

© M.Alouzi: 2021

Problems: 9.3, 9.5, 9.6, 9.7, 9.13, 9.15, 9.16, 9.18, 9.19, 9.23, 9.26, 9.28

9.3. Suppose that you time-reverse and delay a real-valued 32-point sequence x[n] to obtain $x_1[n] = x[32-n]$. If $x_1[n]$ is used as the input for the system in Figure P9.4, find an expression for y[32] in terms of $X(e^{j\omega})$, the DTFT of the original sequence x[n].

Figure P9.4

First, we derive a relationship between the $X_1(e^{j\omega})$ and $X(e^{j\omega})$ using the shift and time reversal properties of the DTFT.

$$x_1[n] = x[32-n]$$

$$X_1(e^{j\omega}) = X(e^{-j\omega})e^{-j32\omega}$$

Looking at the figure we see that calculating y[32] is just an application of the Goertzel algorithm with k = 7 and N = 32. Therefore,

$$y[32] = X_1[7]$$

$$= X_1(e^{j\omega})|_{\omega = \frac{2\pi 7}{32}}$$

$$= X(e^{-j\omega})e^{-j\omega 32}|_{\omega = \frac{7\pi}{16}}$$

$$= X(e^{-j\frac{7\pi}{16}})e^{-j(\frac{7\pi}{16})32}$$

$$= X(e^{-j\frac{7\pi}{16}})$$

9.5. Consider the signal flow graph in Figure P9.5. Suppose that the input to the system x[n] is an 8-point sequence. Choose the values of a and b such that $y[8] = X(e^{j6\pi/8})$.

Figure P9.5

. $X(e^{j6\pi/8})$ corresponds to the k=3 index of a length N=8 DFT. Using the flow graph of the second-order recursive system for Goertzel's algorithm,

$$a = 2\cos\left(\frac{2\pi k}{N}\right)$$

$$= 2\cos\left(\frac{2\pi(3)}{8}\right)$$

$$= -\sqrt{2}$$

$$b = -W_N^k$$

$$= -e^{-j6\pi/8}$$

$$= \frac{1+j}{\sqrt{2}}$$

9.6. Figure P9.6 shows the graph representation of a decimation-in-time FFT algorithm for N = 8. The heavy line shows a path from sample x[7] to DFT sample X[2].

Figure P9.6

- (a) What is the "gain" along the path that is emphasized in Figure P9.6?
- (b) How many other paths in the flow graph begin at x[7] and end at X[2]? Is this true in general? That is, how many paths are there between each input sample and each output sample?
- (c) Now consider the DFT sample X[2]. By tracing paths in the flow graph of Figure P9.6, show that each input sample contributes the proper amount to the output DFT sample; i.e., verify that

$$X[2] = \sum_{n=0}^{N-1} x[n]e^{-j(2\pi/N)2n}.$$

- (a) The "gain" along the emphasized path is $-W_N^2$.
- (b) In general, there is only one path between each input sample and each output sample.
- (c) x[0] to X[2]: The gain is 1. x[1] to X[2]: The gain is W_N^2 . x[2] to X[2]: The gain is $-W_N^0 = -1$. x[3] to X[2]: The gain is $-W_N^0 W_N^2 = -W_N^2$. x[4] to X[2]: The gain is $W_N^0 = 1$. x[5] to X[2]: The gain is $W_N^0 W_N^2 = W_N^2$. x[6] to X[2]: The gain is $-W_N^0 W_N^0 = -1$. x[7] to X[2]: The gain is $-W_N^0 W_N^0 W_N^2 = -W_N^2$, as in Part (a). Now

$$\begin{split} X[2] &= \sum_{n=0}^{7} x[n]W_8^{2n} \\ &= x[0] + x[1]W_8^2 + x[2]W_8^4 + x[3]W_8^6 + x[4]W_8^8 + x[5]W_8^{10} + x[6]W_8^{12} \\ &+ x[7]W_8^{14} \\ &= x[0] + x[1]W_8^2 + x[2](-1) + x[3](-W_8^2) + x[4](1) + x[5]W_8^2 \\ &+ x[6](-1) + x[7](-W_8^2) \end{split}$$

Each input sample contributes the proper amount to the output DFT sample.

