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A Markov Chain Model for Statistical 
Software Testing 

James A. Whittaker and Michael G. Thomason, Senior- Member-, IEEE 

Abstruct- Statistical testing of software establishes a basis 
for statistical inference about a software system's expected field 
quality. This paper describes a method for statistical testing based 
on a Markov chain model of software usage. The significance of 
the Markov chain is twofold. First, it allows test input sequences 
to be generated from multiple probability distributions, making 
it more'general than many existing techniques. Analytical results 
associated with Markov chains facilitate informative analysis of 
the sequences before they are generated, indicating how the test 
is likely to unfold. Second, the test input sequences generated 
from the chain and applied to the software are themselves a 
stochastic model and are used to create a second Markov chain to 
encapsulate the history of the test, including any observed failure 
information. The influence of the failures is assessed through 
analytical computations on this chain. We also derive a stopping 
criterion for the testing process based on a comparison of the 
sequence generating properties of the two chains. 

Index Terms- Markov chain, statistical software testing, sto- 
chastic process, test case generation 

I. INTRODUCTION 

HE black box approach [ 191, [2S] to the software testing T process unfolds as follows. Given a program P with 
intended function f and input domain d, the objective is to 
select a sequence of entries from d, apply them to P,  and 
compare the response with the expected outcome indicated by 
f .  Any deviation from the intended function is designated as 
a failure. It is assumed that f is well defined and completely 
specified, so that any deviation is unambiguously detected and 
a failure is explicitly noted. The history of the test at some time 
n is a sequence of inputs d o d l d z  ' . . dTL-l  and a corresponding 
sequence of zero or more failures, each of which is uniquely 
identified with the particular input d; at which the failure was 
observed. 

Statistical testing follows the black box model with two 
important extensions. First, sequences from d are stochastically 
generated based on a probability distribution that represents a 
profile of actual or anticipated use of the software. Second, a 
statistical analysis is performed on the test history that enables 
the measurement of various probabilistic aspects of the testing 
process. Thus, one can view statistical testing as a sequence 
generation and analysis problem. A solution to the problem is 
achieved by constructing a generator to obtain the test input 
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sequences and by developing an informative analysis of the 
test history. 

This paper describes a sequence generation and analysis 
technique for statistical testing using Markov chains. We 
discuss the construction of a Markov chain as a sequence 
generator for statistical testing and show how analytical results 
associated with Markov chains can aid in test planning. An 
innovative aspect of this method is that the test sequences 
generated and applied to the software are used to create a 
second Markov chain to encapsulate the history of the test, 
including any observed failure information. The influence of 
the failures is assessed through analytical computations on 
this chain. We also derive a stopping criterion for the testing 
process based on a comparison of the sequence generating 
properties of the two chains. 

11. A STATISTICAL TESTING MODEL FOR SOFTWARE 

The need for testing methods and reliability models that 
are specific to software has been discussed in various forms 
in the technical literature [3], [IO], [ 111, [20]. Statistical 
testing for software is one such method. The main benefit 
of statistical testing is that it  allows the use of statistical 
inference techniques to compute probabilistic aspects of the 
testing process, such as reliability 131, [IO], [ 161, [20], mean 
time to failure (MTTF) [4], [22], and mean time between 
failures (MTBF) [IS].  

Current statistical testing techniques model software usage 
by assigning a single, unconditional probability distribution 
to individual inputs (or groups of inputs) from the software's 
input domain [4], [7], [SI, [ 111, [ 161, [ 191. This distribution 
represents the best estimate of the operational frequency of use 
for each input. Input sequences are obtained by sampling from 
the distribution with or without replacement (depending on the 
application). Obviously, this model is insufficient for many 
types of software, because the probability of applying an input 
can change as the software is executed. As software processes 
inputs, it moves from one sfate or mode to the next, depending 
on any or all prior inputs received. Thus, the probability of 
an input can change depending on the mode of the software 
[20]. It is necessary, therefore, to maintain multiple probability 
distributions for each such mode of a software system. 

This paper proposes that statistical testing be carried out 
with a stochastic model of software usage. We define a sto- 
chastic model that is capable of modeling multiple probability 
distributions corresponding to pertinent software modes and 
is tractable for the computation of properties of informative 
random variables that describe its sequence generating capa- 
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bilities. Ideally, the parameters of the model are established 
using information obtained from various sources, including 
the software’s intended function and usage pattems of prior 
versions or prototypes of the software. However, it is often 
the case that complete information about the probabilities that 
describe usage is not available from any source; in this case, 
the stochastic model is based on estimated usage pattems [27]. 

This usage model consists of elements from d, the domain of 
the intended function, and a probabilistic relationship defined 
on these elements. A test input is a finite sequence of inputs 
from domain d probabilistically generated from the usage 
model. The statistical properties of the model lend insight 
into the expected makeup of the sequences for test planning 
purposes. 

As the test sequences are applied to the software, the results 
are incorporated into a second model. This testing model 
consists of the inputs executed in the test sequences, plus 
any failures discovered while applying the sequences to the 
software P. In other words, it is a model of what has occurred 
during testing. The testing model also allows analysis of the 
test data in terms of random variables appropriate for the 
application. For example, we may measure the evolution of the 
testing model and decide to stop testing when it has reached 
some suitable “steady state.” 

