(z)
qu bz *

Eiu apz k

X(2)

This can also expressed as

1

X(2) = 2 Il 1 o
T % 11 dye

k=1

where ¢ reprasents the nonzero zeros of X(z) and dy, represents the nonzero poles.

It M < Nthen X(z) can be represented as

X -3 A
1 1- rikz;'l

This form allows for easy inversions of each term of the sum using the inspection method and the transform table. If
the numerator is 3 polynomial, however, then it becomes necessary to use partial-fraction expansion to put X[z} in
the above form. If M = Nthen X{(z) can be expressed as

M-N N Ltk
X(z) = Bz "=
Zﬂ Zf_n“kz ¢

uOttawa.ca @ u Ottawa
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Example 3.10 Inverse by Partial Fractions

To illustrate the case in which the partial fraction expansion has the form of Eq. 13.45)_

consider a sequence x[n] with z-transform

1+2:- 1422 (14z71)2

X(Z): = N
-3+ 522 (-4 1)a-z

|z] = 1. (3.48)

The pole—zero plot for X (z) is shown in Figure 3.11. From the ROC and Property 5,
Section 3.2, it is clear that x[n] is a right-sided sequence. Since M = N = 2 and the
poles are all 1%t-order, X (z) can be represented as

X(z)= By +

The constant By can be found by long division:

2
%3_1—%3_1 +1 [7_2+2;_] +1
23142
Se1-1

Since the remainder after one step of long division is of degree 1 in the variable z =1,
it is not necessary to continue to divide. Thus, X (z) can be expressed as

1451
X =2+ ki . (3.49)

(1 - 1‘;:‘]) (l—zh

uOttawa.ca
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—
®

Figure 3.11 Pole—zero plot for the z-transform in Example 3.10.

Now the coefficients Ay and A> can be found by applying Eq. (3.43) to Eq. (3.48)
or, equivalently, Eq. (3.49). Using Eq. (3.49), we obtain

st
A= | |24 —1E (1—;;-’) _ 9,
| {1—%:‘1]{1—:"] -

z=1/2

4 —1+35:71
| {]—%z—l]{l—:_'l

Therefore,

‘42 =

X(@)=2— + . (3.50)

s uln].

1—z-!
Thus, from the linearity of the z-transform,

x[n] = 28[n] =9 ( %)R w[n] + 8uln].

L uOttawa
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If the poles p; . ..., py are all different (distinct) then the expansion we seek has the form
Ll L)
Xzs————+ "4+ —,
(2] 1l —ppz7 1l —pyz!

where the ri.'s are real or complex numbers called residues.

For distinct roots:

re = (1 —pez") X(z2)
I=pk

Proof:
T

TN
1—pz—? 11

+"'+i'k+"'+[1-ﬁ'k2_l:|lp—z_
— BN

(1 —pez") X(2) = (1 — prz")

and evaluate the LHS and RHS at z = p;.

Example.
r r*

X(z) =

1—pz-1 N l —p*z-1
thus
x| = [rp" +r*(p")"] u[n].
Since this is of the form a + 2%, it must be real, so it is useful to express it using real quantities.

z[n] = 2real(rp™) uln] = 2real(|r| e |p|" ") uln] = 2|r| [p|" cos(won + ¢) u[n]

where p = |p| e™® and r = |r| &™. Note the different roles of £p = wy (frequency) and £r = ¢ (phase).

MATLAB’s function: residuez

uOttawa.ca u Ottawa
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3.6. Following are several z-transforms. For each, determine the inverse z-transform using both
methods—partial fraction expansion and power series expansion—discussed in Section 3.3.
In addition, indicate in each case whether the Fourier transform exists.

1 1
(a) X(z)= — 1 lz] = >
1 + jz_
1 1
(b) X(z) = — 1 |z] < >
1 + jz_
T
— 52 1
(c) X(2) = 2 : lz| > =
I+ %z‘l + %5—2 2
1-1,-1 ]
(d) X(z) = —%2 el > 3
I.— EZ_
1 —az_'l
() X@) = ———. [z >l/al
77t —a

uOttawa.ca u Ottawa
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3.6. (a)
1 1
X@ =75 H> 3
Partial fractions: one pole — inspection, z[n] = (—3)"u[n]
Long division:
1 -1zt 43272 + .

