TUTORIAL ELG3125B:SIGNAL AND SYSTEM ANALYSIS

Chapter (1)

By: Hitham Jleed
(Part 2)

http://www.site.uottawa.ca/~hilee103/

1
 Signalsand systems

EXERCISE'S CONTINENTS

Transformations of the independent variable.

Periodic Signals Vs Aperiodic Signals.
Fundamentals of Systems.
Svstem Properties.
LTI - Systems
1.10. Determine the fundamental period of the signal $x(t)=2 \cos (10 t+1)-\sin (4 t-1)$.
1.11. Determine the fundamental period of the signal $x[n]=1+e^{j 4 \pi n / 7}-e^{j 2 \pi n / 5}$.
1.12. Consider the discrete-time signal

$$
x[n]=1-\sum_{k=3}^{\infty} \delta[n-1-k] .
$$

Determine the values of the integers M and n_{0} so that $x[n]$ may be expressed as

$$
x[n]=u\left[M n-n_{0}\right] .
$$

1.13. Consider the continuous-time signal

$$
x(t)=\delta(t+2)-\delta(t-2)
$$

Calculate the value of E_{∞} for the signal

$$
y(t)=\int_{-\infty}^{t} x(\tau) d \tau
$$

1.14. Consider a periodic signal

$$
x(t)= \begin{cases}1, & 0 \leq t \leq 1 \\ -2, & 1<t<2\end{cases}
$$

with period $T=2$. The derivative of this signal is related to the "impulse train"

$$
g(t)=\sum_{k=-\infty}^{\infty} \delta(t-2 k)
$$

with period $T=2$. It can be shown that

$$
\frac{d x(t)}{d t}=A_{1} g\left(t-t_{1}\right)+A_{2} g\left(t-t_{2}\right) .
$$

Determine the values of A_{1}, t_{1}, A_{2}, and t_{2}.
1.15. Consider a system S with input $x[n]$ and output $y[n]$. This system is obtained through a series interconnection of a system S_{1} followed by a system S_{2}. The input-output relationships for S_{1} and S_{2} are

$$
\begin{array}{ll}
S_{1}: & y_{1}[n]=2 x_{1}[n]+4 x_{1}[n-1] \\
S_{2}: & y_{2}[n]=x_{2}[n-2]+\frac{1}{2} x_{2}[n-3]
\end{array}
$$

where $x_{1}[n]$ and $x_{2}[n]$ denote input signals.
(a) Determine the input-output relationship for system S.
(b) Does the input-output relationship of system S change if the order in which S_{1} and S_{2} are connected in series is reversed (i.e., if S_{2} follows S_{1})?
1.16. Consider a discrete-time system with input $x[n]$ and output $y[n]$. The input-output relationship for this system is

$$
y[n]=x[n] x[n-2] .
$$

1.14. Determine the Fundamental period of the signal

$$
x[n]=1+e^{j 4 \pi n / 7}-e^{j 2 \pi n / 5}
$$

Period of first term $=1$)
The second term $e^{j 4 \pi n / 7}=e^{j-4 \pi(n+N)}$

$$
m\left(\frac{2 \pi}{4 \pi / 7}\right)=7 \text { when } m=2
$$

The third term $e^{j 2 \pi n / 5}=e^{j \frac{2 \pi}{3}(n+N)}$

$$
m-\left(-\frac{2 \pi}{2 \pi / 5}\right)=-(5) \text { when }(m=1)
$$

The signal is periodic and Fundameral period is the least common multiple if $(1,7,5)=35$
1.19 For each of the following input-output relationships, determine whether the corresponding system is linear, fine invariant or both.
(a) $y(t)=t^{2} x(t-1)$
linear?

$$
\begin{aligned}
x_{1}(t) \rightarrow y_{1}(t) & =t^{2} x_{1}(t-1) \\
x_{2}(t) \rightarrow y_{2}(t) & =t^{2} x_{2}(t-1)
\end{aligned}
$$

Assume $x_{3}(t)$ be a linear combination of $x_{1}(t)$ and $x_{2}(t)$

$$
\begin{gathered}
x_{3}(t)=a x_{1}(t)+b x_{2}(t) \\
f_{3}(t)=t^{2} x_{3}(t-1)=t^{2}\left(a x_{1}(t-1)+b x_{2}(n-1)\right)
\end{gathered}
$$

$$
=a y_{1}(t)+b y_{2}(t)
$$

Ther-fore, the system is linear.
Tine invariant ??
let $y_{1}(t)=t^{2} x_{1}(t-1)$
consider $x_{2}(t)$ obtained by shifting $x_{1}(t)$ in time

$$
x_{2}(t)=x_{1}\left(t-t_{0}\right)
$$

The output corresplending to this input is.

$$
y_{2}(t)=t^{2} x(t-1)=t^{2} x_{1}\left(t-1-t_{0}\right)
$$

Shifting the output $y_{1}\left(t-t_{0}\right)=\left(t-t_{0}\right)^{2} x_{1}\left(t-1-t_{0}\right)$

$$
\nRightarrow y_{2}(t)
$$

The system is NOT time-invariant.
(b) $y[n]=x^{2}[n-2]$

Linearity ?

$$
\begin{aligned}
& x_{[}[n] \rightarrow y_{1}[n]=x_{1}^{2}[n-2] \\
& x_{2}[n] \rightarrow y_{1}[n]=x_{2}^{2}[n-2]
\end{aligned}
$$