This paper explores the use of finite state, discrete param- 
eter, time homogeneous Markov chains as the software usage 
and testing models for program P. For the usage model, the 
state space of the Markov chain is defined by extemally visible 
modes of the software that affect the application of inputs. 
The state transition arcs are labeled with elements from the 
input domain d of the software (as described by the intended 
function f) .  Transition probabilities are uniform (across exit 
arcs from each state) if no usage information is available, but 
may be nonuniform if usage pattems are known. This model is 
called the usage Markov chain. For the testing model, the state 
space of the Markov chain is initially the same as the usage 
chain, but additional states are added to mark each individual 
failure. This model is called the tesring Markov chain. 

Ill. THE USAGE MARKOV CHAIN 

A usage chain for a software system consists of states, i.e., 
extemally visible modes of operation that must be maintained 
in order to predict the application of all system inputs, and state 
transitions that are labeled with system inputs and transition 
probabilities. To determine the state set, one must consider 
each input and the information necessary to apply that input. 
It may be that certain software modes cause an input to become 
more or less probable (or even illegal). Such a mode represents 
a state or set of states in the usage chain. Once the states 
are identified, we establish a start state, a terminate state (for 
bookkeeping purposes), and draw a state transition diagram by 
considering the effect of each input from each of the identified 
states. The Markov chain is completely defined when transition 
probabilities are established that represent the best estimate of 
real usage. 

Consider the simple selection menu pictured in Fig. I .  The 
input domain consists of the up-arrow key and the down-arrow 

Current Project: 1-1 

Arrow Keys to  Move Cursor 

Fig. 1. An example software system. 

Enter to  Select 

key, which move the cursor to the desired menu item, and the 
“Enter” key, which selects the item. The cursor moves from 
one item to the next, and wraps from top to bottom on an 
up-arrow and from bottom to top on a down-arrow. The first 
item, “Select Project,” is used to define a project (the semantics 
of which are not described here for simplicity). The project 
name then appears in the upper-right comer of the screen. 
Once a project is defined, the next three items, Enter Data, 
Analyze Data, and Print Report, can be selected to perform 
their respective functions. (These additional screens are also 
not described.) If no project is defined, selecting these items 
gives no response. 

In this example, there are two items of interest when 
applying inputs. First, the current cursor location must be 
maintained to determine the behavior of the “Enter” key. 
Second, whether a project has been defined must be known 
to determine which of the menu items are available. 

These two items of information are organized as the fol- 
lowing usage variables: 

1 )  cursor location (which is abbreviated CL and takes on 
values “Sel”, “Ent”, “Anl”, “Prt”, or “Ext” for each 
respective menu item), and 

2) project defined (which is abbreviated PD and takes on 
the values “Yes” or “No”). 

The state set therefore consists of the following: {(CL = 
Sel.PD = No), (CL = Ent, PD = No), (CL = Anl, PD 
= NO), (CL = Prt, PD = NO), (CL = Ext, PD = NO), (CL 
= Sel, PD = Yes), (CL = Ent, PD = Yes), (CL = Anl, PD 
= Yes), (CL = Prt, PD = Yes), (CL = Ext, PD = Yes)}. 
In addition, we include states that represent placeholders for 
the other system screens, as well as start and end states that 
represent the software in its “not invoked” mode. The state 
transitions are depicted in Fig. 2 in a graphical format. 

This state transition diagram defines the possible input 
sequences for the software in a formal and concise model. A 
path, or connected state/arc sequence, from the initial “Unin- 
voked” state to the final “Terminated” state, represents a single 
execution of the software. A set of such sequences are used as 
test cases for the software. Since loops and cycles exist in the 
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I 4 = d o w n  arrow key1 

Fig. 2. Usage chain (structure) for the example. 

model, an infinite number of sequences are possible. In order 
to generate sequences statistically, probability distributions are 
established over the exit arcs at each state that simulates 
expected field usage. The assignment of these probabilities 
is discussed below. 

Sequences are generated from the model by stepping 
through state transitions (according to the transition proba- 
bilities), from “Uninvoked” to “Terminated,” and recording 
the sequence of inputs on the path traversed. A sample input 
sequence from the model of Fig. 2 is: invoke 
analyze 11 J. It is readily apparent that the generation of 
sequences can be automated using a good random number 
generator and any high-level programming language. Thus, 
a large number of input sequences can be obtained once a 
usage chain is constructed. 

The construction of the transition diagram identifies the 
probabilities that need to be estimated, i.e., the state transi- 
tion probabilities. An investigation into usage pattems of the 
software should focus on obtaining information about these 
probabilities. Sequences of use from a prototype or prior 
version of the software, for example, may be used to estimate 
these probabilities. These usage sequences, captured as inputs 
(keystrokes, mouse clicks, bus commands, buffered data, and 
so forth) from the user, are mapped to states and arcs in the 
model in order to obtain frequency counts that correspond to 

select 11 

state transitions. Normalizing the frequency counts establishes 
relative frequency estimates of the transition probabilities and 
completes the definition of the Markov chain. 

