
Chapter 4
Client-Side Programming:
the JavaScript Language

CSI 3140

WWW Structures, Techniques and Standards

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript History and
Versions

JavaScript was introduced as part of the

Netscape 2.0 browser

Microsoft soon released its own version

called JScript

ECMA developed a standard language

known as ECMAScript

ECMAScript Edition 3 is widely supported

and is what we will call “JavaScript”

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Introduction

Let’s write a “Hello World!” JavaScript
program

Problem: the JavaScript language itself has
no input/output statements(!)

Solution: Most browsers provide de facto
standard I/O methods

 alert: pops up alert box containing text

 prompt: pops up window where user can enter
text

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Introduction

File JSHelloWorld.js:

HTML document executing this code:

script element used

to load and execute

JavaScript code

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Introduction

Web page and alert box generated by

JSHelloWorld.html document and

JSHelloWorld.js code:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Introduction

Prompt window example:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Properties

Note that JavaScript code did not need to be

compiled

 JavaScript is an interpreted language

 Portion of browser software that reads and

executes JavaScript is an interpreter

Interpreted vs. compiled languages:

 Advantage: simplicity

 Disadvantage: efficiency

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Properties

JavaScript is a scripting language: designed
to be executed within a larger software
environment

JavaScript can be run within a variety of
environments:

 Web browsers (our focus in next chapter)

 Web servers

 Application containers (general-purpose
programming)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Properties

Components of a JavaScript implementation:

 Scripting engine: interpreter plus required

ECMAScript functionality (core library)

 Hosting environment: functionality specific to

environment

 Example: browsers provide alert and prompt

 All hosting environment functionality provided via

objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Properties

All data in JavaScript is an object or a

property of an object

Types of JavaScript objects

 Native: provided by scripting engine

 If automatically constructed before program

execution, known as a built-in object (ex: window)

 Host: provided by host environment

 alert and prompt are host objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

Writing JavaScript code

 Any text editor (e.g., Notepad, Emacs)

 Specialized software (e.g., MS Visual InterDev)

Executing JavaScript

 Load into browser (need HTML document)

 Browser detects syntax and run-time errors

 Mozilla: JavaScript console lists errors

 IE6: Exclamation icon and pop-up window

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

Mozilla JavaScript console (Tools | Web

Development | JavaScript Console):

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

IE6 error window:

Error indicator;

double-clicking icon

opens error window

Click to see

error messages

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

Firefox (2.0 and up): the JavaScript console

has been renamed “Error Console”

(Tools|Error Console) and shows JavaScript

errors, CSS errors etc…

Enhancements available as extensions (e.g.

Console2, firebug)

Chrome (4) has excellent dev support

(developer|JavaScript Console)

IE8: Tools|Developer tools

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Developing JavaScript
Software

Debugging

 Apply generic techniques: desk check, add debug

output (alert’s)

 Use specialized JavaScript debuggers: later

Re-executing

 Overwrite .js file

 Reload (Mozilla)/Refresh (IE) HTML document

that loads the file

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Notice that there is no main() function/method

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Comments like Java/C++ (/* */ also allowed)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax
Variable declarations:

- Not required

- Data type not specified

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Semi-colons are usually

not required, but always

allowed at statement end

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Arithmetic operators same as Java/C++

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

String concatenation operator

as well as addition

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Arguments can be any expressions

Argument lists are comma-separated

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Object dot notation for method calls as in Java/C++

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Many control constructs and use of

{ } identical to Java/C++

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Most relational operators syntactically

same as Java/C++

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Basic JavaScript Syntax

Automatic type conversion:

guess is String,

thinkingOf is Number

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Type of a variable is dynamic: depends on the type
of data it contains

JavaScript has six data types:

 Number

 String

 Boolean (values true and false)

 Object

 Null (only value of this type is null)

 Undefined (value of newly created variable)

Primitive data types: all but Object

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

typeof operator returns string related to

data type

 Syntax: typeof expression

Example:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Common automatic type conversions:

 Compare String and Number: String value

converted to Number

 Condition of if or while converted to Boolean

 Array accessor (e.g., 3 in records[3])

converted to String

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Special Number values (“Not a Number” and number too large to represent)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Syntax rules for names (identifiers):