- 9.7. Figure P9.7 shows the flow graph for an 8-point decimation-in-time FFT algorithm. Let x[n] be the sequence whose DFT is X[k]. In the flow graph, A[·], B[·], C[·], and D[·] represent separate arrays that are indexed consecutively in the same order as the indicated nodes.
 - (a) Specify how the elements of the sequence x[n] should be placed in the array A[r], r = 0, 1, ..., 7. Also, specify how the elements of the DFT sequence should be extracted from the array D[r], r = 0, 1, ..., 7.
 - (b) Without determining the values in the intermediate arrays, $B[\cdot]$ and $C[\cdot]$, determine and sketch the array sequence D[r], r = 0, 1, ..., 7, if the input sequence is $x[n] = (-W_N)^n$, n = 0, 1, ..., 7.
 - (c) Determine and sketch the sequence C[r], r = 0, 1, ..., 7, if the output Fourier transform is X[k] = 1, k = 0, 1, ..., 7.

Figure P9.7

(a) The input should be placed into A[r] in bit-reversed order.

$$A[0] = x[0]$$
 $A[1] = x[4]$
 $A[2] = x[2]$
 $A[3] = x[6]$
 $A[4] = x[1]$
 $A[5] = x[5]$
 $A[6] = x[3]$
 $A[7] = x[7]$

The output should then be extracted from D[r] in sequential order.

$$X[k] = D[k], \quad k = 0, \dots, 7$$

(b) First, we find the DFT of $(-W_N)^n$ for N=8.

$$X[k] = \sum_{n=0}^{7} (-W_8)^n W_8^{nk}$$

$$= \sum_{n=0}^{7} (-1)^n W_8^n W_8^{nk}$$

$$= \sum_{n=0}^{7} (W_8^{-4})^n W_8^n W_8^{nk}$$

$$= \sum_{n=0}^{7} W_8^{n(k-3)}$$

$$= \frac{1 - W_8^{k-3}}{1 - W_8^{k-3}}$$

$$= 8\delta[k-3]$$

A sketch of D[r] wis provided below.

(c) First, the array D[r] is expressed in terms of C[r].

$$D[0] = C[0] + C[4]$$

$$D[1] = C[1] + C[5]W_8^1$$

$$D[2] = C[2] + C[6]W_8^2$$

$$D[3] = C[3] + C[7]W_8^3$$

$$D[4] = C[0] - C[4]$$

$$D[5] = C[1] - C[5]W_8^1$$

$$D[6] = C[2] - C[6]W_8^2$$

$$D[7] = C[3] - C[7]W_8^3$$

Solving this system of equations for C[r] gives

$$C[0] = (D[0] + D[4])/2$$

$$C[1] = (D[1] + D[5])/2$$

$$C[2] = (D[2] + D[6])/2$$

$$C[3] = (D[3] + D[7])/2$$

$$C[4] = (D[0] - D[4])/2$$

$$C[5] = (D[1] - D[5])W_8^{-1}/2$$

$$C[6] = (D[2] - D[6])W_8^{-2}/2$$

$$C[7] = (D[3] - D[7])W_8^{-3}/2$$

for r = 0, 1, ..., 7. A sketch of C[r] is provided below.

- **9.13.** Assume that you wish to sort a sequence x[n] of length N=16 into bit-reversed order for input to an FFT algorithm. Give the new sample order for the bit-reversed sequence.
- Reversing the bits (denoted by \rightarrow) gives

The new sample order is 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15.

9.15. The butterfly in Figure P9.15 was taken from a decimation-in-frequency FFT with N=16, where the input sequence was arranged in normal order. Note that a 16-point FFT will have four stages, indexed $m=1,\ldots,4$. Which of the four stages have butterflies of this form? Justify your answer.