In the event that no sequences are available to aid in the 
estimation of the transition probabilities, all probabilities can 
be distributed uniformly across the exit arcs at each state. In 
this case, the model building process amounts to establishing 
only the structure of usage sequences without developing any 
informed statistics. Table I lists each transition for the example 
chain in Fig. 1 with probabilities assigned both by relative 
frequency counts and by uniform distributions. 

Iv. ANALYSIS OF THE U S A G E  CHAIN 

The fact the usage model is a Markov chain allows software 
testers to perform significant analysis that gives insight how 
the test is likely to unfold. The details of the underlying 
mathematics can be found in Feller [9] or Kemeny and Snell 
[ 141; however, we have included Table I1 to summarize some 
useful results. This analysis is used to gain insight into how 
the test will likely unfold so that testers can proceed in an 
informed manner. The insight gained through the analysis can 
be used to aid test planning and preparation. 

Our experience has been that each result summarized in 
Table I1 is useful in practice. It would be too lengthy to 
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TABLE I 
TRANSITION PR0BABlLITIF.S FOR THE EXAMPLE USAGE MODEL 

(CL=Ent,PD=No) 

(CL=Sel,PD=Yes) (CL=Ent,PD=Yes) 
(CL=Ext,PD=Yes) 

(CL=Anl,PD=Yes) 

select (CL=Sel,PD=Yes) 1 /2 7/8 
Enter Data data (CL=Ent,PD=Yes) 1 1 
Anlyz Data analyze (CL=Anl,PD=Yes) 1 1 
Pmt Report print (CL=Prt,PD=Yes) 1 1 
Terminated null Uninvoked 1 1 

describe each result in detail; however, two examples of the 
analytical results are given to illustrate their usefulness. 

In some automated real-time test execution 
environments there is a physical limit on the number of 
inputs in a single test case [l]. It is useful, therefore, to 
know the “expected length and standard deviation of the input 
sequences,” so that overloading the test execution environment 
can be controlled. Using (4) with i = Uninvoked and j = 
Terminated, this expectation for the example chain with rela- 
tive frequency estimated probabilities is 20.1, with standard 
deviation of 15.8. If these results were unacceptable (i.e., 
outside the range of the test environment), then modification 
of the transition probabilities would be necessary to obtain 
more suitable results. 

In practice, software testers are often con- 
cemed with the caveruge of some specific attribute of the 
software under test. For example, Myers [ 191 relates coverage 
criteria conceming the percentage of source code executed by 

Example I :  

Example 2:  

a set of test cases. When testing is performed from the black 
box point of view, coverage of elements of the input domain 
is often of interest [19]. 

Equations (6) and (8) are used to estimate the coverage of 
usage chain states and arcs. This measure goes beyond input 
domain coverage, because the software modes are represented 
(i.e.. as states) as well as inputs (i.e., as arcs). The information 
is organized into percentages of states and arcs in Table 111. 
For example, Table I11 indicates that 81.25% of the states have 
expectation of seven sequences or less until they appear in the 
test sequences. 

The information from each of these examples is used to 
make the following estimates of expected effort to achieve 
full coverage (each result is rounded up to the nearest integer). 
Suppose testers determine that it takes 5 s, on average, to apply 
an input to the example selection menu software. An average 
sequence will then take 21 x 5 = 105 s (1 min, 45 s) to execute. 
Further, it will take 12 x 105 = 1260 s (21 min), on average, 

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore.  Restrictions apply. 



816 

no. of occurrences of 
state j in a single 
SeqUenCe 
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if i= i (g)  The mean number of occurrences 
of state j in a single sequence. rnvli)=C U ~ ~ ~ I ~ ) + ( ~  ifi?ti 

ksr  

TABLE I1 
SOME STANDARD ANALYTICAL RESULTS FOR MARKOV CHAINS* 

Result I Equation for Prob. or Mean Interpretation of Mean 
Recurrentchain 

stationary distribution, I 
x 

recurrence time for 
state j 

no. of occurrences of 
state i between 
occurrences of state j 

kcj 

lcj is the asymptotic appearan- 
rate of state j in a large number 
of sequences from U. 

The mean number of state 
transitions between occurrences 
of state j in a large number of 
sequences from U. 

The mean number of ~ccurrence~ 
of state i between occurrences of 
state j .  

The mean number of state 
transitions until state j occurs 
from state i .  

Absorbing Chain (for initial state i )  

single sequence prob. 
for state j 

The probability that state j occurs 
in a single sequence [i.e., from the 
intial state to the absorbing state). 

YiJ = ' I ;  't" y k ,  
ksr 

no. of sequences to 
occurrence of state j 

1 h. = - The mean number of sequences 
(6) until state j occurs. 