 Must begin with letter or underscore (_)

 Must contain only letters, underscores, and digits

(or certain other characters)

 Must not be a reserved word

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Variables and Data Types

A variable will automatically be created if a

value is assigned to an undeclared identifier:

Recommendation: declare all variables

 Facilitates maintenance

 Avoids certain exceptions

var is not

required

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

Expression statement: any statement that

consists entirely of an expression

 Expression: code that represents a value

Block statement: one or more statements

enclosed in { } braces

Keyword statement: statement beginning

with a keyword, e.g., var or if

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

var syntax:

Java-like keyword statements:

Comma-separated declaration list with

optional initializers

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

JavaScript

keyword

statements

are very similar

to Java with

small exceptions

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Statements

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators

Operators are used to create compound

expressions from simpler expressions

Operators can be classified according to the

number of operands involved:

 Unary: one operand (e.g., typeof i)

 Prefix or postfix (e.g., ++i or i++)

 Binary: two operands (e.g., x + y)

 Ternary: three operands (conditional operator)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators

Associativity:

 Assignment, conditional, and prefix unary

operators are right associative: equal-precedence

operators are evaluated right-to-left:

 Other operators are left associative: equal-

precedence operators are evaluated left-to-right

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators:
Automatic Type Conversion

Binary operators +, -, *, /, % convert both

operands to Number

 Exception: If one of operands of + is String then

the other is converted to String

Relational operators <, >, <=, >= convert

both operands to Number

 Exception: If both operands are String, no

conversion is performed and lexicographic string

comparison is performed

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators:
Automatic Type Conversion

Operators ==, != convert both operands to Number

 Exception: If both operands are String, no conversion is

performed (lex. comparison)

 Exception: values of Undefined and Null are equal(!)

 Exception: instance of Date built-in “class” is converted

to String (and host object conversion is implementation

dependent)

 Exception: two Objects are equal only if they are

references to the same object

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Operators:
Automatic Type Conversion

Operators ===, !== are strict:

 Two operands are === only if they are of the
same type and have the same value

 “Same value” for objects means that the
operands are references to the same object

Unary +, - convert their operand to Number

Logical &&, ||, ! convert their operands to
Boolean

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Numbers

Syntactic representations of Number

 Integer (42) and decimal (42.0)

 Scientific notation (-12.4e12)

 Hexadecimal (0xfa0)

Internal representation

 Approximately 16 digits of precision

 Approximate range of magnitudes

 Smallest: 10-323

 Largest: 10308 (Infinity if literal is larger)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Strings

String literals can be single- or double-

quoted

Common escape characters within Strings

 \n newline

 \” escaped double quote (also \’ for single)

 \\ escaped backslash

 \uxxxx arbitrary Unicode 16-bit code point

(x’s are four hex digits)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function declaration syntax

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function declaration syntax

Declaration

always begins

with keyword

function,

no return type

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function declaration syntax
Identifier representing

function’s name

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function declaration syntax

Formal parameter list

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function declaration syntax

One or more statements representing

function body

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call syntax

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call syntax

Function call is an expression, can

be used on right-hand side of assignments,

as expression statement, etc.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call syntax

Function name

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call syntax

Argument list

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call semantics:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call semantics:

Argument value(s)

associated with corresponding

formal parameters

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call semantics:

Expression(s) in body

evaluated as if formal

parameters are variables

initialized by argument

values

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call semantics:

If final statement executed

is return-value, then value of

its expression becomes value

of the function call

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call semantics:

Value of function call is then used

in larger expression containing

function call.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Function call semantics details:

 Arguments:

 May be expressions:

 Object’s effectively passed by reference

 Formal parameters:

 May be assigned values, argument is not affected

 Return value:

 If last statement executed is not return-value, then
returned value is of type Undefined

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Number mismatch between argument list and

formal parameter list:

 More arguments: excess ignored

 Fewer arguments: remaining parameters are

Undefined

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Local vs. global variables
Global variable: declared outside any function

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Local vs. global variables

Local

variable

declared

within

a function

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Local vs. global variables

Local

declaration

shadows

corresponding

global

declaration
Output is 6

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Local vs. global variables

Output is 7

In browsers,

global

variables

(and functions)

are stored as properties

of the window built-in object.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Recursive functions

