Highly dynamic networks rarely offer end-to-end connectivity at a given time. Connectivity in these networks can be established over time and space, based on temporal analogues of multi-hop paths (also called journeys). In a seminal work, Bui-Xuan, Ferreira, and Jarry (2003) proposed a collection of centralized algorithms to compute three types of optimal journeys in these networks – namely, shortest (min hop), fastest (min duration), and foremost (earliest arrival) journeys – given full prediction of the network evolution. We study the distributed counterparts of these problems, i.e. shortest, fastest, and foremost broadcast with termination detection (TDB), with minimal knowledge on the topology. We show that the feasibility of each variant requires distinct features on the evolution, through identifying three classes of dynamic graphs wherein the variants become gradually feasible: graphs in which the re-appearance of edges is recurrent (class R), bounded-recurrent (class B), or periodic (class P), together with specific knowledge that are respectively n (the number of nodes), Δ (a bound on the recurrence time), and p (the period). To raise ambiguity, we do not require that all pairs of nodes get in contact – only a subset of them that makes the footprint of the graph connected.

Our results, together with the strict inclusion between P, B, and R, implies a feasibility order among the three variants of the problem, i.e. TDB[foremost] requires weaker assumptions on the topology dynamics than TDB[shortest], which itself requires less than TDB[fastest]. Reversely, these differences in feasibility imply that the computational powers of R_n, B_Δ, and P_p also form a strict hierarchy.

Keywords: dynamic networks, distributed algorithm, time-varying graphs, delay-tolerant broadcast, recurrent edges.

1. Introduction

Dynamic networks are widely addressed in distributed computing. Contexts of interest are as varied as fault-tolerance, interaction scheduling, dynamic membership, planned mobility, or unpredictable mobility. The recent emergence of scenarios where entities are truly mobile and can communicate without infrastructure (e.g. vehicles, satellites, robots, or pedestrian smartphones) brought to the fore the most versatile of these environments. In these highly dynamic networks, changes are not anomalies but rather integral part of the nature of the system.

The need to categorize and understand highly dynamic networks led the engineering community to design a variety of mobility models, each of which captures a particular context by means of rules that determine how the nodes move and communicate (see e.g. [23]).
A popular example includes the well-known random waypoint model [5]. The main interest of these models is to be able to reproduce experiments and compare different solutions on a relatively fair basis, thereby providing a common ground for the engineering community to solve practical challenges in highly dynamic networks, e.g. routing and broadcasting [8, 21, 25, 26, 28, 31, 32].

In the same way as mobility models enable to federate practical investigations in highly dynamic networks, logical properties on the graph dynamics, that is, classes of dynamic graphs, have the potential to guide a more formal exploration of their analytical aspects. A number of special classes were recently identified, for example graphs in which the nodes interact infinitely often (e.g., uniform random scheduler for population protocols [1, 2, 12]); graphs whose dynamics is unrestricted but remains connected at any instant [29, 16]; graphs in which there exists a stable connected spanning subgraph in any T-time window (a.k.a. T-interval connectivity) [27, 22]; graphs whose edges appear or disappear with given probabilities [13, 4, 14, 30]; graphs that have a stable root component [6]; graphs whose schedule is periodic [10, 18, 19, 20, 24] or guarantees minimal reachability properties [9]. These classes (among others) were organized into a hierarchy in [11].

In this paper we are interested in studying specific relationship between some of these classes, namely three subclasses of those networks called delay-tolerant networks (DTNs), in which instant connectivity is never guaranteed, but still connectivity can be achieved over time and space (see e.g. [3]). These classes are:

- Class R of all graphs whose edges cannot disappear forever (recurrent edges). That is, if an edge appears once and disappears, then it will eventually re-appear at some unknown (but finite) date. It is not required that all pairs of nodes share an edge, but only that the footprint of all edges forms a connected graph (otherwise, even temporal connectivity is not guaranteed). This class corresponds to Class 6 in [11].
- Class B (for bounded-recurrent edges) consisting of those graphs with recurrent edges in which the recurrence time cannot exceed a given duration Δ. And again, the footprint is connected. This class corresponds to Class 7 in [11].
- Class P (for periodic edges) consisting of those graphs in which all topological events (appearance or disappearance) repeat identically modulo some period p. And again, the footprint is connected. This class corresponds to Class 8 in [11].

As far as inclusion is concerned, it clearly holds that $P \subset B \subset R$, but what about the computational relationship between these classes? Considering different types of knowledge, namely the number n of nodes in the network, a bound Δ on the recurrence time, and (any multiple of) the period p, we look at the relationship between $\mathcal{P}(R_n)$, $\mathcal{P}(B_\Delta)$, and $\mathcal{P}(P_p)$, where $\mathcal{P}(C_k)$ is the set of problems one can solve in class C with knowledge k.