1+3z71 |1
1._-1
1 +_§Z
— 1.-1
2
_ %3-1 _ %z-z
- 1.,—2
+ zz
l1.-—2 1.-3
+ 32 + 52
1 m
= z[n] = (—-2-) uln]
uOttawa.ca

1
X _— -
(b) @)= H<s
Partial Fractions: one pole — inspection,
2fn] = —(~ 1) u[-n - 1
Long division: ?
2z —4z22 +82% + ...
Lrty1| 1
1 + 2z
— 2z
-2z - 42
+ 422
+ 422 + 828
1 T
= z[n] = - (‘E) u[-n — 1]
P

| y Ottawa
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(c)
1-2z71 1
J{{"‘:}"1+§z"‘7+‘ = A>3
Partial Fractions:
-3 4 1
X = > =
G = Trma i Bl

Long division:

1 +(-3- %)z"l + (-5 +1)272 + ...
-1 1,-2 1,-1
l-i-i%z + 5% [1 — 52
1 + 3271 + tz272
T3 1)1 Z 1,2
2 8

- —_ 1 -
S3ohat 4 3(3-Br? 4 M(-i-1s

(-]
G+ v 3G h

uOttawa.ca u Ottawa
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l]—-3z2 1
d =—2——- -
(d) X(2) =1, |2 > 3

Partial Fractions:

X(z)

o) = (+£)“u[n1

Long division: see part (i) above.

I
|
&
Y
!

1—az™! _
(e) X(z)=——7 lz/>a d
Partial Fractions: {1 a?)
_ ¢ "(1—a -1
X(Z] =—a- l-q-12-1 |ZI > ]a' [

zn] = —adn] — (1 — a®)a~ " y[n]

Long division:

-1_ - —I._ _

;l;_ *{agu}zl _(au a]zz + ...
-a 4 z~1 ! 1 —az 1

1 —az"!

(@~ —a)z?

zlnl = — _ A2 —[n+1]un o~
Otana = alnl=-adn] - (1 -a%)e I uOttawa
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3.8. The system function of a causal LTI system is

1 — Z_-l

1+ 371

H(z) =

The input to this system is

-
J

x[n] = (1) uln] +ul[—n — 1].

(a) Find the impulse response of the system, k[n].
(b) Find the output y[n].

(c¢) Is the system stable? That is, is h[n] absolutely summable?

uOttawa
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3.8. The causal system has system function

1-2z"1

H(z) = 1+ 3z-1

and the input is z[n] = (%)ﬂu[ﬂ] + u[—n — 1]. Therefore the z-transform of the input is

-1

bt

1 1 -2
—3z71 1-2z71 T (1- 1z71)(1 - 271) 3

x[z}=1 {lZ]‘:I

(a) h[n] causal =

(b)
-2 3
Y(z) = X(z)H(2) = (1-Iz)(1+3271) 1 <z
~i3 i3

1,1 3,-1
1 3% 1+4z

sinl =35 (3) wlol + 15 (=3) ulo

(c) For h[n] to be causal the ROC of H(z) must be 3 < |z| which includes the unit circle. Therefore,
h[n] absolutely summable.

Therefore the output is

| y Ottawa
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3.9. A causal LTI system has impulse response k[n], for which the z-transform is

uOttawa.ca

—1

H(z) =

(a) What is the ROC of H(z)?
(b) Is the system stable? Explain.
(¢) Find the z-transform X (z) of an input x[#] that will produce the output

1 1\ 4
yln] = — :(_H) uln] — E(Z)”u[—n —1].

-

(d) Find the impulse response h[n] of the system.

| y Ottawa
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3.9.
1+ 21 2 1

H(z) = (1-1z-1)(1+ k1) - (1-3z71) - (1+3z71)

(a) h[n] causal = ROC outside |z| = ; = |z|> 3.
(b) ROC includes |z] =1 => stable.

