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Abstract

The ability to produce more secure software or to im-
prove the security of existing software is a growing concern
and a real challenge for the field of software engineering.
Among the various existing types of software vulnerabili-
ties, command injections are particularly common. It is a
difficult problem to address, having seemingly endless vari-
ations. We present here a unified, formal definition of com-
mand injections that, is not based on a particular technol-
ogy and captures not only the existing variations but also
the future instances of the problem. We then propose a sim-
ple, yet effective strategy to deal with the problem in existing
large applications, focusing on the cost effectiveness of the
method. We also report on successful experiments applying
our solution to large commercial applications.

1 Introduction

Software security has been an increasing concern over
the past few years, expending far beyond the restricted
circle of security specialists and being now regularly fea-
tured on generalist news outlets such as CNN or the BBC.
Microsoft, the largest software company in the world,
launched its “Trustworthy Computing” campaign in Jan-
uary 2002 [9, 19]. Yet, despite the increased attention, the
computing world seem to be faced with an ever increasing
number of reported security problems.

In a study released in March 2006, Symantec reports
that it was able to document 40% more vulnerabilities in
2005 than in 2004 [26]. Even more troubling for soft-
ware engineers, 69% of these vulnerabilities were coming
from Web applications, while Web applications represented
“only” 60% of the vulnerabilities in the first half of 2005
and 49% in the second half of 2004 [26]; this shows a sharp
increase in security vulnerabilities that are directly related
to software quality, as opposed to other security issues such

as unsafe user’s behavior. Still according to that report, it
took software producers an average of 49 days to release a
patch correcting a vulnerability after it was released (which
is still a big improvement over the 64 days in average of the
previous report). Meanwhile, it took only an average of 6.8
days for an exploit to be released after a vulnerability was
disclosed, leaving software users with an average of 42 days
with an unpatched application having at least one disclosed
and exploited security vulnerability.

Clearly, the software engineering community is strug-
gling to produce secure applications. In fact, a 2004 study
of over 250 Web applications showed that over 90% of them
where vulnerable to “common hacking techniques” [30].
In [1], Adams and Jourdan point out that there is a large gap
between the current software engineering practices as they
are classically taught in universities across the world andthe
reality of secure software production: testing processes are
not equipped to catch security related bugs, compartmental-
ization into components deliveries does not account for the
global security of the system etc. In fact, it is worth not-
ing that an overview of current software engineering books
aimed at university level courses shows that these books are
essentially silent on the question of producing secure soft-
ware, presumably leaving the problem to specialized teams
and specialized books [12, 6, 18]. However, countless se-
curity specialists have stressed the need for better security
awareness and more secure coding practices among the core
of software engineers. For example, the Microsoft secu-
rity team has started publishing documentation on what they
call the “Security Development Lifecycle” [16], an attempt
to intergrate software security concerns to the software de-
velopment life cycle.

In this paper, we focus on a particular category of soft-
ware security vulnerabilities especially common in Web ap-
plication, known ascommand injections. Command injec-
tions are often categorized into several different types of
injections, each of these types being studied separately. It is
our aim to study them as a whole, since we will show that



they are indeed variations of the same problem.
A rapid overview of the software vulnerabilities pub-

lished within the last couple of years show that a number
of them belong to the category of command injections. For
example, three of the “Ten Most Critical Web Application
Security Vulnerabilities” in 2004, as reported in [27], were
direct command injections vulnerabilities. There are vari-
ous published approaches to deal with these vulnerabilities,
ad hoc solutions as well as more generic ones. However,
none of these solutions seem to provide a clear, technology
independent description of the root cause of the problem,
or an applicable road map to address the problem in large
commercial software. In our research, our aim is to provide
practical solutions to the problem, applicable in the context
of industrial software development.

Our contributions are the following:

• We provide a formal, generic definition of command
injections which captures the source of the problem
and can be used to understand every current declina-
tions of the vulnerability, as well as to anticipate future
instances of it, using yet unknown technologies.

• We provide a practical, intuitive road map to address
the issue in existing, large software applications. Our
solution is quite open and does not seek perfection
but realism. It is intended for teams of professional
software engineers that are not security specialists but
must adequately address security issues in their appli-
cation, at reasonable cost and with tangible results.

