
Separating Programming and
Presentation:

JSP Technology

CSI 3140

WWW Structures, Techniques and Standards

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Why JSP?

Servlet/CGI approach: server-side code is a
program with HTML embedded

JavaServer Pages (and
PHP/ASP/ColdFusion) approach: server-side
“code” is a document with program embedded

 Supports cleaner separation of program logic
from presentation

 Facilitates division of labor between developers
and designers

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Default namespace is XHTML

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Also uses two

JSP-defined

namespaces

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

JSP-defined

markup (initialization)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Standard XHTML

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

JSP

scriptlet

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

JSP-based program logic:

initialize and increment variable

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Replaced with value of variable

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Output

XHTML

document

after 3 visits

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Used html as root element

 Can use HTML-generating tools, such as

Mozilla Composer, to create the HTML portions

of the document

 JSP can generate other XML document types as

well

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Namespaces

 JSP (basic elements, normal prefix jsp)

 Core JSP Standard Tag Library (JSTL)

(prefix c)

 Tag library: means of adding functionality beyond

basic JSP

 JSTL included in with JWSDP 1.3 version of Tomcat

 JSTL provides tag libraries in addition to core (more

later)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

JSP elements

 directive.page: typical use to set HTTP

response header field, as shown (default is

text/xml)

 output: similar to XSLT output element

(controls XML and document type declarations)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Template data: Like XSLT, this is the HTML

and character data portion of the document

Scriptlet: Java code embedded in document

 While often used in older (non-XML) JSP pages,

we will avoid scriptlet use

 One use (shown here) is to add comments that

will not be output to the generated page

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Core tag library supports simple

programming

 if: conditional

 empty: true if variable is non-existent or undefined

 set: assignment

 application scope means that the variable is accessible

by other JSP documents, other users (sessions)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

JSP documents are not executed directly

 When a JSP document is first visited, Tomcat

1. Translates the JSP document to a servlet

2. Compiles the servlet

 The servlet is executed

Exceptions provide traceback information
for the servlet, not the JSP

 The servlets are stored under Tomcat work
directory

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

A JSP-generated servlet has a

_jspService() method rather than

doGet() or doPost()

 This method begins by automatically creating a

number of implicit object variables that can be

accessed by scriptlets

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

Translating template data:

Scriptlets are copied as-is to servlet:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

Scriptlets can be written to use the implicit
Java objects:

We will avoid this because:

 It defeats the separation purpose of JSP

 We can incorporate Java more cleanly using
JavaBeans technology and tag libraries

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

JSP elements translate to:

${visits} in template code translates to

out.write() of value of variable

Core tags (e.g., if) normally translate to a

method call

JSP default

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

A web application is a collection of resources

that are used together to implement some web-

based functionality

Resources include

 Components: servlets (including JSP-generated)

 Other resources: HTML documents, style sheets,

JavaScript, images, non-servlet Java classes, etc.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Sharing data between components of a web
application

 Tomcat creates one ServletContext object
per web application

 Call to getServletContext() method of a
servlet returns the associated
ServletContext

 ServletContext supports
setAttribute()/getAttribute()
methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Within Tomcat, all of the files of a simple

web app are placed in a directory under

webapps

 JSP documents can go in the directory itself

 “Hidden” files--such as servlet class files--go

under a WEB-INF subdirectory (more later)

Once the web app files are all installed, use

Tomcat Manager to deploy the app

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Deploying a web app consisting of a single JSP

document HelloCounter.jspx:

 Create directory webapps/HelloCounter

 Copy JSP doc to this directory

 Visit localhost:8080/manager/html

 Enter HelloCounter in “WAR or Directory URL”

box and click Deploy button

Web app is now at URL

localhost:8080/HelloCounter/

HelloCounter.jspx

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Manager app:

 Stop: web app becomes unavailable (404

returned)

 Start: web app becomes available again

 Reload: stop web app, restart with latest versions

of files (no need to restart server)

 Undeploy: stop app and remove all files!