Figure P9.15

Solution

Only the m=1 stage will have this form. No other stage of a N=16 radix-2 decimation-in-frequency FFT will have a W_{16} term raised to an odd power.

9.16. The butterfly in Figure P9.16 was taken from a decimation-in-time FFT with N=16. Assume that the four stages of the signal flow graph are indexed by $m=1,\ldots,4$. What are the possible values of r for each of the four stages?

Figure P9.16

Solution

The possible values of τ for each of the four stages are

$$m=1, r=0$$

 $m=2, r=0,4$
 $m=3, r=0,2,4,6$
 $m=4, r=0,1,2,3,4,5,6,7$

9.18. The butterfly in Figure P9.18 was taken from a decimation-in-time FFT with N=16. Assume that the four stages of the signal flow graph are indexed by $m=1,\ldots,4$. Which of the four stages have butterflies of this form?

Figure P9.18

Solution

The possible values for r for each of the four stages are

$$m = 1,$$
 $r = 0$
 $m = 2,$ $r = 0, 4$
 $m = 3,$ $r = 0, 2, 4, 6$
 $m = 4,$ $r = 0, 1, 2, 3, 4, 5, 6, 7$

where W_N^r is the twiddle factor for each stage. Since the particular butterfly shown has r=2, the stages which have this butterfly are

$$m = 3, 4$$

Solution

The FFT is a decimation-in-time algorithm, since the decimation-in-frequency algorithm has only W_{32}^0 terms in the last stage.

9.23. Construct a flow graph for a 16-point radix-2 decimation-in-time FFT algorithm. Label all multipliers in terms of powers of W₁6, and also label any branch transmittances that are equal to −1. Label the input and output nodes with the appropriate values of the input and DFT sequences, respectively.

9.26. We are given a finite-length sequence x[n] of length 627 (i.e., x[n] = 0 for n < 0 and n > 626), and we have available a program that will compute the DFT of a sequence of any length $N=2^{\nu}$.

For the given sequence, we want to compute samples of the DTFT at frequencies

$$\omega_k = \frac{2\pi}{627} + \frac{2\pi k}{256}, \qquad k = 0, 1, \dots, 255.$$

Specify how to obtain a new sequence y[n] from x[n] such that the desired frequency samples can be obtained by applying the available FFT program to y[n] with v as small as possible.

Solution

Let

$$y[n] = e^{-j2\pi n/627}x[n]$$

Then

$$Y(e^{j\omega}) = X(e^{j(\omega + \frac{2\pi}{627})})$$

Let $y'[n] = \sum_{m=-\infty}^{\infty} y[n+256m]$, $0 \le n \le 255$, and let Y'[k] be the 256 point DFT of y'[n]. Then

$$Y'[k] = X\left(e^{j\left(\frac{2\pi k}{256} + \frac{2\pi}{627}\right)}\right)$$

9.28. You are asked to build a system that computes the DFT of a 4-point sequence

You can purchase any number of computational units at the per-unit cost shown in Table 9.1.

TABLE 9.1

Module	Per-Unit Cost
8-point DFT	\$1
8-point IDFT	\$1
adder	\$10
multiplier	\$100

Design a system of the lowest possible cost. Draw the associated block diagram and indicate the system cost.

A. The DFT of the 4-point sequence x[0], x[1], x[2], x[3] is given by

$$X[k] = X(e^{j\omega})\Big|_{\omega = \frac{2\pi k}{4}}, \quad k = 0,1,2,3,$$

where

$$X(e^{j\omega}) = \sum_{n=0}^{3} x[n]e^{-j\omega n}.$$

The 8-point DFT of the sequence x[0], x[1], x[2], x[3], 0, 0, 0, 0 is given by

$$\hat{X}[k] = X(e^{j\omega})\Big|_{\omega = \frac{2\pi k}{8}}, \quad k = 0, \dots, 7,$$

where $X(e^{j\omega})$ is as above. We see that

$$X[k] = \hat{X}[2k], \quad k = 0,1,2,3.$$

The cost of the system is the cost of the 8-point DFT, which is \$1.