

ELG4177 - DIGITAL SIGNAL PROCESSING

 Lab2
By:Hitham Jleed

http://www.site.uottawa.ca/~hjlee103/

Assignment 02

FILTERS AND RESONATORS

Poles \& Zeros

$4 y[n]=2 y[n-1]-3 y[n-2]+2 x[n]+3 x[n-1] \Rightarrow H(z)=\frac{2+3 z^{-1}}{4-2 z^{-1}+3 z^{-2}}$
Zeros:

$$
z=0, z=-1.5
$$

Poles:

$$
z=0.886 e^{ \pm j 0.4068 \pi}
$$

Determine what the filters are by zero-pole

FIR

All poles at origin

Low-pass filter

High-pass filter

$y[n]+0.13 y[n-1]+0.52 y[n-2]+0.3 y[n-3]=0.16 x[n]-0.48 x[n-1]+0.48 x[n-2]-0.16 x[n-3]$

Band-pass Filter

All pass filter

It is the only system for which poles and zeros occur in conjugate reciprocal pairs.

Stable system

Stable systems include the unit circle in their ROC. If the system is causal, this means all poles have to be inside the unit circle

Stable \& Causal inverse system

All zeros of the original system need to be inside the unit circle

Assignments' Help

- a) Use [h w] = freqz(b,a); Plot h vs. w like in lab 1 for the magnitude and phase response. Describe what time of filter each of the 4 systems are (LPF, HPF, BPF, APF,...)
- Theta\&r) You can do this by using mesh to plot in 3D. The function mesh (x, y, z) plots a 3D contour of x, y and z where x is a vector of size $1: N, y$ is a vector of size $1: M$ and z is a matrix of size $M x N$.
- Or let theta be constant and change \mathbf{r}, then let r constant and change theta.

Resonators

$$
H(z)=\frac{1}{1-2 r \cos \theta z^{-1}+r^{2} z^{-2}}
$$

The Gain $G=\left|H\left(e^{j \omega}\right)\right|=$
1

$$
\overline{1-r \sqrt{1-2 r \cos (2 \theta)+r^{2}}}
$$

Sinusoid Generator

$$
H(z)=\frac{1}{1-2 r \cos \theta z^{-1}+r^{2} z^{-2}}
$$

Frequency $=f=\frac{\theta}{2 \pi} . f s$

Notch \& Comb Filters

Notch filter: If zeros are closer than poles to unit circle Comb Filter: If poles are closer than zeros to unit circle

$$
H(z)=\frac{1-2 \cos \theta z^{-1}+z^{-2}}{1-1.8 \cos \theta z^{-1}+0.81 z^{-2}}
$$

Frequency response with theta $=0.4^{\star} \mathrm{pi}$

Notch

$$
H(z)=\frac{1-1.8 \cos \theta z^{-1}+0.81 z^{-2}}{1-2 \cos \theta z^{-1}+z^{-2}}
$$

Comb

Remove certain frequency
 Removing 60 Hz
 $$
\theta=\frac{f}{f_{s}} \cdot 2 \pi=60 / 1000 * 2 \pi
$$

Sinusoidal Response Output

Complete the assignment with mathematical proof if required.

Thanks

