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1. Introduction 
  
State-based formalisms such as Finite State Machine and its derivatives have been used 

extensively for the specification of the externally observable behavior of a wide range of 

reactive systems [3-7].  A use of such specifications is to construct a set of test cases to 

be employed during testing of potential implementations of the specified system. Test 

cases constructed from such a specification are in the form of sequences of pairs of test 

input and the corresponding expected output (as in preset testing), unless it is recognized 

that there are more than one valid expected response and thus the next test input depends 

on the actual output produced in response to the current input (as in adaptive testing). If 

the latter is the case, then the test case is in the form of a tree, called adaptive test case. 

For example, Figure 1 depicts an adaptive test case where the test inputs are given in the 

nodes, the expected outputs are given on the edges, and the verdicts are given in the leaf 

nodes. A verdict is the representation of the test result which is either pass, fail, or 

inconclusive. A test language, called Testing and Test Control Notation (TTCN) [1] 

formalizes this notion and has been used for the description of adaptive test cases for 

testing internet related systems, services and protocols, mobile communication systems, 

middleware platforms, object- and component-based systems, Web services and 

embedded systems where there may be a variety of expected responses or options that are 

left to the discretion of the implementers. 

 
 During the application of a set of adaptive test cases to an implementation under test 

(IUT), the IUT is reset to its initial state after the application of each adaptive test case. A 

major component of the cost of applying a set of adaptive test cases is given in terms of 
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the number of inputs that are applied during testing. For a deterministic IUT, it is 

reasonable to assume that it is unnecessary to execute on the IUT twice with the same 

sequence of inputs and that an execution of an IUT on a sequence of inputs subsumes the 

execution of the IUT on any prefix sub-sequence. Under this assumptions, it is sometimes 

possible to deduce the IUT’s response to an adaptive test case t2 from the response of 

another adaptive test case t1 that has already been applied. When this is the case, there is 

no need to apply t2 which leads to the reduction of the cost of testing.  

 
 Hence, it might seem that ordering the set of adaptive test cases might yield a 

substantial reduction in the number of test inputs during the application of these test 

cases. However, it is shown that the problem of finding an optimal order of application of 

a set of adaptive test cases is NP-hard [2]. In order to elude the problem of finding an 

optimal order, this paper proposes the simultaneous application of subsets of a given set 

of adaptive test cases to a given IUT, proves a lower bound on the number of inputs that 

need to be sent to the IUT for the application of the set of adaptive test cases and then 

presents an algorithm for the application of the set of adaptive test cases to the IUT that 

achives this lower bound. 

 
 
 
 
 
 
 
 
 
 

Figure 1. An adaptive test case 
 
2. Optimizing the Number of Test Inputs 
 
Let T={t1, t2, …,  tn} be a set of adaptive test cases and IUT be a given deterministic 

implementation. The sequence of inputs that is sent during the application of an adaptive 

test case (henceforth called test) t to an IUT is called the IUT’s tested word of t and 

written Lt,IUT. The set of all tested words of a test set T forms a language, which is called 

the tested language of T and written LT,IUT. We have that LT,IUT={L1, L2, …, Ln}where Li = 
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Lti,IUT. Let LmaxT,IUT be the set of tested words in LT,IUT such that none of these words is a 

prefix of another.   

 
 We start by proving a lower bound to the number of input sequences needed to apply 

all tests in T to a given IUT. 

 
Proposition 1: LmaxT,IUT is exactly the minimum set of input sequences that should be 

sent to the IUT in order to apply all the tests in T. 

 
Proof: By definition, any word w of the tested language LT,IUT is either in LmaxT,IUT or is a 

prefix of at least one word in LmaxT,IUT.  

If w is in LmaxT,IUT, then clearly applying all words of LmaxT,IUT will give the result of 

applying w.  

Otherwise, let p be a word of LmaxT,IUT such that w is a prefix of p. Such a word exists by 

definition of LmaxT,IUT. The result of applying w can be inferred from the application of 

p: since the IUT is deterministic, applying w will produce exactly the result of applying 

the |w| first inputs of p.  