• We describe two real life experiments where our ideas
have been applied in the intended context. For con-
fidentiality reasons, we cannot disclose products or
company names, but we can report on the successes
and limitations of the attempts and share some of the
conclusions that we have reached during these experi-
ments.

The rest of the paper is organized as follows: in Sec-
tion 2, we give a formal model for command injections, and
we illustrate it with some of the currently most common
types of command injections. In Section 3, we outline a
strategy to deal with command injections in existing large,
commercial-grade software applications. In Section 4, we
report on experimental results we have obtained applying
our strategy in the context of large commercial applications.
In Section 5, we discuss related work and we conclude in
Section 6.

2 Command injections

In this section, we first define formally what a command
injection vulnerability is, and we then provide several exam-

ples of different types of command injections chosen among
the most common ones at the time of writing.

2.1. Formal definition of command injec-
tions

Command injections vulnerabilities are common and oc-
cur with different technologies, current and future. In order
to grasp the essence of the problem, we propose here a defi-
nition of command injections which is technology indepen-
dent.

Assume that we have a virtual machineM that accepts
programs as input and “executes” these programs in some
way. As it is customary with virtual machines, in order to
be executed, the programs must be “valid”, in that they have
to be an element of the input languageLM recognized by
M . The languageLM is usually specified by a grammar
GM . Thus, a valid program for a machineM is a program
recognized by the grammarGM .

The grammarGM has two types of symbols: theter-
minal and thenon-terminalsymbols. Non-terminal sym-
bols can be on both sides of the grammar’s derivation rules,
while terminal symbols can only appear on the right hand
side of these rules. A word ofLM is made of terminal sym-
bols and can be derived from the rules ofGM (see e.g. [25]
for an overview of these classical concepts).

When looking at virtual machines grammars, we can
identify two types of terminal symbols inGM : the prede-
fined constants of the languageLM and the variables. The
predefined constants are the keywords of the language, the
predefined symbols that are interpreted byM upon execu-
tion of a program, while the variables specify values, vari-
able names etc.

Assume that an application makes use of such a machine
M . That is, the application produces a programp recog-
nized byGM and sendsp to M for execution. Assume
moreover thatp is at least partially produced at runtime,
based in part on some user provided inputip. We say that
there is acommand injection vulnerability(more precisely
in that case, anLM -injectionvulnerability) if for some in-
putsip, the application produces ap containing an element
from ip that is going to be recognized as a predefined con-
stant of the languageLM by the grammarGM .

Definition 1 (LM -injection vulnerability) An application
has anLM -injection vulnerability if

1. The application uses a virtual machineM .

2. It is possible for a user to provide a set of inputsip to
the application that will cause the application to pass
a programp to M .

3. There are inp some elements coming fromip that will
be parsed by the grammarGM as a predefined con-
stant of the languageLM .



As Definition 1 specifies, a command injection vulner-
ability is a flaw that allows a user, potentially malicious,
to modify the parsed input of a virtual machine in such a
way that the modified portion of the input is going to be
interpreted by the machine as a command. It is called a
command injection because it reflects the ability of the user
to inject a “command” that will be executed directly by the
targeted virtual machine.

Our definition is in practice a bit too broad. Indeed,
there are applications that intentionally let users “drive”
some of the virtual machines used by the program, ide-
ally in some limited and controlled way. For example,
there are numerous Web-based applications that let by de-
sign users enter some HTML formatting instructions (such
as bold, itemization etc.). Any such possibility would be
flagged as command-injection flaw according to our defi-
nition. Clearly, if the application is meant to allow such
input, then this is not an injection “flaw”, although it can
still be a security vulnerability1. Our definition can easily
be modified to account for “application expected modifica-
tions”, but we do not consider it in this paper for the sake of
simplicity.

Most software applications make use of such virtual ma-
chines at runtime. In fact, a typical application will use sev-
eral of these machines, used sometimes independently and
sometimes in sequence. Common examples include SQL
engines, XML parsers, HTML parsers, scripting engines
etc. Whenever an command injection vulnerability against
a machineM exists in an application, the attacker gets some
level of control over the execution withinM . In the follow-
ing subsections, we review some of these injections attacks
on practical examples.

2.2. SQL injections

Among command injections, SQL injections are perhaps
the best known and the most studied (see e.g. [2, 3, 11, 24]).
A SQL command injection vulnerability can exist whenever
an application uses a SQL based database and constructs
unfiltered (or improperly filtered) SQL commands based on
user input. An attacker can then take this opportunity to
inject its own SQL command, which will be passed down by
the application to the SQL-database engine and executed.

