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LTI - Systems

nl= 3 alk i [n].
k=0

We denote convelution as y[n] = x[n] * hin].

>

e Equivalent form: Letting m = n — k, we can show that

- o

O

> alkhln—k = ) wln—mlhm]= Y afn—k]h[k].

f=—o00 =0

fb=—pa

How to Evaluate Convolution?

To evaluate convolution, there are three basic steps:

1. Flip
2. Shift
3. Multiply and Add

Example:

Consider the signal x|n] and the impulse response h[n] shown below.

] 1212 hin] 11
EZIIId} —';"—I—Ij—'—!—'—*

Let’s compute the ontput yln one by one, First, consider 0]

o0 0

yl0] = > cfkh0—K =" wfklh[-k] =1

fr=—ncy k=—0c

Note that h[—k] is the flipped version of A[k], and 57,7 w[k]h[—k] is the multiply-
add between k] and A f].

To calculate y[1]. we flip fi[&] to get h[—4]. shift h]—k] go get h[1—K], and multiply-add
to get 3"~ wlklh[l — k|. Therefore,

oo b ]

S elHhl—K =Y Ml —K=1%x1+2x1=3

k=—oa

1] =

".:—EN.'\

Pictorially, the calculation is shown in the figure below.

h2 — k] ” > y[2| =2+1=3
-2 0 2 4

h|3 — k] ED!Tq > yBl=1+2=3

hl4 — k| s y[4] =2




2.3. Consider an input x[»] and a unit impulse response h[n] given by

1

x[n] = (i) - uln — 2],

h[n] = uln + 2].

e 13'\1 s|3m\s ZIn) = {'fz)n WLn)
Qnd 1115?1] un)

l we mie Yhat

XIn] = x5, 0n-27 and  Hind = N [N+2]
Mow o) = XLo) ¥ hcn) = z;en-2] % h, Ln+2)
g a:[kz]i,[n k+2]
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2.8. Determine and sketch the convolution of the following two signals:

(t+1, 0=t=1
2=t l1=mr=32,
0, elsewhere

—

h(t) = o(t +2)+ 26(t + 1).

x(r) =

W

Using the convolution integral,

z(t) « h(t) = f

=0

(v

z(T)h(t — 7)dT = f h(T)z(t — 7)dT.

=00

Given that h(t) = §(t + 2) + 24(t + 1), the above integral reduces to
z(t) » y(t) = z(t +2) + 2x(t + 1)
The signals z(t + 2) and 2z(t + 1) are plotted in Figure S2.8.

i

y &
2 E+1) «(t+1)
- & i
.‘.' E't ——y i ——
-2 - o -1 s l <
Figure S2.8
x(t)*h(t) 4
Using these plots, we can easily show that
3 t+ 3, -2<t< -1
_ ) t+4, -1<t<0
=9 o 2 o0<t<l
0, otherwise

1 \
5 1 ¢



2.4, Compute and plot yln] = x[n] # h{n], where

APA] = l, 3=n=<38§
0, otherwise '

_|1 4=n=15
hln = { 0, otherwise

We know that .
yln] = z[n) « hin] = 3 _ =z[k]hfn ~ K]
k=00
The signals z{n] and y[n] are as shown in Figure §2.4. From this figure, we see that the
above summation reduces to

| 113 S0 S e

£% D STy s h
Pigure 2.4

x[n] can be written as,

x[n] = 8[n-3|+ &[n-4[+ §[n-5]+ &[n-6]+6 [n-7]+5[n-8]

So, y[n] = h[n-3] + h[n-4] + h[n-5] + h[n-6] + h[n-7] + h[n-8]

Another solution will be using four cases of summation boundaries,
which gives us:

[ n—96, 7<nsll
| 6, 12<n <18
=98 o_n  19<n<23
0, otherwise
To illustrate this step by step, let us fist

draw x[k] and h[n-k] and then see the cases for
this  convolution.
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this convolution.