Yij 

(7) The probability that arc j,k ocsurs 
in a single sequence [i.e., from the 
intial state to the absorbing state). 

zfi = Yjj 'fi single sequence prob. 
for arc j,k 

no. of sequences to 
oc3currence of arc j,k 

1 The mean number of sequences 
(81 until arc j,k occurs. 

*Each measure in this table IS based on the usage model encoded as a transition matrix, Li,  with states as indices and transition probabilities as entries. 
LT is called the recurrent model because the arc from Terminated to Uninvoked occurs with probability 1, causing a new sequence to begin each time 
the previous sequence ends. The absorbing model. U, is achieved by redirecting the arc from Terminated to Uninvoked back to Terminated; thus, this 
is a model representing only single executions of the software. In this case, the state Terminated is called ubsorhing, and the other states are called 
transient. (The set of transient states is denoted 7.) 

to execute enough sequences so that every state is covered and 
36 x 105 = 3780 s ( I  hr, 3 min) so that every arc is covered. 
In addition to these results, each measure in Table I1 has been 
used in practice to analyze some aspect of software usage or 
testing. More detail is presented elsewhere [I], [26]. 

v. THE TESTING MARKOV CHAIN 

When the usage chain is complete, a series of input se- 
quences is stochastically generated and applied to software 
P. The application of the test sequences can be manual 
or automatic, depending on the testing environment and the 

availability of suitable automated support. We assume the 
presence of an oracle that is capable of comparing the output 
of P with the intended behavior, f ,  and correctly classifying 
success or failure. Thus, the history of the test at some time 
n is a series of input sequences (and usage chain states) 
dodl . . . and a corresponding sequence of failures, each 
of which is uniquely identified with the particular sequence 
and specific input d; with which the failure was observed. 

As failures are discovered and the software's internal faults 
repaired, the software evolves, becoming more or less reliable, 
depending on the success of the fixes. Each change to the 
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TABLE I11 
EXPECTATIONS FOR STATE AND ARC COVERAGE FROM THE EXAMPLE USAGE CHAIN 
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software creates a new software version. Corresponding to 
each such version is a subset of the test history that represents 
the testing experience for that particular version. Thus, if 
one is interested in quantifying the behavior of a specific, 
homogeneous software version, then the applicable data to use 
as a basis for measuring this is the corresponding subset of the 
test history [20]. In addition, if one is interested in studying 
the rate at which failures are identified and how this rate varies 
during the complete testing process, then the applicable data 
are the entire test history over successive software versions. 
Although the entire test history pertains to no specific software 
version, it does represent the entire testing experience for a 
software project and can be helpful in analyzing the underlying 
software process used to create the software. The following 
discussion applies to either view of the testing history. In fact, 
both analyses can be performed simultaneously for any given 
project. 

The test history (or any meaningful subset thereof) is 
a realization of a stochastic process and is appropriately 
analyzed by a stochastic model. In this paper, we use a 
stochastic model of a test history to identify the length of 
the test sequence that will be a suitable stopping point for 
testing the software, and to analyze the effect of the failures 
on the testing stochastic process. For these purposes, the test 
history is encoded as another Markov chain, the testing Markov 
chain, T. This section describes construction of the testing 
chain from a test history and derives an analytical stopping 
criterion. In addition, analytical results associated with Markov 

chain theory are used to quantify the impact of the failures on 
the testing process. 

A set of test input sequences is a realization of the usage 
chain U and has certain characteristics imposed by U; e.g., 
states and transitions appear with known probabilities in the 
long run. The development of these characteristics occurs 
probabilistically; i.e., given a new random seed, a different 
set of sequences could be obtained in which states and arcs 
are generated in a different order. Detailed analysis of the 
testing process therefore requires a model that itself evolves 
as specific testing is carried out. 

A. Constructing the Testing Chain 

Usage chain U has stationary transition probabilities; i.e., 
they do not change throughout the test. However, probabilities 
in testing chain T are updated, and tracking T’s evolution i s  
an inherent part of monitoring the statistical testing process. 
Let SI, s2, . . . , sm denote the set of test sequences in the order 
generated by U and applied to software P. The corresponding 
series of testing chains TO, T I ,  . . . , T, describes the evolution 
of T during testing and is constructed as follows. 

Before any sequence is input to P, the test history is empty. 
The initial chain TO is a copy of usage chain U, with all arc 
probabilities set to 0. Assume first that no software failures 
occur. TI is obtained from To by incrementing arc frequencies 
along the path of states from “Uninvoked” to “Terminated” 
in SI. Similarly, Tz is obtained from T’1 by sequence s2, 
and, in general, T, is obtained from T,-1 by sequence s,. In 
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this way, frequency counts on arcs in T, are always obtained 
from specific sequences applied to software P. These arc 
frequencies are converted to relative frequency probabilities 
whenever computation with Ti’s state transition probabilities 
is required. 

The testing chain’s arc counts are reset when fixes are 
applied to P. Thus, as the software changes, a new testing 
chain is created to model only the sequences applied on that 
version. In this manner, the testing chain remains an accurate 
model of the testing experience of the current software version. 
An additional formulation is to maintain a testing chain that is 
not reset between fixes and incorporates testing experience 
across different software versions. This latter testing chain 
is really a model of the process of error discovery and 
fault removal, whereas the former series of chains repre- 
sents each successive version of the software product. Either 
interpretation can provide valuable feedback about software 
development activity. 