(©
il = -3 (-) il - j@un -1
-1 4
Y& = et
1+2z71 1
= @FLna-zy 4 <Fs<?
e
X(z) = ;{{‘3 = g_;:_li' 2| < 2
o] = ~@"u-n- 1+ 5" ul-n]
@

h[n] = 2 (%) " ufn] - (—é)ﬂu[n]

uOttawa.ca
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Introduction to Lab#3
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28

Most of the signals around us such as pressure, temperature, Light
Intensity etc. Most of our contemporary modern equipment and
systems are entirely digital. Therefore, to enable these systems to
Interact with these physical signals, then conversion from physical
form to their equivalent electrical analogue form and eventually
conversion from analogue to digital form and vice versa using ADC
and DAC converters respectively becomes necessary in order to
analyse, comprehend their properties and processes them using
areal time digital processing system as shown below.

x(t) x|n] yIn] y(t)
—.| ADC 4’| DSP T DAC

uOttawa
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Step 1 Sampling Process

X(I) ideal 1deal
. sampler reconstructor
} Signal to be Sampled ;
xin T x(nT) x, (D)
- Qe e l —
(@) — 1 analog sampled i——» | analog
signal signal | /2 " f/2 | signal
rate f, lowpass filter
x[n] cutoff =£./2

} High Sampling Rate

(b) MMMW%WJL o The fundamental

consideration 1n
sampling 1s how fast
to sample a signal to
be able to reconstruct

x[rn] _ t
; Low Sampling Rate 1L.
{d} ‘-'r\'l;"T\'T\h'u.dr ";.-' T“\* "".: .r]: & il .rIIr s - J1

= T F~
I !
'\, ‘_a" \l"

uOttawa.ca g u Ottawa
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The sampling theorem

Suppose you sample a signal in some way. If you can exactly reconstruct the

signal from the samples, then you have done a proper sampling and captured
the key signal information

Among the frequencies, there is a unique one that lies within the Nyquist
interval. It 1s obtained by reducing the original f modulo-fs, that is, adding to or

subtracting from f enough multiples of fs until it lies within the symmetric
Nyquist interval [—fs/2, fs/2].

| y Ottawa
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Sampling in the Frequency Domain

Graphical interpretation of the formula

X, =7 SX(flo ko), @, =2xf, f,=

§ k=—oo R
Continuous-time spectrum X(jow)
W
is scaled and replicated (replicas are called aliases)
/\ /ii(jw) /\
- 0 W, 2w, w

s

1

Aliasing: If signal bandwith f, aEthen spectrum overlaps!

uOttawa.ca u Ottawa
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Aliasing in the frequency domain

The sampling of the signal corresponds to doing a convolution
of the signal with a delta impulse train. We call the
resulting signal impulse train. The magnitude of this
impulse train is shown on the right

3 3 |
1
i ¢. Sampling at 3 times highest frequency d. Duplicated spectrum from sampling i
- . - - - - - - |
o _ :lt_mcr :u_ppcr i ' : '
" original signal } ) :xI-L.lEbLIIHJ.. :’xldchur!ci : :
o 1 1 / l # impulse train I o= i i :
.- \ 1: ; 5 H E - 1 1 1
= ) HIE H i ; , N B = 1 1 ]
E 0 H L I : [ -"I I F 3 Li L il K e = : : :
= TTYr I1 1T TIFIT F T o i i i
1 ! | . - 11 L i 1 I
1 1] | - ] : '
i (¥ 1 i 1 1
. LY I 1 I
L = ] ] |
[} 1 |
|
|
|
i

-3 - - - - | 0 .' ' .' * .
1 2 3 4 5 ] f 2, 3f,
Time Frequency

As you can see, the sampling has the effect of duplicating the
spectrum of the original signal an infinite number of times.
In other words, sampling introduces new frequencies

uOttawa.ca g u Ottawa
A



University of Ottawa

Université d'Ottawa |

Aliasing in the frequency domain

Compare the previous plot with the following one for a different

sampling:
3 3
e. Sampling at 1.5 times highest frequency f. Overlapping spectra causing aliasing
- i i ] i i
o Original signal i i !
z - A # impulse train ' 2 ! !
._% r I I Ak = [ - _:E E
e 0T T T T 1 = |
L - :
-1 1- !
24
i
3 T T T 0 ! I l
0 1 2 3 4 5 0 f f 3y afy  Sf, g
Time Frequency