 Always keep a copy of app outside webapps

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Set parameters of a web application by

 Creating a deployment descriptor (XML file)

 Saving the descriptor as WEB-INF/web.xml

Simple example web.xml:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Some examples:

 Setting an initial value accessible by

application.getInitParameter():

 Setting the length of time (in minutes) before a

session times out:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Mapping URLs to app components:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

There are four URL patterns (from high to

low precedence)

If no URL pattern matches, Tomcat treats

path as a relative file name

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Methods on request object for obtaining

path information:

 Example:

/HelloCounter/visitor/test.jsp

 getContextPath(): returns

/HelloCounter

 getServletPath(): returns /visitor

 getPathInfo(): returns /test.jsp

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

${visits+1} is an example of an EL

expression embedded in a JSP document

 ${…} is the syntax used in JSP documents to

mark the contained string as an EL expression

 An EL expression can occur

 In template data: evaluates to Java String

 As (part of) the value of certain JSP attributes:

evaluates to data type that depends on context

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

EL literals:

 true, false

 decimal integer, floating point, scientific-

notation numeric literals

 strings (single- or double-quoted)

 null

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

EL variable names: like Java

 Can contain letters, digits, _ , and $

 Must not begin with a digit

 Must not be reserved:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

EL operators:
 Relational: <, >, <=, >=, ==, !=

 Or equivalents: lt, gt, le, ge, eq, ne

 Logical: &&, ||, !
 Or equivalents: and, or, not

 Arithmetic:
 +, - (binary and unary), *

 /, % (or div, mod)

 empty: true if arg is null or empty
string/array/Map/Collection

 Conditional: ? :

 Array access: [] (or object notation)

 Parentheses for grouping

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

EL automatic type conversion

 Conversion for + is like other binary arithmetic

operators (+ does not string represent

concatenation)

 Otherwise similar to JavaScript

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

EL provides a number of implicit objects

Most of these objects are related to but not

the same as the JSP implicit objects

 JSP implicit objects cannot be accessed directly

by name in an EL expression, but can be

accessed indirectly as properties of one of the EL

implicit objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

pageContext: provides access to JSP implicit
objects

 Ex: EL expression pageContext.request is
reference to the JSP request object

page: JSP implicit object representing the servlet
itself

JSP objects page, request, session, and
application all have getAttribute() and
setAttribute() methods

 These objects store EL scoped variables (e.g., visits)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

Reference to non-implicit variable is resolved by

looking for an EL scoped variable in the order:

 page

 request

 session

 application

If not found, value is null

If found, value is Object

 JSP automatically casts this value as needed

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

All EL implicit objects except
pageContext implement Java Map
interface

In EL, can access Map using array or object
notation:

 Servlet: request.getParameter(“p1”)

 EL:
param[„p1‟]

or
param.p1

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

Array/List access:

If EL scoped variable aVar represents

 Java array; or

 java.util.List

and if EL scoped variable index can be cast to

integer

then can access elements of aVar by

 aVar[index]

 aVar.index

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

Three types of markup elements:

 Scripting

 Ex: scriptlet

 Inserts Java code into servlet

 Directive

 Ex: directive.page

 Instructs JSP translator

 Action

 Standard: provided by JSP itself

 Custom: provided by a tag library such as JSTL

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

Two JSPX directives

 directive.page; some attributes:

 contentType

 session: false to turn off use of session object

 errorPage: component that will generate response
if an exception is thrown

 isErrorPage: true to access EL implicit
exception object

 directive.include: import well-formed
XML

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

Common variables:

 var

 Name of a scoped variable that is assigned to by the

action

 Must be a string literal, not an EL expression

 scope

 Specifies scope of scoped variable as one of the

literals page, request, session, or

application

 page default scope, unless otherwise specified

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

set action

 Setting (and creating) a scoped variable

 Setting/creating an element of Map

 Actually, this fails at run time in JWSDP 1.3 (which

treats EL implicit object Maps as read-only)

Map

Key

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

remove action

 Only attributes are var and scope

 Removes reference to the specified scoped

variable from the scope object

<c:remove var=“visits”

scope=“application” />

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

out action

 Normally used to write a string to the out JSP

implicit object

 Automatically escapes all five XML special

characters

 If value is null output is empty string

 Override by declaring default attribute

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

url action

 value attribute value is a URL to be written to

the out JSP implicit object

 URL’s beginning with / are assumed relative to

context path

 param elements can be used to define

parameters that will be URL encoded

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

Alternative to the value attribute (set and

param elements)