What can be said about the series TO, T I ,  . . . , T,? If no 
failures are detected, the evolution of T is dictated solely by 
sequences from U. The Strong Law of Large Numbers for 
Markov chains [6]  guarantees (with probability 1) that these 
sequences SI, . . . , sm will become statistically typical of U 
when enough are generated. This means that convergence of 
T to U is certain, because the relative frequencies on T’s arcs 
will converge to the probabilities on U’s arcs. A key point is 
that the test history T is statistically typical of the usage chain 
U if and only if convergence is achieved. 

In other words, U is a fixed reference toward which T, 
evolves at an expected rate with statistical variation that 
depends on factors such as the source entropy of U [26].  This 
evolution is well controlled and predictable in statistical terms. 

B. Incorporating Failure Data 

Suppose now that failures do occur and that the j t h  failure 
f, is detected during input of sequence s, to P. To incorporate 
this failure event into the test history, a new state labeled f, 
is placed in Markov chain T, exactly as it was ordered in s,. 
The arcs to and from the new state f, have frequency count 
1. If f, is a catastrophic failure, then the run of software P is 
aborted, and the arc from f, goes to “Terminated”; otherwise, 
the test sequence can continue, and the arc from f, goes to 
the next state in s,. In this way, T, is maintained as a Markov 
chain that incorporates both the underlying structure of the 
source of test sequences, U, and the frequency count history 
of sequences-plus-failures as testing evolves. 

Convergence of T to U is adversely affected by failures 
of software P during testing. To achieve convergence when 
failures have been observed, the relative frequency proba- 
bilities on arcs to failure states in T, must approach 0. In 
this way, the probabilities on the nonfailure arcs are still 
forced to converge to the corresponding (nonzero) values in 
U. If even one failure occurs, this can be accomplished only 
when P responds to more test sequences without exhibiting 
failures. Thus, failures automatically impose additional testing 
to overcome their adverse impact on the convergence of T 
to U. 

When no failures occur in the test history, convergence 
will ultimately be achieved. Intuitively, comparison of the 
actual evolution of T (including failures) with its expected 
evolution (without failures) supports statistical estimation of 
P’s characteristics based on the software’s actual performance. 
At any point in the testing process, the most recent test 
history T, is available for analysis. Because T, itself is a well- 
defined Markov chain, computations are based on the theory 
of Markov chains. 

The testing chain, T, is a model of the current test history 
and is useful for computing properties of descriptive random 
variables as shown in the next section. An altemative would be 
to obtain statistics directly from the set of sequences executed; 
however, T incorporates explicitly the sfructure of the usage 
chain, which is only implicit in the sequences. In other words, 
each sequence is accorded different status according its specific 
attributes; e.g., sequences can vary in length and probability, 
and thus contribute a different amount of information to the 
statistical testing experiment. The testing chain incorporates 
each event of each sequence, recognizing the probabilistic rela- 
tionship between states and arcs established in the usage chain. 
Any computation based on T incorporates this information 
as well. Thus, T is an important model for the identification 
and derivation of measures that describe the statistical testing 
process. See [26] for proofs conceming specific attributes of 
testing chains. 

To illustrate testing chain construction, consider the example 
usage chain of Fig. 2. The initial testing chain, before any 
sequences are executed, is a copy of this chain, with each arc 
frequency initialized at zero. A randomly generated sequence 
is then obtained and executed against the software. The testing 
chain is updated to reflect the states and arcs traversed in 
that sequence. For example, the following sequence causes 
the corresponding transition arcs in the testing chain to be 
updated. (States are included in the sequence for reference; 
individual inputs are indented.) 

Uninvoked 

{CL = Sel, PD = No}) {CL = Sel, PD = No} 
invoke update transition: (Uninvoked, 

Enter key 

Select Project Screen 
select 

{CL = Sel, PD = Yes} 
Dn Arrow key 

{CL = Ent, PD = Yes) 
Dn Arrow key 

from 0 to 1 
update transition: ({CL = Sel, 
PD = No}, Select Project) 
from 0 to 1 

update transition: (Select Project, 
{ CL = Sel, PD = Yes)) 
from 0 to 1 

update transition: 
({CL = Sel, PD = Yes}, 
{CL = Ent, PD = Yes}) 
from 0 to 1 

update transition: 
({CL = Ent, PD = Yes}, 
{CL = Anl, PD = Yes}) 
from 0 to 1 
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{CL = Anl, PD = Yes} 
Dn Arrow key update transition: 

({CL = Anl, PD = Yes}, 
{CL = Prt, PD = Yes}) 
from 0 to 1 

{CL = Prt, PD = Yes} 
Enter key update transition: 

({CL = Prt, PD = Yes}, Print 
Report) from 0 to 1 

Print Report Screen 
print update transition: (Print Report, 

{CL = Prt, PD = Yes}) 
from 0 to 1 

update transition: ({CL = Prt, 
PD = Yes}, Print Report) 
from 1 to 2 

print update transition: (Print Report, 
{CL = Prt, PD = Yes}) 
from 1 to 2 

{CL = Prt, PD = Yes} 
Enter Key 

Print Report Screen 

{CL = Prt, PD = Yes} 
Dn Arrow key update transition: 

({CL = Prt, PD = Yes}, 
{CL = Ext, PD = Yes}) 
from 0 to 1 

(CL = Ext, PD = Yes} 
Enter key update transition: 

({CL = Ext, PD = Yes}, 
Terminated) from 0 to 1 

Uninvoked) from 0 to 1 
Terminated update transition: (Terminated, 

Suppose now that a failure appeared during printing that 
caused the system to halt execution. This same sequence, under 
these circumstances, would achieve the following updates in 
the testing chain. 