hitham
Typewritten Text


z (k)

h (k7
L
L 101 1_{
~iT™ -4+
Toterval 1 ~44n ¢33 = nNX< 7 gfﬂjso
Tnkerval 2 3 <-4 & B = 7<m £ 12
=L+n
g[’“jl: 21 - m-7+] -Mn-6
r K=% .
iﬂf -~ 3 _
ol g £y > =zl ﬁfqn'j: Zl = b
Kg=3
n-lg ¢ 3 0D n<I3
B
s<n< 23 §0eI= g1 = axmAl
Trlewal 4 3¢ M5 £8P K=PIT g4
n-Ig 28 n=> 23 yon) =0

trﬂlriVal

-]



Example of continuous-time convolution
X(t)  =u(t) & h(t)=u() What 1s  y(y)?

(1) = x(O)*h(1r) = u(t)*u(r)

Setting up the convolution integral we have

oD

y(1) =I u(t)u(t—1)dr
u(t—r) 1 u(t)
_
|
t 0 t
(0, <0
(f) = 4 o
() = [RGEL
| 0
[ 0,¢<0
S t=0

or simply

y(0) = () =r(1),

which 1s known as the unit ramp
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2.6. Compute and plot the convolution y[n] = x[n] * h[n], where

xln] = (%)_ ul—mn —1]1 and hln] = uln — 1].

From the given information, we have:

£

z(r] = hln] = Z z|klh{n — k]

k=-—00

3 {-;-r*u[—k — 1]ufn — k — 1]

k= —o0

=1
v B (%]‘*u;n — k1]

k=—o0

y(n]

= 1
= Z[E]ku[n +k — 1)
&=
Replacing k by p + 1,
o |
vlnd =3 (30" uln + ¢l
=0

For n > 0 the above equation reduces to,

= .1 1 1
yln] = Z(EFHI T ™
p=0 3

o] >

For n < 0 eq. reduces to,

o il s ) -~ — 1
y[n] F;ﬂ 3 3 pg 3
biomaty & l -—nl i E
= (5} Il_,%_l:ﬂ} 2 2
Therefore, (3" /2) <0
n i9), n
yln] ={ (1/2), n>0
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Consider x(¢) = u(t—2) and A(¢) = e_hu(.*)

We wish to find y(1) = x(£)*h(t)

o

i) = J. E_Btul:'T)H(F—T—Z)d‘E

—a

* To evaluate this integral we first need to consider how the
step functions 1n the integrand control the limits of integra-
tion

lﬂf—t—?]‘ zﬂ!—t—?”

o e s g

I
: T

-2 1

[—2>10

* For t—2<0 or t <2 there is no overlap in the product that
comprises the integrand, so y(f) = 0

*» For 1—2>0 or t>2 there is overlap for T € |0,7-2), so

here
f—2
' I e dr

0
_3% f—2

—~ € _
=3 ]y

. %[1 _ e -2y




A causal discrete-time LTI system is described by a constant-coefficient difference equation:
n]= %_l‘[ﬂ ~1]+ x{n].

a) Find the impulse response hfn].

b) I[sita stable system? Justfy.
c) Isitan imvertible system? Justify.

d) Foran input signal given by {n]- (-—%) u[n]. find the output signal y[n].

2 wen= ? g stable ? res, @1
whow nonds SER =3 §enl= hesd - ?
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ﬂ-u '# b
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N1 = wngy = 11‘3 (l) + o
w2 > hu{'& = \J_! ("3) 4 o

=7 hnl = ['r;;}“ win'y

lj{,n_] = ? hend = (Efg)nﬂfh)

c mwetdle ? Jes jp /s 4
- Zial = (1.\" U (n])
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Solve it = 3 < J | l J._. .- >k
Se W,,Cnl= SCh)—V/3 8 Cn-1] n ol - 3

. J&].—:ﬁ n<e
\xtna*\,wm: {l@u(u})* (sm_tﬁSCn-ﬂ) Yrn) = ¥ g
-k
- ]. yin}= ;‘,Z' (lf'j( (f‘3 Ago
= (!rj‘u(n)- X (%) «ln-1] 3