 Recursion (function calling itself, either directly

or indirectly) is supported

 C++ static variables are not supported

 Order of declaration of mutually recursive

functions is unimportant (no need for prototypes

as in C++)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Functions

Explicit type conversion supplied by built-in

functions

 Boolean(), String(), Number()

 Each takes a single argument, returns value

representing argument converted according to

type-conversion rules given earlier

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Introduction

An object is a set of properties

A property consists of a unique (within an

object) name with an associated value

The type of a property depends on the type of

its value and can vary dynamically
prop is Boolean

prop is now String

prop is now Number

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Introduction

There are no classes in JavaScript

Instead, properties can be created and deleted

dynamically

Create an object o1

Create property testing

Delete testing property

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Creation

Objects are created using new expression

A constructor is a function

 When called via new expression, a new empty

Object is created and passed to the constructor

along with the argument values

 Constructor performs initialization on object

 Can add properties and methods to object

 Can add object to an inheritance hierarchy

Constructor and argument list

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Creation

The Object() built-in constructor

 Does not add any properties or methods directly

to the object

 Adds object to hierarchy that defines default

toString() and valueOf() methods (used

for conversions to String and Number, resp.)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Property Creation

Assignment to a non-existent (even if

inherited) property name creates the property:

Object initializer notation can be used to

create an object (using Object()

constructor) and one or more properties in a

single statement:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Enumerating Properties

Special form of for statement used to iterate

through all properties of an object:

Produces three

alert boxes;

order of names

is implementation-dependent.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Accessing Property Values

The JavaScript object dot notation is actually

shorthand for a more general associative array

notation in which Strings are array indices:

Expressions can supply property names:

Converted to String

if necessary

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Value of Object is reference to object:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Value of Object is reference to object:

o2 is another

name for o1

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Value of Object is reference to object:

o1 is

changed

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Value of Object is reference to object:

Output is Hello World!

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Object argument values are references

...}

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Object argument values are references

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Object argument values are references

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Object argument values are references

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Values

Object argument values are references

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

JavaScript functions are stored as values of

type Object

A function declaration creates a function

value and stores it in a variable (property of

window) having the same name as the

function

A method is an object property for which the

value is a function

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Creates global variable named leaf with function value

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Creates isLeaf() method that is

defined by leaf() function

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Refers to object that “owns” method when

leaf() is called as a method

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Creates two objects each with

method isLeaf()

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Calls to isLeaf() method

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Original version: leaf() can be called as

function, but we only want a method

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Alternative:

Function expression syntactically

the same as function declaration but

does not produce a global variable.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Methods

Alternative

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

User-defined constructor is just a function

called using new expression:

Object created using a constructor is known

as an instance of the constructor

Constructor

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

Original

function

Function

intended

to be used

as constructor

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

Object is

constructed

automatically

by new

expression

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

Object

referenced

using this

keyword

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

No need

to return

initialized

object

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Object Constructors

Object created using a constructor is known

as an instance of the constructor

instanceof operator can be used to test

this relationship:

Instances of BTNode

Evaluates to true

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

The Array built-in object can be used to

construct objects with special properties and

that inherit various methods

ary1

length (0)

toString()

sort()

shift()

…

Properties

Inherited

methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

The Array built-in object can be used to

construct objects with special properties and

that inherit various methods

ary2

length (3)

“0” (4)

“1” (true)

“2” (“OK”)

toString()

…

Elements

of array

Accessing array elements:

ary2[1]

ary2[“1”]

ary2.1

Must follow identifier

syntax rules

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

The Array constructor is indirectly called if

an array initializer is used

Array initializiers can be used to create

multidimensional arrays
ttt[1][2]

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Changing the number of elements:

ary2

length (4)

“0” (4)

“1” (true)

“2” (“OK”)

“3” (-12.6)

toString()

…

Creates a new element dynamically,

increases value of length

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Changing the number of elements:

ary2

length (2)

“0” (4)

“1” (true)

toString()

…

Decreasing length can delete elements

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Value of length is not necessarily the same

as the actual number of elements

var ary4 = new Array(200);

ary4

length (200)

toString()

sort()

shift()