 If element has content, this is processed to

produce a String used for value

 Even out element will produce string, not write

to the out object
Assigns value of variable

messy (XML escaped) to

scoped variable clean

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

if action

 General form includes scoped variable to receive

test value

 The element can be empty if var is present

Assigned Boolean value

of test attribute

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

choose action

<c:choose>

<c:when test=“${visits eq 1}”>

Hi!</c:when>

<c:when test=“${visits eq 2}”>

Welcome back!</c:when>

<c:otherwise>

You‟re a regular!</c:otherwise>

</c:choose>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

forEach action

 Used to increment a variable:

 Used to iterate over a data structure:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

forEach action

 Can iterate over array, Map, Collection,

Iterator, Enumeration

 Elements of Map are Map.Entry, which

support key and value EL properties:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

JSTL Core actions are designed to be used

for simple, presentation-oriented programming

tasks

More sophisticated programming tasks

should still be performed with a language such

as Java

JavaBeans technology allows a JSP

document to call Java methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

Example

Requirements: JavaBeans class must

 Be public and not abstract

 Contain at least one simple property design pattern

method (defined later)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

Using a JavaBeans class in JSP

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

Using a JavaBeans class as shown:

 Class must have a default (no-argument)

constructor to be instantiated by useBean

 Automatically supplied by Java in this example

 Class should belong to a package (avoids need

for an import)

 This class would go in WEB-INF/classes/my/

directory

Instance of a JavaBeans class is a bean

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

Simple property design patterns

 Two types: getter and setter

 Both require that the method be public

 getter:

 no arguments

 returns a value

 name begins with get (or is, if return type is boolean)
followed by upper case letter

 setter:

 one argument (same type as setter return value)

 void

 name begins with set followed by upper case letter

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

EL calls simple property design method in

response to access of bean property:

 Attempt to read property generates call to

associated get/is method (or error if none

exists)

 Attempt to assign value to property generates

call to associated set method (or error)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

Example setter method

Calling setter from JSP

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

Simple property design pattern methods
associate bean properties with beans

 Name of bean property obtained by removing
get/is/set method prefix and following the rule:

 If remaining name begins with two or more upper case
letters, bean property name is remaining name:
setAValue() AValue

 If remaining name begins with a single upper case
letter, bean property name is remaining name with this
letter converted to lower case:
getWelcome() welcome

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Instantiating Beans

Beans can be instantiated by a servlet and

made available to JSP via scope objects

 Servlet

 JSP: no need for useBean action

${sessionScope.testBean.welcome}

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Instantiating Beans

useBean only instantiates a bean if one

does not already exist, can optionally perform

initialization

Evaluated only if useBean instantiates TestBean

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Using Beans

Example:

mortgage

calculation

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Using Beans

Call to

getPayment()

method

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Java API Bean Properties

Many Java API methods conform to simple

property design patterns

Can usually treat as bean properties

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Tag Libraries

Wouldn’t it be nicer to write the mortgage

app as

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Tag Libraries

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Tag Libraries

Place custom tag definition in a tag file

having the name of the custom action

 mortgage.tagx

Place tag file in a tag library (e.g., directory

containing tag files)

 /WEB-INF/tags

Add namespace declaration for tag library

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

Many web apps are based on the Model-

View-Controller (MVC) architecture pattern

Controller

Model Components

View

HTTP

request

HTTP

response

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

Typical JSP implementation of MVC

Controller

(Java servlet)

Model Components

(beans, DBMS)

View

(JSP document)

HTTP

request

HTTP

response

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

Forwarding an HTTP request from a servlet

to another component:

 By URL

 By name

Ex: /HelloCounter.jspx

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

How does the controller know which

component to forward to?

 getPathInfo() value of URL’s can be used

 Example:

 servlet mapping pattern in web.xml:

 URL ends with:

 getPathInfo() returns:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

JSP include action

Execute specified

component and

include its output

in place of the

include element

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

Adding parameters to the request object

seen by an included component:

request object seen by navbar.jspx will include

parameter named currentPage with value home