The investigation is carried out by studying a fundamental problem in distributed computing: broadcast with termination detection at the emitter (or TDB). This problem can have at least three distinct definitions in highly dynamic networks: TDB[foremost], in which the date of delivery is minimized at every node; TDB[shortest], where the num-
ber of hops used by the broadcast is minimized relative to every node; and TDB[\textit{fastest}]
where the overall duration of the broadcast is minimized (however late the departure be).
These three metrics were considered in \cite{7} as part of an offline problem where, given a
complete schedule of the network, one has to compute all shortest, fastest, and foremost
journeys (temporal paths) from a given node.

\textbf{Our contribution}

In this paper we examine the feasibility and reusability of the solution (and to some extent,
the complexity) of TDB[\textit{foremost}], TDB[\textit{shortest}], and TDB[\textit{fastest}] in \mathcal{R} and \mathcal{B}
with knowledge \emptyset, \(n\), or \(\Delta\). We additionally draw some observations from external results in \mathcal{P}
with knowledge \(p\) \cite{10}, that complete our general picture of feasibility and reusability of
broadcast in the three classes. Here is a short summary of the main results.

Feasibility: We first show that none of these problems are solvable in any of the classes
unles additional knowledge is considered. We prove constructively that knowing \(n\) makes
it possible to solve TDB[\textit{foremost}] in \mathcal{R}, but this is not sufficient to solve TDB[\textit{shortest}]
nor TDB[\textit{fastest}], even in \mathcal{B}. TDB[\textit{shortest}] becomes in turn feasible in \mathcal{B} if \(\Delta\) is known,
but this context is not sufficient to solve TDB[\textit{fastest}]; this later problem being solvable
in \mathcal{P} knowing \(p\) \cite{10}. Put together, these results allow us to show that

\[\mathcal{P}(\mathcal{R}_n) \subseteq \mathcal{P}(\mathcal{B}_\Delta) \subseteq \mathcal{P}(\mathcal{P}_p) \]

that is, the computational relationships between these three contexts form a \textit{strict} hierarchy.

Let us define a binary relation \(\preceq_{\text{feasibility}}\) over problems, such that for two problems
\(P_1\) and \(P_2\), \(P_1 \preceq_{\text{feasibility}} P_2\) implies that for some class of TVG \(C\) and knowledge \(k\)
we have \(P_1 \in \mathcal{P}(C_k)\) while \(P_2 \notin \mathcal{P}(C_k)\). This relation induces a partial order on the
\textit{feasibility} of problems with respect to topological changes. Our results imply that

\[\text{TDB[\textit{foremost}] \preceq_{\text{feasibility}} TDB[\textit{shortest}] \preceq_{\text{feasibility}} TDB[\textit{fastest}]} \]

Reusability: Regarding the possibility to reuse a solution, that is, a same broadcast tree,
over several broadcasts, we find the intriguing fact that reusability in TDB[\textit{shortest}] is
easier than that of TDB[\textit{foremost}]. Precisely, when TDB[\textit{shortest}] becomes feasible in \mathcal{B}, it enables at once reusability of the broadcast trees, whereas TDB[\textit{foremost}], although
it was already feasible in \mathcal{R}, does not enable reusability until in \mathcal{P} \cite{10}. Using a similar
definition as for feasibility, we consider the relation \(\preceq_{\text{reusability}}\) that induces a partial order
over problems with respect to the reusability of a solution. Our results imply that

\[\text{TDB[\textit{shortest}] \preceq_{\text{reusability}} TDB[\textit{foremost}]} \]

Whether reusability is more or less difficult in TDB[\textit{fastest}] than in TDB[\textit{foremost}]
is an open question, both of them being impossible in \mathcal{B}_\Delta and possible in \mathcal{P}_p. Our results
on feasibility and reusability are summarized in Table 1.
Table 1. Feasibility and reusability of TDB in different classes of dynamic networks (with associated knowledge).

<table>
<thead>
<tr>
<th>Metric</th>
<th>Class</th>
<th>Knowledge</th>
<th>Feasibility</th>
<th>Reusability</th>
<th>Result from</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foremost</td>
<td>R</td>
<td>\emptyset</td>
<td>no</td>
<td>–</td>
<td>this paper</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>n</td>
<td>yes</td>
<td>no</td>
<td>this paper</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Δ</td>
<td>yes</td>
<td>no</td>
<td>this paper</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>p</td>
<td>yes</td>
<td>yes</td>
<td>[10]</td>
</tr>
<tr>
<td>Shortest</td>
<td>R</td>
<td>\emptyset</td>
<td>no</td>
<td>–</td>
<td>this paper</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>n</td>
<td>no</td>
<td>–</td>
<td>this paper</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Δ</td>
<td>yes</td>
<td>yes</td>
<td>this paper</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>p</td>
<td>yes</td>
<td>yes</td>
<td>(same result)</td>
</tr>
<tr>
<td>Fastest</td>
<td>R</td>
<td>\emptyset</td>
<td>no</td>
<td>–</td>
<td>this paper</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>n</td>
<td>no</td>
<td>–</td>
<td>this paper</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Δ</td>
<td>no</td>
<td>–</td>
<td>this paper</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>p</td>
<td>yes</td>
<td>yes</td>
<td>[10]</td>
</tr>
</tbody>
</table>