= (W) [ ugw) -uin-il
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A continuous-time LTI system bas the following impulse response:
h(r)=2e"u(r)
a) Is it a causal system? Why? ( /2+3)

b) Isit a stable system? Why? { /2+3)
¢) What is the output when an input signal x(¢)=u(r —1)—u(r—4) is applied to the system? ( /10)
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A causal continuous-time LTI system has the following differential equation

d']d(:)ﬂJ( f)=x{()

a) Find the impulse response (do not use transforms)

b) What is the output when an input signal x(/)=u(s)— (s~ 4) is applied to the system?
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2.33. Consider a system whose input x(1) and output (1) satisfy the first-order differential
equation

di

The system also satisfies the condition of initial rest.
(a) (i) Determine the system output y,(7) when the input is x; (1) = ¥ u(r).
(i) Determine the system output y»(7) when the input is x2(7) = e~ r(r).

page (118) in the book& Page (20/2) Lecture Notes

el

(8) (i) From Example 2.14. we know that

11

yi(t) = l.gl::'[ - é—ﬂ'“l u(t).

. : :
i) ;«',’e mlvﬂz rLlr.s along the lines of Example 2.14. First assume that Wl!) is of the
orm Ke™ for ¢ > 0. Then using eq. (P2.33-1), we get for ¢ > 0

2K€H+Eﬁ':ﬂ=¢h = K=

il |

We now know that y,(t) = o2 § |
P = ori{ >0 We ma Ypo : )

ya(t) = ™%,
Thezrefore,

a1
valt) = de % 4 Eea' for t > 0.

Assuming initial rest, we can conclude that Y2(t) = 0 for t < 0. Therefore

M{U}'—‘U=A+E = A:-—l_
4 4

Therx,

)| -l
wit) = [—Iez'-r-ie a] u(t).



Suppc;se that a linear time-invariant (LTI) system is described by the impulse response
h(t) =e ‘u(t). Compute the response of the system to the input signal

03; OOH=<E£3

06, -1<t<05
x(t) = {
0, t<—-land £>3

Commands Resulls Commenls

v %0 T) R
— i1}

Notice that a zero
element is embedded
into  the impulse
response vector and
its corresponding
time vector. This is
done in order to
plot the vertical line
att=0.

thl=1inspace(0,10,1001); 9%8f
hl =exp({—thl) ; 07k
h=1[0hl]; D6F  gumafm
th=1[0 thl] ; £

tx=[-1-10.50.533];
x=[00.60.60.20.301;
plhal (Exgan: del-thoh)

legend {(*x{\tau)’,'h(\tau)’) oIy

o First stage: Zero overlap.

For t < —1, the input and impulse response signals do not overlap; thus the output of the
system is y(f) =0.

o Second stage: Partial overlap of k(t —7) with the first part of x{7).

For— 1 < t < (.5, the impulse response signal h(t — 7) overlaps partially with the first part of
x(7), while there is no overlap with the second part of x(7). The convolution integral in this
stage is computed as

1 1
y(t) = [ Hr)h(t — Tt = [ 0.6e ¥y

—I —1
£

= .6e™! [ efdr = 0.6 — 061,
2
® Third stage: The impulse resporse signal kit — ) overlaps completely with the first
part of x(7) and partially with the second part of x(7).