Let $x_{3}[n]$ be a linear combination of $x_{1}[n]$ and $x_{2}[n]$

$$
\begin{aligned}
& x_{3}[n]=a x_{1}[n]+b x_{2}[n] \\
y_{3}[n] & =x_{3}^{2}[n-2] \\
= & \left(a-x_{[}[n-2]+b x_{2}[n-2]\right)^{2} \\
= & a^{2} x_{1}^{2}[n-2]+b^{2} x_{2}^{2}[n-2]+2 a b x_{1}[n-2] x_{2}[n-2]
\end{aligned}
$$

$$
\nRightarrow a \cdot y_{i}[n]+-b y_{2}[-n]
$$

(1) Therefore, the system is NOT linear. Time-invariant?
Let $y_{1}[n]=x_{1}^{2}[n-2]$
consider a shifted signal $x_{2}[n]=x_{1}\left[n-n_{0}\right]$
The output corresponding to this input is -

$$
y_{2}[n]=x_{2}^{2}[n-2]=x_{1}^{2}\left[n-2-n_{0}\right]
$$

rote that $y_{1}\left[n-n_{0}\right]=x_{1}^{2}\left[n-2-n_{0}\right]$
therefore $\quad y_{2}[n]=y_{1}\left[n-n_{0}\right]$
The system is time in variant.

$$
\begin{aligned}
& \text { (c) } y[n]=x[n+1]-x[n-1] \\
& x_{[n}[n] \rightarrow y_{1}[n]=x_{1}[n+1]-x_{1}[n-1] \\
& x_{2}[n] \rightarrow y_{2}[n]=x_{2}[n+1]-x_{2}[n-1]
\end{aligned}
$$

let $x_{3}[n]$ be a linear combination of $x_{1}[n]$ and $x_{2}[n]$

$$
\begin{aligned}
x_{3}[n] & =a x_{1}[n]+b x_{2}[n] \\
d_{3}[n] & =x_{3}[n+1]-x_{3}[n-1] \\
& =a x_{1}[n+1]+b x_{1}[n+1]-a x_{1}[n-1]-b x_{2}[n-1] \\
& =a\left(x_{1}[n+1]-x_{1}[n-1]\right)+b\left(x_{2}[n+1]-x_{2}[n-1]\right) \\
& =a y_{1}[n]+b y_{2}[n]
\end{aligned}
$$

the system is linear

Consider an arbitary input $x_{1}[n]$.
Let

$$
y_{1}[n]=x_{1}[n+1]-x_{1}[n-1]
$$

be corresponding output consider a second input $x_{[}[n]$ obtained by shifting $x_{1}[n]$ in time

$$
x_{2}[n]=x_{1}\left[n-n_{0}\right]
$$

The output corresponding to this inputs.

$$
\begin{aligned}
y_{2}[n] & =x_{2}[n+1]-x_{2}[n-1]=x_{1}\left[n+1-n_{0}\right] \\
& -x_{1}\left[n-1+n_{0}\right]
\end{aligned}
$$

Also mote that.

$$
y_{1}\left[n-n_{0}\right]=x_{1}\left[n+1-n_{0}\right]-x_{1}\left[n-1-n_{0}\right]
$$

Therefore,

$$
y_{2}[n]=y_{1}\left[n-n_{0}\right]
$$

The system is time invariant.
1.26. Determine whether or not each of the following discrete-time signals is periodic. If the signal is periodic, determine its fundamental period.
(a) $x[n]=\sin \left(\frac{6 \pi}{7} n+1\right)$
(b) $x[n]=\cos \left(\frac{n}{8}-\pi\right)$
(c) $x[n]=\cos \left(\frac{\pi}{8} n^{2}\right)$
(d) $x[n]=\cos \left(\frac{\pi}{2} n\right) \cos \left(\frac{\pi}{4} n\right)$
(e) $x[n]=2 \cos \left(\frac{\pi}{4} n\right)+\sin \left(\frac{\pi}{8} n\right)-2 \cos \left(\frac{\pi}{2} n+\frac{\pi}{6}\right)$
(a) Periodic, period $=7$.
(b) Not periodic.
(c) Periodic, period $=8$.
(d) $x[n]=(1 / 2)[\cos (3 \pi n / 4)+\cos (\pi n / 4)]$. Periodic, period $=8$.
(e) Periodic, period $=16$.
1.27. In this chapter, we introduced a number of general properties of systems. In particular, a system may or may not be
(1) Memoryless
(3) Linear
(5) Stable
(2) Time invariant
(4) Causal

Determine which of these properties hold and which do not hold for each of the following continuous-time systems. Justify your answers. In each example, $y(t)$ denotes the system output and $x(t)$ is the system input.
(a) $y(t)=x(t-2)+x(2-t)$
(b) $y(t)=[\cos (3 t)] x(t)$
(c) $y(t)=\int_{-\infty}^{2 t} x(\tau) d \tau$
(d) $y(t)= \begin{cases}0, & t<0 \\ x(t)+x(t-2), & t \geq 0\end{cases}$
(e) $y(t)= \begin{cases}0, & x(t)<0 \\ x(t)+x(t-2), & x(t) \geq 0\end{cases}$
(f) $y(t)=x(t / 3)$
(g) $y(t)=\frac{d x(t)}{d t}$
(a) Linear, stable.
(b) Memoryless, linear, causal, stable.
(c) Linear
(d) Linear, causal, stable.
(e) Time invariant, linear, causal, stable.
(f) Linear, stable.
(g) Time invariant, linear, causal.