The archetype example of a code which presents SQL-
injections vulnerabilities is the following code snippet,
where a SQL query is being build on-the-fly based on user
provided user name and password:

LoginQuery = ’’SELECT * FROM UsersTable
WHERE UserId=’’’ +

1It should be noted that applications allowing directly thistypes of user-
level manipulations can often be misused to allow unexpected command
injections. See e.g. [4] for an example of possible consequences of allow-
ing an “<a href=. . . ” tag.

request.getParameter(’’userName’’) +
’’’ AND Password = ’’’ +
request.getParameter(’’password’’) +
’’’;’’;

In this code, “LoginQuery” is built based directly on
user-provided inputs (parameters “userName” and “pass-
word”). The intent is to query the database to see if
the table “UsersTable” contains a record where the field
“UserId” matches the user-provided parameter “userName”
and the field “Password” matches the user-provided param-
eter “password”.

Because the query is built directly by concatenation of
predefined commands and user input, malicious users can
actually modify the end query in various ways. For ex-
ample, the password check can be bypassed by provid-
ing a password such as’ OR 1=1; . If the user name
provided isadministrator, this will turn the query
“LoginQuery” into

SELECT * FROM UsersTable WHERE
UserId= ’administrator’
AND Password = ’’ OR 1=1;

This command will always return the record with a field
UserId=’administrator’, regardless of the associ-
ated password value.

Another way to manipulate the code above is to insert
’; in the user name or password, followed by any SQL
command. Again, this would lead to the execution of that
user-provided command, which can be any operation (table
manipulation, database update etc.) permitted by the access
rights of the application on the database.

SQL-injections are clearly a particular case of our defini-
tion, where the virtual machine is the SQL-based database
engine, and the virtual machine language is SQL. As we can
see from the above examples, an attacker will successfully
perform a SQL injection by providing input that will be in-
terpreted by the database as actual SQL (e.g. theOR in the
example above).

2.3. HTML-browsers injections (HTML,
XSS...)

HTML-browsers can be the target of several distinct
command injections attacks. These injections where at first
not really considered harmful since they do not harm the
system running the application in an obvious way; indeed,
the application is not what is attacked, it is merely a vec-
tor used to send attacks down to the HTML-browsers of the
users of the application.

We again consider a trivial example: assume that the ap-
plication produces an HTML page containing user-provided
comments to be displayed in other user’s HTML browsers.



These comments are typically stored in a database by an-
other part of the application. Assume that the application
has fetched an existing comment from the database, and
stored the user name and comment into theUsername and
Comment variables. Assume that the HTML page show-
ing the user-provided comments is built from the following
server side ASP code:

<B><%UserName%></B> says <%Comment%>

If a malicious user has given a user name or a comment
that include HTML tags, then those tags will be inserted
into the resulting page as is and will be directly interpreted
by the HTML browser of the users viewing the page. This is
an example of an HTML-injection, and again clearly a par-
ticular case of our general definition: the virtual machine
is the HTML-browser and the language is HTML. A ma-
licious user successfully attacks such a system by inject-
ing data that will be interpreted as HTML by the HTML
grammar. This can for example be the insertion of a fake
login form looking like the one of the application, which
lies within a legitimate page of the application but sends the
credential to some other location, controlled by the attacker.

In addition to HTML-injections, HTML-browsers typ-
ically have embedded scripting interpreters (such as
JavaScript) that can be triggered from within an HTML
page. Consider the same example above, but now with a
malicious user entering a comment such as:

<script>alert(document.cookie)</script>

This would lead to an HTML-page being created by the
application with the JavaScript instruction embedded in it,
and thus again been interpreted by the HTML-browsers of
subsequent users. This type of attack, known as “cross-site
scripting”, or “XSS” [23, 7, 13], can be very serious, since
a successful malicious attacker can get access to the script-
ing engines embedded into the application’s users’ HTML-
browser, and for example get a hold on their “cookies”,
which typically lead to session hijacking. In our model,
the virtual machine is the script interpreter embedded into
the HTML-browser, and a successful attack consists of in-
jecting data that will be interpreted as script instructions
(JavaScript in our example) by the interpreter. In the ex-
ample, the injection did in fact trigger the invocation of
the virtual machine, but of course similar example can be
constructed where command injections happen within the
scripting engine itself.