This stage takes place for (.5 < t < 3. There are two integrals that need to be calculated,
corresponding to the different values of x{1). Hence, the output signal is

[ = 1 L5 i
y(t) = l 0.6 dr + l 0.3¢ " dr — 066 l €dr+ 03¢ I e'dr
-1 iS5 -1 5

=0.6674e™ — e )4 0367 — ) =037 — e 03
o Fourth stage: Complete overlap of h(t —7) with both parts of x(7).
The fourth stage takes place for t = 3. The convolution integral is calculated as

.5

u(f) = [ 0.6e " dr +
~1

3 0s 3

[ 037"y = 0.6~ [ edr + 03¢~ J e

0.5 et 05
1

= 066" — e7) + 03e7!(e} — M%) = 037 — 0™ 027

F0, t< -1

T iy
> M= \gas_gpeiig 05<r<s |

0.3 0 et £ 0367, £33




Differential Equations

Solving a continuous-time differential equation
+ Determine the homogenous solution given initial conditions
+ Determine the impulse response
+ Determine the particular solution given an input signal

+ Compute the total solution as homogenous + particular solutions

Constant coefficients

N g s

ap y(t) + a1 Ey(t} =box(t) + b %:ﬂ(t}

] i \

derivative of input

OUtPUt

derivative of output

Input Output
LCCDE
x(t) — t
® eyt 70
Problems

Solve the following differential equation

g dy(t)  ,dy(t)

£) + =3
u(e) + 3= af?

for t > 0 assuming the initial conditions y(0) = 1 and

dy(t)
i

o= 2. Express the solution

in closed form. Enter your closed form expression the the bax helow.

[Hint: assume the homogeneous solution has the form Ae*1! 4 Be*2! ]

y(t) = de~" 4

homogeneous solution conld be written as

yn(t) = de t + Be'/?

y(t) = —de~t + 442 1 1.

First solve the homogeneous equation: ya(t) + 3yn(t) + 24n(t) = 0. Assume yy(t) = Ae™.
Then #,(f) = sAe™ and ju(t) = s°Ae®. Substitute into the homogeneous differential
equation to obtain (1 4+ 3s 4+ 25*)4e* = (). Since e® is never equal to zero, either A must
be 0 or 1 4+ 35 + 25 must be zero. If A were zero. then the solution would be trivial
(i.e., yp(t) = 0), so the latter must be true to get a non-zero solution. From the factored
form (1 + 5)(1 + 25) = 0, it is clear that s could be —1 or —0.5. Therefore the complete

as in the hint. The particular solution has the same form as the inhomogenous part,
so that y,(t) = 1. To satisfy the initial conditions, we require that y(t) (the sum of the
homogeneous and particular parts) satisfies y(0) = A+ B+1=land §(0) = —-A—-B/2=2
so that 4 = —4 and B = 4. The final solution is




Solve the following difference equation
Byln] —6yln -1+ yn-2=1

for n = () assuming the initial conditions y[0] = 1 and y[—1] = 2. Express the solution in
closed form. Enter vour closed form expression the the box below.

[Hint: assume the homogeneous solution has the form Az]' + Bzj ]

yln] = }G) | 1@) -

First solve the homogeneous system: 8yx[n] — 6yn[n — 1] + yu[n — 2] = 0. Assume yu[n] =
Az". Then yaln —1] = Az""' = z7'4:" and yu[n — 2] = Az"* = z72A:". Substitute
into the original difference equation to obtain (8 — 627! + :72)4z" = (. Since =" is never
equal to zero, either 4 must be 0 or (8 — 6271 + =z72) must be zero. If A were zero, then
the solution would be trivial (i.e., yn[n] = (). so the latter must be true to get a non-zero
solution. From the factored form (4 —z71)(2—z71) = 0, it is clear that z—! could be 4 or
2. Therefore the complete homogeneous solution could be written as

wot=a (3 +o(2)

as in the hint. The non-homogeneonus part of the original difference equation is a constant
1. Thus, we expect a particular solution of the form y,[n] = €' where €' is a constant.
Substituting this y,[n] into the original difference equation determines ', since 8C' — 6C +

C'=3C=1,mthat£‘=%,and

e i T
=Afl-= Bl-= &
y[n] ( 4) + ( 2) + 3
will solve the original difference equation. To satisfy the initial conditions, we require y[n]

satisfies y[0] = A+ B+l =1landy[-1] =44+ 2B+ 1 =2sothat A= 1 and B = L.
The final solution is

=30 ()
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