…

Calling constructor with single argument

sets length, does not create elements

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Argument to sort

is a function

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Return negative if first value should

come before second after sorting

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Add element with value 2.5 at

index 2, shift existing elements

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Remove 3 elements starting

at index 5

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

push() adds an element to the end of the

array

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

pop() deletes and returns last

element of the array

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Arrays

Use shift() instead to implement queue

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

The global object

 Named window in browsers

 Has properties representing all global variables

 Other built-in objects are also properties of the

global object

 Ex: initial value of window.Array is Array object

 Has some other useful properties

 Ex: window.Infinity represents Number value

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

The global object and variable resolution:

This is why we can refer to built-in objects

(Object, Array, etc.) without prefixing

with window.

i = 42; What does i refer to?

1. Search for local variable or formal parameter

named i

2. If none found, see if global object (window)

has property named i

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

String(), Boolean(), and Number()

built-in functions can be called as

constructors, created “wrapped” Objects:

Instances inherit valueOf() method that

returns wrapped value of specified type:

Output is “number”

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

Other methods inherited by Number

instances:

Outputs

5.63

5.63e+0

101.101

Base 2

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

Properties provided by Number built-in

object:

 Number.MIN_VALUE: smallest (absolute

value) possible JavaScript Number value

 Number.MAX_VALUE: largest possible

JavaScript Number value

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

Instances of String have a length

property (number of characters)

JavaScript automatically wraps a primitive

value of type Number or String if the value is

used as an object:

Output is “Str”

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

The Date() built-in constructor can be used to

create Date instances that represent the current date

and time

Often used to display local date and/or time in Web

pages

Other methods: toLocaleDateString() ,

toLocaleTimeString(), etc.

var now = new Date();

window.alert(“Current date and time: “

+ now.toLocaleString());

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

valueOf() method inherited by Date

instances returns integer representing number

of milliseconds since midnight 1/1/1970

Automatic type conversion allows Date

instances to be treated as Numbers:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

Math object has methods for performing

standard mathematical calculations:

Also has properties with approximate values

for standard mathematical quantities, e.g., e (

Math.E) and π (Math.PI)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Built-in Objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

A regular expression is a particular

representation of a set of strings

 Ex: JavaScript regular expression representing

the set of syntactically-valid US telephone area

codes (three-digit numbers):

 \d represents the set {“0”, “1”, …, “9”}

 Concatenated regular expressions represent the

“concatenation” (Cartesian product) of their sets

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript

Variable containing string to be tested

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript
Regular expression as String (must escape \)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript
Built-in constructor

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript

Method inherited by RegExp instances:

returns true if the argument contains a

substring in the set of strings represented by

the regular expression

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript
Represents beginning of string Represents end of string

This expression matches only strings with

exactly three digits (no other characters,

even white space)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Using regular expressions in JavaScript

Alternate syntax:

Represents all strings that begin

with three digits

Regular expression literal.

Do not escape \.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Simplest regular expression is any character

that is not a special character:

 Ex: _ is a regular expression representing

{“_”}

Backslash-escaped special character is also a

regular expression

 Ex: \$ represents {“$”}

JavaScript Regular Expressions

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Special character . (dot) represents any

character except a line terminator

Several escape codes are regular expressions

representing sets of chars:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Three types of operations can be used to

combine simple regular expressions into more

complex expressions:

 Concatenation

 Union (|)

 Kleene star (*)

XML DTD content specification syntax

based in part on regular expressions

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Concatenation

 Example:

String consisting entirely of four characters:

 Digit followed by

 A . followed by

 A single space followed by

 Any “word” character

 Quantifier shorthand syntax for concatenation:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Union

 Ex:

Union of set of strings represented by regular
expressions

 Set of single-character strings that are either a digit or
a space character

Character class: shorthand for union of one
or more ranges of characters

 Ex: set of lower case letters

 Ex: the \w escape code class

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Unions of concatenations

 Note that concatenation has higher precedence

than union

Optional regular expression

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaScript Regular Expressions

Kleene star

 Ex: any number of digits (including none)

 Ex:

 Strings consisting of only “word” characters

 String must contain both a digit and a letter (in either

order)