Uninvoked 
invoke update transition: (Uninvoked, 

{CL = Sel, PD = No}) 
from 0 to 1 

CL = Sel, PD = No 
Enter key update transition: 

({CL = Sel, PD = No}, 
Select Project) from 0 to 1 

Select Project Screen 
select update transition: (Select Project, 

{CL = Sel, PD = Yes}) 
from 0 to 1 

{CL = Sel, PD = Yes} 
Dn Arrow key update transition: 

({CL = Sel, PD = Yes}, 
{CL = Ent, PD = Yes}) 
from 0 to 1 

{CL = Ent, PD = Yes} 
Dn Arrow key update transition: 

({CL = Ent, PD = Yes}, 
{CL = Anl, PD = Yes}) 

from 0 to 1 
{CL = Anl, PD = Yes} 

Dn Arrow key update transition: 
({CL = Anl, PD = Yes}, 
{CL = Prt, PD = Yes}) 
from 0 to 1 

{CL = Prt, PD = Yes} 
Enter key update transition: 

({CL = Prt, PD = Yes}, 
Print Report) from 0 to 1 

add state: Failure State j 
update transition: (Print Report, 
Failure State j )  from 0 to 1 
update transition: (Failure State 
j, Terminated) from 0 to 1 

Uninvoked) from 0 to 1 

Print Report Screen 
print 

Failure State i 

Terminated update transition: (Terminated, 

Thus, the testing chain is updated with frequency counts 
that reflect the actual events that occurred when the sequence 
was executed. If the failure had not caused the system to 
halt, then the testing chain would be updated with the failure 
state followed by the remaining sequence parts. Whenever 
computation is desired, the frequency counts are normalized 
to probabilities. 

VI. ANALYTICAL &SULTS FOR THE TESTING CHAIN 

In this section, the testing chain, T, is used to obtain 
analytical results to answer two questions. First, at what point 
does the test history become representative of usage (as defined 
by U); second, how does each failure impact the testing 
process? 

A. An Analytical Stopping Criterion 

Stopping criteria for statistical software testing can be as 
simple as choosing some target reliability [3], [4], [lo], [18], 
[20], [22], [24], and testing until the estimate of the reliability 
meets or exceeds the target. However, the usage-to-testing- 
chain approach suggests an analytic stopping criterion based 
directly on the statistical properties of the usage and testing 
chains. The usage chain is a model of ideal testing of the 
software; i.e., each arc probability is established with the best 
estimate of actual usage, and no failure states are present. The 
testing chain, on the other hand, is a model of a specific test 
history, including failure data. Thus, the usage chain represents 
what would occur in the statistical test in the absence of 
failures, and the testing chain represents what has occurred. 
Dissimilarity between the two models is therefore a useful 
measure of the progress of testing. When the dissimilarity 
is small, the test history is an accurate picture of the usage 
model. 

Failure states are introduced into the testing chain by actual 
observations of software failure during testing. Since the usage 
chain does not have these failure states, they have an implied 
long-run probability of zero in U. In order to match the 
stochastic characteristics of the testing chain T in which the 
failure states may exist, enough nonfailure sequences from U 
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Fig. 3. Two plots of D(Lr T )  for the example usage chain. 

must end in correct termination to push the long-run occupancy 
of all failure states in T close to zero. Thus, failures observed 
during testing tend to increase the number of sequences that 
must be applied to P. 

Regardless of whether failures are encountered, we are 
seeking to identify the point at which the stochastic properties 
of the usage chain and the testing chain are indistinguishable 
within some acceptable tolerance. In order to measure this, 
one could compute, for example, the stationary distribution of 
each chain and use a goodness of fit criterion (e.g., Chi-squared 
[ 5 ] )  to measure their similarity. However, this approach takes 
into account only a single (albeit very important) attribute of 
the two models. If we want to measure the difference of the 
ensemble characteristics of each chain, then another approach 
is desirable. 

Consider each chain as an ergodic stochastic source. Each 
chain has a set of typical sequences that accurately characterize 
it as a sequence generator. If both chains have the same 
set of typical sequences, we may draw the conclusion that 
the two chains are indistinguishable as sequence generators. 
Stated differently, it should be extremely difficult, if not 
impossible, to determine whether a long concatenation of 
sequences dodl . . .dn. . . l  was generated by U or T. 