This shows that applying LmaxT,IUT is sufficient. It is also necessary because by 

definition, any word in LmaxT,IUT is not contained in any other word of the tested 

language LT,IUT, so the result of applying that word cannot be inferred from the 

application of any tests in T. ð 

 
 Let I be the number of inputs sent to an IUT during the application of T to the IUT 

and let |w| be the number of inputs in an input sequence w. A lower bound MinT,IUT  for I 

can be easily deduced from the Proposition 1: 

 
Proposition 2: The minimum number of inputs that are needed in order to apply all the 

tests in T to an IUT is: 

MinT,IUT  = Σ w in LmaxT,IUT  |w| 
 
 3. Algorithm 
 
We now present an algorithm that achieves the lower bound on the number of inputs 

proved in Proposition 2. According to Proposition 1, in order to minimize the number of 
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input sequences sent to the IUT, we need to apply the tests that are going to produce 

tested words that are not prefixes of any other word in LT,IUT, i.e. we need to apply  

LmaxT,IUT. The results for all the other tests can be inferred from these tests.  

 
 The problem is that we do not know a priori what tests are going to produce tested 

words that are not prefixes of any other word in LT,IUT before applying the tests in T to the 

IUT. Instead of actually choosing a particular subset of tests from T to apply one after the 

other, our solution is to apply a group of tests together, and automatically converge 

toward the application of the subset of T that produces the words of LmaxT,IUT. 

 
 The algorithm works with a set of tests called currentSet, which contains all the tests 

that have the same prefix of the tested word being formed. This constitutes the tests that 

are currently being considered. Initially, we select all the tests that have the same first 

input. We send that input to the IUT, observe the response r of the IUT and trace this 

response in all the tests in currentSet by following in each of the corresponding trees the 

outgoing edge labeled r, thus moving to the next node. We then look at the second input 

of the tests, and again select a subset of tests that have the same second input. We 

proceed until we have sent the last input of the last test in currentSet. We then select the 

next set of tests to form the new currentSet.  

 
 In the algorithm, we use a vector V to store several sets of tests. At any moment, all 

the tests stored at an index i of V have the same input sequence consisting of the i-1 

inputs already sent to the IUT. We call that common input sequence the prefix of V[i]. 

We also call sorting V[i] ordering the tests stored V[i] in ascending order of their next 

input (ith input). Initially, we store all the tests in T in V[1]. This is compatible with our  

definition since all tests have initially the same input sequence of size 0, i.e. no input has 

been sent yet. Sorting V[1] is thus sorting all the tests in T in ascending order of their first 

input. The algorithm is detailed in Figure 2. 

 
Analysis of the algorithm 
 
The correctness of the proposed algorithm directly follows from Proposition 1, saying 

that applying the words of LmaxT,IUT is equivalent to applying all the tests in T. We are 
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indeed applying the words of LmaxT,IUT  because each time we go through the outer while-

loop (line 3), we reset the IUT and start a new test. By construction, we carry out this test 

until the tested word cannot possibly be extended. We are therefore generating maximal 

tested words, i.e. words of LmaxT,IUT. Moreover, a test is marked as “finished” in only one 

case (line 16), when the test actually finishes. Since we carry out the computation until all 

tests are marked as finished, we cannot possibly miss any word of LmaxT,IUT. 

 
Our algorithm is optimal in terms of the number of inputs by virtue of Proposition 2, 

since we have shown that we stay within the language of LmaxT,IUT and that we 

completely cover it. 

 

Figure 2. Algorithm for testing an IUT using the minimal number of inputs 
 
 To analyze the complexity of the algorithm we will consider separately both parts of 

the algorithm:  the sorting part at the beginning of the algorithm and the repetitive part. 

 1: index =1; 
 2: V[1] = T; 
 3: While index � 0 do 
 4: If V[index] is not sorted then sort it; 
 5: Reset the IUT and apply the prefix of V[index] to the IUT; 
 6: Let nextSymbol be the next input of the first test in V[index]; 
 7: Initialize currentSet with all tests in V[index] having nextSymbol\ 
          as the next input; 
 8: While currentSet � ∅�do 
 9:  Apply nextSymbol to the IUT. Let IUTResponse be the response\  

of the IUT; 
10:  index = index + 1; 
11:  nextSymbol = null; 
12:  For each test t in currentSet do 
13:   Trace IUTResponse in t; 
14:   If the next input of t == null then 
15:    Mark test t as finished; 
16:    Remove test t from currentSet; 
17:   else if the nextSymbol == null then 
18:    nextSymbol = the next input of t; 
19:   else if the next input of t � nextSymbol then 
20:    V[index] = V[index] ∪ t; 
21:    Remove test t from currentSet; 
22:   end if 
23:  end for 
24: end while 
25: Do 
26:  index = index – 1; 
27: until (index == 0) or V[index] � ∅ 
28: end while 
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Let length (t) be the size of the longest path in a test t, w(t) be the maximum number of  

children of any node in t, and |T| be the number of tests in T. 