Table 2. Complexity of TDB for different classes of dynamic networks and associated knowledge. (The * indicates that the emitter terminates implicitly, even in the first run.)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Class</th>
<th>Knowledge</th>
<th>Time</th>
<th>Info. msgs (1st run)</th>
<th>Control msgs (1st run)</th>
<th>Info. msgs (next runs)</th>
<th>Control msgs (next runs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foremost</td>
<td>R</td>
<td>n</td>
<td>unbounded</td>
<td>$O(m)$</td>
<td>$O(n^2)$</td>
<td>$O(m)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Δ</td>
<td>$O(n\Delta)$</td>
<td>$O(m)$</td>
<td>$O(n)$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$n & \Delta$</td>
<td>$O(n\Delta)^*$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Shortest</td>
<td>B</td>
<td>Δ</td>
<td>$O(n\Delta)$</td>
<td>$O(m)$</td>
<td>$O(n) : 2n - 2$</td>
<td>$O(n)$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$n & \Delta$</td>
<td>$O(n\Delta)$</td>
<td>$O(m)$</td>
<td>$O(n) : n - 1$</td>
<td>$O(n)$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$n & \Delta$</td>
<td>$O(n\Delta)^*$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Complexity: Although complexity is not the main focus here, we characterize the time complexity and message complexity of our algorithms and observe some interesting facts. For instance, the message complexity of our algorithm to TDB [foremost] is lower knowing Δ than knowing n, and even lower if both are known. These results are summarized in Table 2. Note that TDB involves two processes: the actual dissemination of information messages, and the exchange of typically smaller control messages (e.g. for termination detection), both of which are separately analyzed. Regarding time complexity, we observe that for all our algorithms (except those which terminate implicitly), the termination detection phase takes the same order of time as the dissemination phase. Thus, Table 2 does not distinguish both phases.
2. Model and Basic Properties

2.1. Definitions and Terminology

Consider a system composed of a finite set of \(n \) entities \(V \) (or nodes) that interact with each other over a (possibly infinite) time span \(\mathcal{T} \subseteq \mathbb{T} \) called lifetime of the system, where \(\mathbb{T} \) is the temporal domain (typically, \(\mathbb{N} \) or \(\mathbb{R}^+ \) for discrete and continuous-time systems, respectively). In this paper we consider a continuous-time setting with \(\mathbb{T} = \mathbb{R}^+ \).

Following [11], we describe the network as a time-varying graph (TVG, for short) \(G = (V, E, \mathcal{T}, \rho, \zeta) \), where \(E \subseteq V \times V \) is the set of \(m \) intermittently available undirected edges such that \((u, v) \in E \) if \(u \) and \(v \) have at least one contact over \(\mathcal{T} \), \(\rho : E \times \mathcal{T} \rightarrow \{0, 1\} \) (presence function) indicates whether a given edge is present at a given time, and \(\zeta : E \times \mathcal{T} \rightarrow \mathbb{T} \) (latency function), indicates the time it takes to cross a given edge (i.e., send a message) if starting at a given time. In this paper, we assume \(\zeta \) to be constant over all edges and dates, and call it the crossing delay. Thus we use the shorthand notations \(\mathcal{G} = (V, E, \mathcal{T}, \rho) \). Finally, the (static) graph formed by the first two elements of \(\mathcal{G} \), that is \(V \) and \(E \) is the footprint of \(\mathcal{G} \) (also called underlying graph or interaction graph).

This formalism essentially encompasses that of evolving graphs [17], where \(\mathcal{G} \) is represented as a sequence of graphs \(G_1, G_2, \ldots, G_i, \ldots \) each providing a snapshot of the system at different times (which correspond either to discrete steps or topological events). In comparison, TVGs offer an interaction-centric view of the network evolution, where the evolution of each edge can be considered irrespective of the global time sequence, which turns out to be convenient when dealing with locally specified properties.

