
CSI 3140 – Laboratory 5

JavaScript

Exercise 1: getting JavaScript to run in your browser

Using a text editor (like notepad) type up the example HiLow.js page 198 of the book and

run it in your browser. Bring up your Browser JavaScript console and use it as needed to

ensure that your code actually runs. Modify the code so that it is possible to exit without

finding the solution!

Exercise 2: declaring your variables

We have seen that you can avoid variable declaration using JavaScript. It is however bad

practice, as it is confusing and error prone. In some (rare) cases, it even makes a

difference! For example, declaring variable may help with optimization and therefore

provide more efficient code. It may also help with exceptions. See for yourself with

exercise 4.14, page 242 (implement and test the code).

Exercise 3: a first program

Do exercise 4.22 page 245 of the book.

Exercise 4: more programming

In September of 2003, the following information started to be send by email throughout

the internet:

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it

deosn't mttaer in waht oredr the ltteers in a wrod are, the

olny iprmoetnt tihng is taht the frist and lsat ltteer be

at the rghit pclae. The rset can be a toatl mses and you

can sitll raed it wouthit porbelm. Tihs is bcuseae the

huamn mnid deos not raed ervey lteter by istlef, but the

wrod as a wlohe.

This translates into: According to a researcher (sic) at Cambridge University, it doesn't

matter in what order the letters in a word are, the only important thing is that the first

and last letter be at the right place. The rest can be a total mess and you can still read it

without problem. This is because the human mind does not read every letter by itself but

the word as a whole.

Of course, like almost every email chain, it turned out to not be true. But let see for

ourselves:

Question 1

Create a JavaScript function that takes a string as input and splits this string word by

word. Create a small html page that prompts the user for some input and shows the result

of your function in an alert box.

Hint: look at the method split from the object String.

Question 2

Create a JavaScript function that takes a string as input and randomly "shuffles" all the

letter of that string. Create a small html page that prompts the user for some input and

shows the result of your function in an alert box.

Hint: look at the method random from the object Math. It might be easier to first put the

string in an Array.

Question 3

Use the functions you have created to write a JavaScript program that prompts he user for

some input and then displays back this input with each word having its first and last letter

at the right place, and the other letters of the word randomly shuffled around.

Once you are satisfied that your program is working, go to some web page (e.g. select

one of the stories from google news, http://news.google.com/), copy one paragraph, past

it into your program and see how easy it is to read the result.

Exercise 5: objects and regular expressions

Create an Object that has five methods
1
:

 Object.normalize(inputString)

inputString is a string made of space separated words. “Normalize” returns a string that

contains the same words, but with no leading spaces, no trailing spaces, and exactly one

space between words.

Only use regular expressions and the String methods “replace” and “match” to implement

“normalize”.

 Object.hasString(inputString, testedString)

Returns true if and only if “inputString” contains “testedString” as a sub-word (not as a

substring! That is, testedString can be preceded by a space or be at the beginning of

inputString only, and can be followed by a space or be at the end of inputString only)

1
 Note that you can actually achieve the same functionality more directly, e.g. by using some of the more

advanced String methods. Also, in reality, nothing calls for an object in this case, a simple function would

do. This is done this way for the sake of the exercise.

 Object.add(inputString, addedString)

Adds “addedString” to “inputString”, as a sub-word, if it doesn’t have it already

 Object.remove(inputString, removedString)

Removes every instance of “removedString” as a sub-word of “inputString”

 Object.toggle(inputString, firstString, secondString)

If “inputstring” has instances of “firstString” as a sub-word, then these instances are

replaced by a (unique) instance of the sub-word “secondString”. Else, if “inputstring” has

instances of “secondString” as a sub-word, then these instances are replaced by a

(unique) instance of the sub-word “firstString”.

Your object must be reasonably resistant, and should handle gracefully various cases

(null/empty parameters etc…). Only use regular expressions and the String methods

“replace” and “match” to implement most of the methods.