The log likelihood ratio [ 151 is a fundamental computation 
in measuring the evidence an observation provides for or 

against a hypothesis. In this case, the hypothesis is “stochastic 
process U is equivalent to stochastic process T,” and an 
observation is a large number of sequences generated by 
recurrent chain U. We define a measure for two stochastic 
processes as the expected value of the log likelihood ratio, 
called the discriminant [15]. This value is computed for 
two arbitrary ergodic stochastic processes XO and A 1  [13] as 
follows: 

1 
D ( X 0 , X l )  = lim - [ log ,p(dodl  . . - d , - l l X o )  

n+m n 
- l o g , p ( d o d l . . . & - l I X 1 ) ] ,  (10) 

where p ( d  . . . [A )  denotes the probability with which stochastic 
process X generates sequence d .  Although D(X0,Xl) cannot 
be directly computed for arbitrary processes XO and XI, it can 
be computed for Markov chains U and T [26] as follows: 

where T is the stationary distribution of U, pij  is the probabil- 
ity of a transition from i to j in U, and l;ij is the corresponding 
probability in T. Each l ; i j  that corresponds to a nonzero p ; j  

must be greater than zero in order for D(U, T) to be defined. 
D(U, T) is non-negative and equal to zero if and only if 
p i j  = pij  for all i , j  [15]. 
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The two sources U and T are likely to generate a similar 
set of typical sequences only if the value for D(U, T )  is 
very small. A value of D(U, T )  approaching zero has several 
implications for software testing. First, it ensures that each 
usage state appears in the test history in the correct proportion, 
as computed in the stationary distribution of U ,  and that the 
sequencing properties of the test history closely match those 
of U .  Second, it forces the probability of occurrence of the 
failure states in T to be pushed toward zero. This means 
that confidence must be gained in every path through the 
testing chain before D( U: T )  will be acceptably small. Third, 
it recognizes the limitations of the usage chain for testing the 
software. When the statistics of the testing chain and usage 
chain match, the usage chain is unlikely to generate a sequence 
that adds any additional information to the statistical testing 
experiment. 

To monitor the testing process, D(U, T )  can be computed 
with each sequence applied to the software after T becomes 
fully defined. A downward trend in the values of D ( U , T )  
signifies growing similarity of the two models. Usage chain 
U never changes; however, D(U,T)  reflects the impact of 
each additional sequence on the stochastic characteristics of 
the testing chain. D ( U , T ) ,  for example, can rise when no 
failures are observed if a sequence reinforces some low- 
probability event. Of course, a rise is expected when a failure 

occurs. When the discrimination drops below some predefined 
threshold and experiences little change for an extended period, 
it is implied that additional test sequences will not significantly 
impact the statistics of the testing model, and testing can stop. 

Fig. 3 shows two plots of D ( U , T )  that depict typical 
behavior of the function. Each plot represents a separate series 
of sequences from the example usage chain with relative 
frequency estimated transition probabilities. The solid line 
depicts behavior of D(U, T )  with no failures. The dotted line 
depicts a sequence with three failure states. There are several 
interesting features of this figure. First, note that D ( U , T )  
becomes computable at sequence 40 for the first plot and at 
sequence 26 for the second plot. Since D( U, T )  is computable 
only when every arc in T has been initialized (i.e., generated 
by U and applied to the software), its first occurrence is 
a random variable and depends on the specific sequences 
generated by U .  Second, the failure states cause T to converge 
to U more slowly than without failures. The general trend 
of the failure-free plot is toward significantly smaller values 
than the plot with failures. Third, the fluctuation of D(U, T ) ,  
even in the absence of failures, can be seen in both plots. 
When states and arcs occur in a sequence which reinforces 
low probability events, D(U, T )  can rise significantly. This is 
made explicit in the plot at sequence 56, where the failure-free 
plot rises significantly and even surpasses the plot with failures 

Authorized licensed use limited to: University of Ottawa. Downloaded on June 30,2010 at 10:47:29 UTC from IEEE Xplore.  Restrictions apply. 



822 IEEE TRANSACTIONS ON SOITWARE ENGINEERING. VOL. 20, NO. IO, OCTOBER 1994 

0.9745 

0.9579 0.9619 
A 

I 0.7973 

Fig. 5 .  Plot of R. 

temporarily. The general trend of both curves is downward; 
however, each is affected by the appearance of atypical events 
in the sequences. It is important to stress that analysis of 
D ( U , T )  should involve trends in the values of the function 
over time rather than any single value at some specific point 
in time. 

Fig. 4 depicts a graph of D ( U , T )  from a real usage 
chain used to test a graphical user interface [26]. D(U,T)  
is computed after each sequence beginning at sequence 29 
when the last arc is generated by the usage chain. This graph 
illustrates typical behavior of D( U, T) during both failure 
and nonfailure sequences. When no failure occurs, D(U, T) 
either falls or rises, depending on whether the current sequence 
causes the testing chain to become more or less similar to the 
usage chain. Note that the general trend is downward under this 
circumstance. When a failure is observed, a rise in D(U, T) 
occurs that is sustained over several subsequent failure-free 
sequences. The effect of the failure starts to diminish only after 
multiple failure-free sequences are incorporated that reinforce 
the paths that avoid the failure state. 