2.4. Shell command injections

Shell command injections vulnerabilities have been his-
torically very important, although they seem to be in decline
lately. This type of command injections occurs when the ap-
plication invokes the operating system shell (C-shell, Bash

etc. on Unix, command shell on Windows etc.) to initi-
ate another program. For example, the application could be
sending an email, and for that could be using directly the
“mail” program under Unix; or, it could be attempting to
print with the “lpr” command. If, as part of this program
invocation, the application is using some user data with-
out proper filtering, then again a malicious user can craft
an input that will terminate the intended command and start
another one of the user’s choice.

This type of vulnerabilities used to be very common, pre-
sumably due to the Unix philosophy of “piping” applica-
tions together and of invoking programs from the command
line. Of course, a successful shell command injection is po-
tentially catastrophic, since the attacker gets an access to the
operating system with the credential of the application.

Shell command injections are also a particular case of
our command injection definition, where the virtual ma-
chine is the shell itself.

2.5. Other injections

Other types of command injections have been reported:
LDAP-injection, XPath injection, XML injection, macro in-
jection etc. More importantly, there are going to be new
types of command injections in the future, based on cur-
rently unknown technology. All of these types of attack are
variation on the same pattern, so we must develop a defense
strategy that is not based on the specificity of any given
technology.

2.6. Commands injections versus com-
mands modifications

One limitation of our definition and of the strategy de-
scribed below is that it addresses command injections vul-
nerabilities, but does not addresscommand modification
vulnerabilities. A command modification attack consists of
a malicious user modifying a legitimate command to trans-
form it into an illegitimate one, but without inserting any
new instructions. For example, in the case of SQL engines,
it would mean to use an existingSELECT command to read
different records than the ones intended, or to use a legiti-
mateDELETE command to delete records that should not
have been deleted. This type of attack is no less harmful
than a command injection. It basically follows the same
pattern but is not captured by Definition 1.

In fact, we argue that command modification flaws are
of a different type entirely. When a command is “modified”
in an application, it is the semantics of the application itself
that is being abused. A purely syntactic approach such as
the one proposed against command injections flaws is not
appropriate for such a problem. It does not mean that this
type of flaw can be overlooked, but rather that it will only



be caught by an analysis of the inner workings of the ap-
plication, much like the other security-related bugs in the
application.

3 A strategy to secure large applications
against command injections attacks

The formal definition of command injections provided in
Section 2 gives us the foundation needed to define a strategy
to protect applications against command injections by neu-
tralizing potentially harmful inputs. We assume here that
we have to secure a large application that has been devel-
oped over many years by several teams of professional soft-
ware engineers that are not security specialists. In other
words, we can assume that there are several exploitable in-
jection points to be found, that mistakes where made over
the years and more mistakes will be made during the secur-
ing process itself.

Our aim is not to achieve perfect protection, which
would be in our case total riddance of command injec-
tions possibilities. Regardless of whether or not such a goal
would be reachable, it would anyway be too costly a goal in
our setting, involving too much efforts and too much time
for the intended benefits. Instead, we want to remove as
many command injections vulnerabilities as possible, mak-
ing it significantly harder for an attacker to find and success-
fully exploit an injection point. Consequently, the strategy
described here is not perfect or exhaustive, but is rather an
attempt to remove efficiently as many command injection
vulnerabilities as possible during the time allocated for the
securing effort.

The strategy that we propose is in fact quite natural once
command injections are understood. Having a straightfor-
ward approach to dealing with the problem is particularly
helpful in our context, since the work will be carried out
by teams of programmers not specialized in security. This
securing effort can be concentrated within a short, focused
timeframe dedicated to securing the product, and will likely
be carried through by the teams who are in charge of devel-
oping or maintaining the application.

3.1 Virtual machines identification

As said in Section 2, there is a possibility for command
injections when an application makes use of a virtual ma-
chineM that will interpret the data passed by the applica-
tion as a program to execute.

The first natural step when securing any application
against data commands injections is thus to identify every
such machine used by the application. Failure to recognize
one of these machines will lead to the application being po-
tentially open to commands injections against that machine,

regardless of the amount of effort spent securing the appli-
cation against other commands injections attacks.