 
 For the repetitive part, we go through the outer while-loop (line 3) |T| times 

maximum, because we remove at least one test each time.  For each iteration of the outer 

while-loop, we go through the inner while-loop (line 8) at most max(length(t)) times 

where t belongs to currentSet, because at each iteration of the inner while-loop, we move 

to the next input of the set of tests in currentSet. Regarding the complexity of the inner 

while-loop, line 13 can be done in O(w(t)) for each test t in currentSet, while  every other 

step of the loop is done in constant time. Therefore, if length(T) is the maximum length(t) 

for t in T and w(T) is the maximum of w(t) for t in T, the complexity of the repetitive part 

of the algorithm is bounded by O(|T|.length(T).w(T)). 

 
 For the sorting, and for a given value of index, each test is stored in V[index] at most 

once. If we consider that all the tests are sorted at the same time, the sorting can be done 

in O(|T|log(|T|)). Because index is bounded by length(T), the total sorting time is bounded 

by O(length(T).|T|log(|T|)). 

 
The overall complexity of the algorithm is thus bounded by  

O(length(T).|T|.(w(T) + log(T)). 

 
4. Concluding Remarks 
 
The algorithm presented above is optimal in terms of the number of inputs sent to the 

IUT to apply a set of tests T. However, if we make further assumptions regarding the 

nature of the IUT, the number of inputs can be reduced further. 

 
Resetable IUTs 
 
It is usually assumed that the IUT can only be reset to its initial state. However, in some 

instances, it is reasonable to assume that the IUT can be reset under some conditions to 

some or any “recorded” state. For example, the IUT can be a distributed system that can 

be reset to any stable state (a state where all the sent messages have been received), or the 
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IUT can be a computer program running under a debugger, where it is sometimes 

possible to record a state and reset the program to that state at a later stage. 

 
 In general, if we assume that any state of the IUT can be recorded and that the IUT 

can be reset to a recorded state at will and that the IUT implements this reset function 

correctly, then the algorithm can be improved in the following way: 

 
1) in line 20 of our algorithm, when a test is first stored in V[index], the current state of 

the IUT must be stored as well 

 
2) when the next test is picked up (line 5), instead of resetting the IUT to its initial state 

and resend the prefix of V[index], we simply need to directly reset the IUT to the state we 

now stored along with V[index]. 

 
 In that case, the reduction in the number of inputs comes from not sending the prefix 

of V[index] to the IUT every time a new currentSet is selected. Instead, we directly reset 

the IUT to the state where we can start extending the tested word again. 

  
Reversable Units 
 
Another assumption could be that for every input to the IUT, we can send a “reverse 

input” that will bring back the IUT to its previous state. This is not unlike the “undo” 

function commonly available in many applications. Under that assumption, the IUT 

cannot be directly reset to any state, but can be gradually set back to a previous state by 

sending a reversing sequence. Suppose that the IUT implements these reversing 

sequences correctly. 

 
 Under these assumptions, the algorithm can be modified in the following way: as we 

find the next branching point (lines 25, 26 and 27), we count how many steps we have to 

go through. Say we go back from index k to index j. In other words, we move back from 

V[k] to V[j]. If k-j > j, then instead of resetting the IUT to its initial state (line 5), we send 

the reverse sequence of inputs to the IUT, from V[k] to V[j]. 
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 In other words, once a set of tests in currentSet is completed, we will go back until we 

find the next set of tests to work with. If that set is relatively close to our starting point 

(less than half way through to the beginning), it is less costly to “undo” the input 

sequence in order to bring the IUT to the right state. If the next branching point is further 

away than half way through, then it is less costly to just reset the IUT to the initial state 

and bring it to the right state from there. 
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