B. Measuring the Impact of Failures 

The testing chain represents the test history of the software, 
P, during correct functioning and during software failure. 
Thus, it is possible to define random variables that characterize 

the relationship of failure states to nonfailure states in order 
to describe the impact of failures on the testing stochastic 
process. We compute two characteristics of the testing chain 
that give insight into the effect of the failures. The first is the 
probability of a failure free realization of the testing chain, 
denoted R, computed by using a standard result from Markov 
chain theory. The second is the expected number of steps 
between failure states, denoted M, which requires a new 
computation. 

R and A4 can be computed directly from the testing chain 
T at any time during the testing of software P, even when 
only a single sequence has been input to P. It must be 
emphasized that R is a probability and M is an expected value 
conditioned on the test history encoded as T. These values 
gain credibility as statistical measures as the discrimination 
D(U, T) becomes relatively small, for this indicates that T is 
becoming statistically typical of software P’s response to the 
input sequences from usage chain U. 

The probability, R, of a failure-free realization of the testing 
chain is the probability that a realization of T beginning 
with “Uninvoked” and ending with the first occurrence of 
“Terminated” will not contain a failure state. To compute R, 
each failure state and “Terminated” are made absorbing states. 
R is the probability that absorption occurs at “Terminated,” 
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given "Uninvoked" as the start state [9], [14]; namely, as 
follows: 

RUnin,Term = fiUnin,Term + fiUnin,jRj,Term, (12) 
j € r  

where 7- is the set of transient (nonabsorbing) states. 
Fig. 5 depicts a plot of R for 150 sequences generated 

from the data of Fig. 4. The smoothness of the curve is due 
to the fact that the measurement is obtained by multiplying 
probabilities, and thus the effect of any one sequence is 
small. Failures on high-probability paths will cause a sharper 
decrease in R, because the failures are probability-weighted 
according to their location in the chain. Note that R = 1 
when no failure states exist in T. Because it is a conditional 
probability, R gains credibility as D(U, 7') gets small. See 
Miller er al. [I61 or Pamas et al. [20] for an alternative 
formulation for this probability. 

The expected number of steps bemeen failure is the expected 
number of state transitions encountered between occurrences 
of failure states in the testing chain. This value is computed 
[26] as follows: 

where v; is the conditional long-run probability for failure 
state fi, given that the process is in a failure state, m j  is the 
mean number of steps until the first occurrence of any failure 
state from j ,  ul, . . . U, is the set of usage chain states, and 
f l ,  . . . , fm is the set of failure states. 

Fig. 6 is a plot of M for 150 sequences generated from the 
data of Fig. 4. Since M counts the number of steps between 
failure states, which could grow significantly when arcs are 
traversed for the first time, the increase tends to be more 
pronounced than the measure for R. Thus, when new paths are 
established by traversing arcs for the first time, the increase 
can be quite large. However, as the testing chain becomes 
complete, the changes are less dramatic. 

The analytical results computed for the testing chain have 
several beneficial features. First, they are based on actual 
occurrences of failures. No assumptions about the distributions 
of failures are required in order to measure these quantities. 
Second, each state generated is accounted for in the compu- 
tations. Each sequence of states contributes to the model in 
proportion to its length and probability of occurrence. The 
computations on the model take into account the facts that 
the sequences are not equally likely and that some have 
more impact than others. Third, each failure is probability 
weighted according to its location in the testing chain. Failures 
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attached to relatively high-probability paths will impact the 
testing stochastic process more than failures attached to lower- 
probability paths. Thus, the testing chain delivers results 
that are based on the usage patterns described in the usage 
model. 

VII. CONCLUSION AND PROSPECTS FOR FUTURE WORK 

The finite state, discrete parameter, time homogeneous 
Markov chain represents a practical option for software test 
engineers in the development and analysis of usage models 
and automatic test input generation. There have been several 
successful applications of Markov chain usage models to date 
[ 11, [27], involving both real-time embedded systems and user- 
oriented applications. Our experience has shown that Markov 
chain usage models can be constructed in a diverse set of 
application domains, and are useful for driving statistical tests. 

It is sometimes the case that model size (i.e., the number 
of states) becomes unwieldy for large and complex systems. 
However, in such cases, many states are duplicates of other 
states, because certain inputs can be applied in different 
software modes. Thus, maintaining large chains often becomes 
a library problem that can be automated. We have also found 
it useful to model usage of such systems in a more abstract 
form. For example, the software system of Fig. 1 could be 
modeled with only the PD = {Yes,No} usage variable by 
creating the abstract inputs “choose the Select Project option,” 
“choose the Enter Data option,” “choose the Analyze Data 
option,” and “choose the Print Report option.” Thus, the usage 
variable for cursor location has been effectively removed by 
including the necessary information in the abstract inputs. We 
are investigating the details of these more abstract models, 
including the gaidloss in test effectiveness and rules for when 
it is or is not beneficial. 

The analysis of the testing chain is currently intended as 
a supplement to the many reliability models that exist in 
the literature. The testing chain represents a new perspective 
on test data and bypasses assumptions concerning anticipated 
rates of failure appearance. However, it is not yet offered as a 
complete reliability model for software. Our current research 
is directed toward this end. 
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