A partial listing of the type of virtual machines that are
commonly used today includes:

• SQL-based databases,

• XML parsers,

• HTML browsers,

• scripting languages embedded into HTML browsers,

• XSL transforms [29],

• LDAP servers,

• word-processing and spreadsheet embedded applica-
tions macros,

• programming languages,

• shell commands.

One should thus identify if any of these interpreters are
used by the application being secured. However, this list
is not exhaustive and is bound to change significantly over
time, as technology evolves. In addition, there is also the
possibility that the application being secured uses some non
standard virtual machines that represent similar risks. Itis
thus important to spend the time necessary to identify any
possible virtual machine used by the application at hand.

The application will have to be protected against harmful
inputs for each of the identified virtual machines. In some
cases, this may require more work that can be afforded, and
it may be necessary to reduce the list of virtual machines for
which protective measures will be taken. That is certainly a
dangerous approach, but if the necessary budget is not avail-
able, the various virtual machines identified can be classi-
fied according to their perceived dangerousness. That is, for
a given machineM , what would be the worst consequence
of a successfulLM -injection? For example, if a successful
HTML-injection could only lead to a web page being poorly
displayed, this might be deemed as being an acceptable risk
and the associated neutralization process being postponed
to be able to focus on higher risk virtual machines, for ex-
ample neutralizing the input against HTML-browser script-
ing languages.

Once we are convinced that all virtual machines have
been identified, we need to apply the steps listed below for
each such virtual machine.

3.2 Injection points inventory

For a given virtual machineM , the first step is to cre-
ate aninjection points inventory. At that stage, an injec-
tion point is basically any interaction between the applica-
tion andM , where data that will be recognized byM as
parseable input is sent by the application.



In order to successfully create this inventory, one must
carefully examine the API ofM to make sure that no pos-
sible potential injection point is missed. Albeit tedious,this
step should be usually easy to accomplish, unlessM hap-
pens to be improperly documented. Once the possible in-
jection points toM are known, it should be relatively easy
to create an exhaustive inventory of the ones that are used in
the application. This search can often be automated and can
thus provide a complete and fully accurate result. We thus
assume that this step will lead to an accurate and exhaustive
listing of the application’s injections points for the machine
M .

Note that depending both on the application andM , this
list can be very concise or discouragingly long. For exam-
ple, for SQL-injections, when the application is well struc-
tured it is not unusual to find relatively few injection points,
since the application has typically relatively few actual in-
teractions with the database2, and moreover these interac-
tions are typically grouped together in some data access
component. On the other hand, a typical XSL transforma-
tion will be literally covered with potential injection points
(HTML, XML, scripting . . . ), since by design almost every
line of an XSL document transforms its input into poten-
tially harmful output. Obviously, cases such as the latter
are going to be much more challenging to deal with, which
might explains why most currently published material focus
on the former.

3.3 Untrusted user data inventory

Once the injection points have been identified, the next
step is to create an inventory of untrusted data used at these
injection points. Unlike the previous step, this step is not
going to be easy to automate, and will require manual pro-
cessing and user’s judgment.

Untrusted data is data that can be influenced, that is set
or modified in any ways by a malicious user. Moreover, this
modification does not necessarily need to be direct; in other
words, it is not sufficient for the “last” user or the last point
of storage to be trustworthy for the data to be trusted. In-
deed, data coming from an apparently trusted source such as
the application own database might have been at one point
modified by a malicious user and thus might contain mali-
cious content. Similarly, all users must be considered po-
tentially malicious since a trustworthy, authenticated user
might be led to submit malicious data by various means,
such as social engineering [10, 20] or session hijacking[15].

Clearly, with such a broad definition, initially almost all
input data is untrusted. Untrusted data must be carefully ex-
amined in order to evaluate whether it can in fact be trusted

2Even when the application is database intensive, one rarelysees a code
making hundreds, let alone thousands of different database calls along the
way while processing a request, if only because it would be very inefficient.

at the injection point, or if it should be neutralized against
command injections.

3.3.1 Gaining trust

Untrusted input data does gain trust through data valida-
tion [28]. In other words, the paths through which the data
might have gone, and the various validation steps that have
been performed along the way leading to the injection point
must be researched, in order to decide whether or not this
data can be trusted at this particular injection point.