Here, [ =0.66 x f >0.5x f, so this is an improper
sampling. In the FD this means that the repeated spectra

overlap. Since there is no way to separate the overlap, the

signal information is lost
uOttawa
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Sinusoidal Signal

Example 4.1 Sampling and Reconstruction of a Sinusoidal
Signal

uOttawa.ca

If we sample the continuous-time signal x.(t) = cos(4000x¢) with sampling period
T = 1/6000, we obtain x[n] = x.(nT ) = cos(dlWxTn) = cos{wgn), where wy =
40007 T = 2 /3. In this case, Q; = 27/ T = 120007, and the highest frequency of the
signal is Q¢ = 4000, so the conditions of the Nyquist sampling theorem are satisfied
and there is no aliasing. The Fourier transform of x.(r) is

X AjQ) =mé(2 — 40007) + 78(2 + 4000x).

Figure 4.6(a) shows

 ———
Xs(j@) = Y Xlj@—ky)] (4.21)
k=—00

for ©2; = 12000x. Note that X .(j£2) is a pair of impulses at 2 = 40007, and we
see shifted copies of this Fourier transform centered on +£;, £28;, etc. Plotting
X (e/®) = X,(jw/T) as a function of the normalized frequency @ = QT results
in Figure 4.6{b), where we have used the fact that scaling the independent variable of
an impulse also scales its area, L.e., §(w/T ) = T#{w) (Oppenheim and Willsky, 1997).
Mote that the original frequency £y = 4000r corresponds to the normalized frequency
wy = 40007 T = 27 /3, which satisfies the ineguality wy < m, corresponding to the fact
that 2q = 4000xr = =/ T = 6000x. Figure 4.6(a) also shows the frequency response of
an ideal reconstruction filter H . (j£2) for the given sampling rate of £2; = 12000x. This
figure shows that the reconstructed signal would have frequency &2y = 400z, which
is the frequency of the original signal x.(t).

34

uOttawa
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Simulate a continuous sinusoid

X(t) = cos(2fgt) = cos(27fg n At)  n=0,1,2,... t,=2kHz At =1/80000

{elcosin Magnitude of Fourier Transform
1 s00 T T T !

osl ] aso| | __________ T S __________ |
05 ] T S S S __________ — T |
04 - 1= )| SO .......... .......... ........... ........... ........... .......... ......... 4
02 1 aonpo o — ___________ S T S i

0 4 250k .......... .......... .......... e ........... ...........

Amplitude

02! 4 o0k ........... SR .......... .......... .......... L i
0.4R i E= 0 | | .......... ........... ........... S .......... .......... .......... i

06 H 4 ook PR ........... ........... ........... .......... ......... i

1 1 1 1 1 1 . ) —l i | i
0 0.002 0.004 0.006 0.005 0.01 0012 0.014 1] 0.5 1 1.5 2 25 3 35 4
Tirne(s) Freguency " 104
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sample and hold (padding zeros)

(hizero-padded signal MWagnitude of Fourier Transform
1 a0 T T T

DE_ . _45_ .......... ................... ...... -
DE_ . _4|j_ ...... ................. .................. ...... F——
0.4' . 35_ ...... ................... .......... ................. ...... A—
2ol | S I SOV o o . - o)

gﬁ%%%%% A L] T

02F 4 k] o RIS SR B AR SN Ot o L -

Amplitude

o4t 4 15 .................. .......... SO .................. ...... ]

Eif=1" 4 ok 3 [RTTT .......... ................. ..... o

A8k .

-1 Iy h h h h h
a 0.002 0.004 0.006 0.008 0.0 0.m2 0.014

Tirners) * Frequency T

Filter this part

| y Ottawa




Université d'Ottawa | University of Ottawa

THE END
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