As pointed out in [8], validation steps that are performed
at various location within the application may not be very
effective at preventing command injection attacks, for a va-
riety of reasons including the fact that when the validation
is performed, it might still be unknown that the input would
end up being passed to the virtual machineM , and that in
addition, the data might not be in its final form yet. Conse-
quently, merely having gone through a step of validation is
in no way enough for data to become trusted. The details
of the actual validation steps must be evaluated to see their
specific effectiveness againstLM -injections.

3.3.2 Being trusted

We said that trust is gained through data validation. The
reality is that our trust in the data simply increases when
the data is validated. We are not trying to achieve complete,
blind trust in the data, but rather to reach a level of trust that
we deem sufficient in the context of the injection point.

The required level of trust has to be adapted on a case
by case basis, taking into consideration the cost associated
to raising it, the likelihood of an attack being successfully
carried out with the current level of protection and the actual
consequences of anLM -injection.

The trust that we give to the data has to be understood as
a contextual trust: it is related to the injection point and it is
related to the virtual machineM . In other words, the data is
not gaining any kind of general “trusted” status for a differ-
ent purpose. This approach is diametrically opposed to the
concept of “trust boundaries” (see e.g. [12]). With the trust
boundaries approach, data is validated as it enters a compo-
nent and is then trusted within this component. We depart
from this model because, as suggested above, it is usually
difficult and sometimes impossible to effectively validate
data against all types of commands injections before the
data is actually used in the context of being harmful. That
is not to say that we disregard the value of systematic data
validation at “chock points”, but rather that we do not nec-
essarily trust this validation step to always protect against
all possibleLM -injection for any machineM .



3.3.3 Reducing the size of the inventory

The goal of this step is to reduce as much as possible and as
quickly as possible the amount of untrusted data at injection
points, since this is the data for which there is a risk and for
which we will need to act.

In practice, we find that we will quickly find some “clus-
ters” of injection points that we will be able to group to-
gether because they present the same type of attack vector.
For one such cluster, we will typically have identified some
common steps of validation which, if done, are deemed suf-
ficient to trust the data. This sort of natural grouping allows
to quickly eliminate large set of untrusted data at injections
points.

Whether or not the particular application offers natu-
ral clustering of injection points, we nevertheless need to
go through the complete set of untrusted data manually,
which is typically a time consuming, labor intensive pro-
cess whose outcome is subject to error. Great care should be
taken while performing this step, since data that is wrongly
classified as trusted will obviously lead to a security flaw
remaining in the application.

When using some particular environments, there are
tools available to help (see e.g. [17] for Java). These tools
can be of great help to trace the data flow from the injection
point back to the entry point(s).

3.4 Data neutralization

The last step in our process is the neutralization of the
data that was identified as untrusted at injection points dur-
ing the previous step (or rather that was not identified as
sufficiently trusted). If we have proceeded correctly, then
we should be in possession of the complete listing of poten-
tially harmful data, and of the location where it can harm.

Neutralizing this untrusted data means that we want to
remove the possibility for the data to contain an element
that is going to be recognized as a predefined constant of
the languageLM by the grammarGM . In order to achieve
this, several techniques are available. If the machineM

against which the data is neutralized works with a relatively
simple grammarGM , then it is possible to look at system-
atic approaches that would provably preventLM -injections.
For example, Su and Wassermann describe in [24] a method
consisting of tagging what we call here the variable ter-
minal symbols ofGM and then simulate a parser forGM

to see if it derives the existence of predefined constants
of LM within tags. Other approaches are based on static
analysis of the code and automatic inference of monitoring
tools [14, 17, 11].

Although these techniques might works under some cir-
cumstances, we seem to still be some ways away from be-
ing able to protect against general commands injections us-
ing them. The use of these techniques did not seem appro-

priate in our settings, where the work must be performed
by teams of non specialized programmers under strict time
constraints, applied to existing large applications. Instead,
we advocate the usage of simple neutralization rules mak-
ing use of usual white lists mitigated with black lists: allow
only known good, and if necessary, filter out, escape or en-
code known bad (see e.g. [21, 28]). The problem is greatly
simplified by the realization that we are neutralizing data
againstLM -injections, and thus the neutralization effort is
clearly directed toward avoiding user-provided inputs that
would be parsed as predefined constants ofLM by a GM

parser.

4 Experimental results

The approach described here has been followed in some
forms with various large-size Web applications, each in-
volving several teams of professional programmers. In this
industrial settings, one key requirement was the cost effec-
tiveness of the effort, with significant results expected at
reasonable cost. Our technique has proved to be fairly ef-
fective, in that we were able to get large teams of program-
mers that had no prior knowledge of the problem to rapidly
understand the issue and fully participate to the securing ef-
fort.

In this section, we report on two experiments, where
teams of application programmers were asked to participate
in “application scans” aimed at auditing large software ap-
plication to look for command injections vulnerabilities.

4.1. First application scan

The first scan was carried out on a large commercial
application that was using a proprietary technology simi-
lar to XSLT [29]. The focus was solely on that technol-
ogy, that is, securing against commands injections vulnera-
bilities against a specific virtual machine. The application
had hundreds of “transformation” documents. The scan in-
volved a team of about ten software engineers, involved for
several days, scattered throughout several weeks.

During this first scan, we did not create a precise inven-
tory of the command injection points. Instead, we simply
identified the types of injection points that were to be found
in the application. For the inventory of untrusted data, we
used the fact that in this particular application, a significant
part of the data could be trusted because it was coming from
a database that was not writable by users. This allowed us to
create a set of trusted data. Moreover, we were able to auto-
matically infer this set from the way this data was read from
the database. We decided to flag the rest of the application
input data as untrusted.

The neutralization effort was therefore to manually neu-
tralize the data that was flagged as untrusted, which was still



about 60% of the input data. This meant several thousands
of manual neutralizations. In order to deal with such a large
effort, we attempted to ease the process by enhancing the
virtual machine itself, adding “self neutralization” routines
that were able to neutralize data according to its type, which
greatly simplified the syntactic implication of updating the
documents.

One of the outcomes of this first experiment was that
some programmers ended up mis-typing some of the more
complex data, due perhaps to the repetitive effort of adding
the types to thousands of virtual machine calls. For exam-
ple, in some instances, an integer variables assignments in
JavaScript (of the formintVar = <input>;) ended up
being erroneously neutralized as a JavaScript string.

The conclusion was that the repetitive and tedious pat-
tern of manual neutralization over many days prevented
the programmers to detect some of the non-standard in-
stances of required neutralization. More importantly, the
broad scope of the effort was due to the lack of trust in the
data. We had an algorithm to automatically trust some of
the data and we simply decided to not trust anything else.
Had we spent more time building the inventory of trusted
data, paying more attention to the trust we could have in the
existing application level validation, we would have been
able to significantly reduce the amount of required neutral-
ization. Moreover, the narrow definition of “trusted data”
implied that the data that was flagged as untrusted was actu-
ally unlikely dangerous. With a more stringent definition of
“untrusted”, the programmers would have kept their guard
higher.

Interestingly, another downside was excessive neutral-
ization, were valid input was “neutralized”, affecting the
application functionalities at places and increasing the per-
formance price that had to be paid for neutralization. Again,
we believe that the root cause of the problem was the size
of the untrusted data list.

It should be noted that in the end, despite the issues out-
lined above, the scan produced a good coverage of the ap-
plication and was deemed a success, as verified by a formal
security audit done subsequently. But the cost paid to reach
that level was high.

4.2. Second application scan

For the second scan, we were dealing with a larger
project, involving about twenty programmers from about
seven teams. The technology used was similar to the one
of the first scan.

This time, we created an exhaustive inventory of com-
mand injections points ourselves, using automated scripts
and without involving the team of application programmers.
After having obtained this listing, we educated the software
engineers about command injections using the same listing

and focusing solely on the types of command injections that
would be encountered during the scan (in the previous scan,
the training was a general, text book injection training). The
teams were then instructed to find untrusted data at the in-
jection points themselves. This time, we did not attempt to
narrow down the set of untrusted data automatically, and let
the programmers do the work from the ground up. They in
fact did find again rather quickly types of data that could be
automatically trusted, but then went beyond this initial set
and looked at the validation processes that could be found
in the application. This further reduced the inventory of un-
trusted data and increased the team’s understanding of the
dangerousness of the data that was not flagged as trusted.
Programmers were also requested to add comments as to
why they flagged data as trusted.

This proved to be a better approach, since a lot fewer
mistakes were subsequently caught, showing that the teams
had been more effective in their neutralization process. It
should be noted that a total coverage was not achieved the
first time through. We were able to find data that was nei-
ther flagged as trusted nor neutralized, and had simply been
missed by the teams.

Overall, high effectiveness in the neutralization process
of the data with the highest risk for attacks was achieved, as
verified by a subsequent formal security audit.

One additional positive outcome of this scan effort was
that over the following months, programmers involved in
the effort started to flag to the security team instances of
possible command injections, including command injec-
tions against virtual machines that were not considered dur-
ing the scan, showing the benefits of the method in term of
education. The simplicity of the method made it easy for
the programmers to add command injections prevention as
part of their development routine.

5 Related work

Various existing methods exist to try to address the prob-
lem of command injections in different ways. Perhaps the
simplest way (from the view point of methodology) ispene-
tration testing[5], were specialized teams of testers attempt
to find security vulnerabilities in a system by providing the
type of inputs a malicious user would provide. This method
can be quite effective in some cases but is clearly limited
and cannot provide any guaranty of quality. It is also diffi-
cult to implement on large applications that require special-
ized knowledge to be used.

A more systematic way of dealing with the issue can be
found in input filtering techniques [21, 22], where accept-
able user inputs can be specified and enforced. This type
of technique is fairly natural and tools are available to help
implementing it, both within the current programming en-
vironments and as independent tools. The main limitations



that we see with this technique lies around the difficulty
of efficiently neutralizing data against command injections
vulnerabilities at the user input level, where the context is
lacking and some crucial information regarding the destina-
tion of the data might be missing.

Automated solutions based on static analysis of the code
have also been suggested [14, 17, 11]. These techniques are
useful to automatically link the command injection points
to user inputs, although they are not perfect and can miss
some of the links. Once the path from the user input to
the injection point is detected, much is left to be done in
order to decide whether the data can be trusted. Some of
the tools permit to specify the acceptable form of the user
input (or even automatically infer this form [11]) and sub-
sequently enforce compliance by rejecting non conforming
inputs at runtime. These tools seem to be good helpers for
our method, although perhaps slightly limited in their abil-
ity to handle large scale application and massive injection
points inventories as in the examples of Section 4.

From a software engineering viewpoint, the classic no-
tion is the one of “trust boundary” [12], where the appli-
cation is split into components and data is validated as it
crosses the boundary between two components. On the
other hand, once inside, the data is trusted within the com-
ponent. We believe that the practical limitation of this ap-
proach are similar to the input filtering techniques: in prac-
tice, it might be difficult to neutralize data against command
injections at some boundary that is not the command injec-
tion point, if only because the ultimate destination of the
data might be unknown or unsure and the data might sim-
ply be a small piece of a larger eventual input. We do be-
lieve that data validation and data neutralization do servea
different purpose and should usually be performed indepen-
dently [8].

A special note should be made of the solution provided
by Su and Wassermann in [24]. They propose to tag what
we have called the variable terminal symbols ofGM and
to then simulate a parser forGM . If that parser infers the
existence of predefined constants ofLM within tags, then
a command injection has been detected. The solution is
the only one to our knowledge that would provably prevent
any possibility of command injections in the tagged data.
This technique still requires finding the untrusted data at in-
jection point, but could be used in our method to perform
the neutralization step. Unfortunately, this method seems
to be again somewhat limited in practice, since it requires
the ability to properly tag the data and moreover assume
the availability of aGM parser simulator, which is perhaps
possible with simple grammar but much more difficult with
complex and in practice poorly standardized languages such
as HTML.

6 Conclusion

In this paper, we provide a formal definition of command
injections which is completely independent from any partic-
ular technology. Our formalization goes at the heart of the
problem and captures seemingly widely different types of
attacks, such as SQL injection, cross-site scripting, XML-
path injections or shell command injections. More impor-
tantly, it also captures yet unknown command injections
vulnerabilities based on future technologies, and allows to
take preemptive measures against them and not be taken off
guard when they appear.

We then propose a strategy that can be used to track and
remove existing command injections of any types in a given
application. The simple and effective strategy is meant to
be cost effective and is openly targeted toward large com-
mercial applications. Our practical solution can be imple-
mented within large teams of professional engineers that are
not security specialists and will help deliver more secure
applications under realistic assumptions of time, manpower
and budget.

We have tested the proposed solution in its intended con-
text, resulting in large application being secured by team of
software developers and being subsequently certified secure
by formal security auditors. We describe these experiments
and draw several conclusions for them.
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