A given edge \(e \in E \) is said to be recurrent if it appears infinitely often; that is, for any date \(t \), \(\rho(e, t) = 0 \Rightarrow \exists t' > t : \rho(e, t') = 1 \). When all the edges of \(E \) are recurrent, we say that \(\mathcal{G} \) is recurrent (keep in mind that in general \(E \neq V^2 \)). Let \(\mathcal{R} \) denote the class of recurrent TVGs whose footprint \(G = (V, E) \) is connected. The recurrence of an edge \(e \) is said to be time-bounded (or simply bounded), if there exists a constant \(\Delta_e \) such that the time between any two successive appearances of \(e \) is at most \(\Delta_e \). When the recurrence of all the edges of a graph \(\mathcal{G} \in \mathcal{R} \) is time-bounded, we say that \(\mathcal{G} \) is time-bounded recurrent, call \(\Delta = \max \{\Delta_e : e \in E\} \), and denote by \(\mathcal{B} \subset \mathcal{R} \) the class of time-bounded recurrent TVGs. An edge \(e \in E \) is said to be periodic of period \(p_e \) if \(\rho(e, t) = \rho(e, t + kp_e) \) for all integer \(k \). A graph is said periodic if all its edges are periodic, and its period \(p \) is the least common multiple of all the edges periods. We denote by \(\mathcal{P} \subset \mathcal{B} \) the class of periodic TVGs.

Given a TVG \(\mathcal{G} = (V, E, \mathcal{T}, \rho) \), we consider that \(\mathcal{G} = (V, E) \) is always simple (no self-loop nor multiple edges) and that nodes possess unique identifiers.

The set of edges being incident to a node \(u \) at time \(t \) is noted \(I_t(u) \) (or simply \(I_t \), when the node is implicit). Finally, we note \(\mathcal{G}_{[t_a, t_b]} \) the temporal subgraph of a TVG \(\mathcal{G} \) restricted to lifetime \([t_a, t_b] \).

When an edge \(e = (x, y) \) appears, the entities \(x \) and \(y \) can communicate. The time \(\zeta \) necessary to transmit a message (crossing delay) is known to the nodes. The minimal duration of edge presence is assumed to be \(2 \times \zeta \) (i.e., long enough for a back and forth exchange of message). Algorithmically, this allows the following observations:
1. If a message is sent just after an edge has appeared, the message and a potential answer are guaranteed to be successfully transmitted.
2. If the recurrence of an edge is bounded by some Δ, then this edge cannot disappear for more than $\Delta - 2 \times \zeta$.

The appearance and disappearance of edges are instantly detected by the two adjacent nodes (they are notified of such an event without delay). If a message is sent less than ζ before the disappearance of an edge, it is lost. However, since the disappearance of an edge is detected instantaneously, and the crossing delay ζ is known, the sending node can locally determine whether the message was successfully delivered. We thus authorize the special primitive send_retry as a facility to specify that if the message is lost, then it is automatically re-sent upon next appearance of the edge, and this sending is necessarily successful (Property 1). Note that nothing precludes this primitive to be called while the corresponding edge is even absent (this actually simplifies the expression of some algorithms).

A sequence of couples $\mathcal{J} = \{(e_1, t_1), (e_2, t_2), \ldots, (e_k, t_k)\}$, with $e_i \in E$ and $t_i \in T$ for all i, is called a journey in G iff $\{e_1, e_2, \ldots\}$ is a walk in G and for all t_i, $\rho(e_i)[t_i, t_i + \zeta] = 1$ and $t_{i+1} \geq t_i + \zeta$. We denote by $\text{departure}(\mathcal{J})$, and $\text{arrival}(\mathcal{J})$, the starting date t_1 and last date $t_k + \zeta$ of \mathcal{J}, respectively.

Journeys can be thought of as paths over time from a source node to a destination node (if the journey is finite). Let us denote by \mathcal{J}^*_ρ the set of all finite journeys in a graph G. We will say that node u can reach node v in G, and note $\exists \mathcal{J}_{(u,v)} \in \mathcal{J}^*_\rho$ (or simply $u \leadsto v$, if G is clear from the context), if there exists at least one possible journey from u to v in G. Note that the notion of journey is asymmetrical ($u \leadsto v \neq v \leadsto u$), regardless of whether edges are directed or undirected.

Because journeys take place over time, they have both a topological length and a temporal length. The topological length of \mathcal{J} is the number $k = |\mathcal{J}|_h$ of couples in \mathcal{J} (i.e., number of hops), and its temporal length is its duration $|\mathcal{J}|_t = \text{arrival}(\mathcal{J}) - \text{departure}(\mathcal{J}) = t_k - t_1 + \zeta$. This yields to two distinct definitions of distance in a graph G:

- The topological distance from a node u to a node v at time t, noted $d_{u,t}(v)$, is defined as $\text{Min}\{|\mathcal{J}|_h : \mathcal{J} \in \mathcal{J}^*_{(u,v)} \land \text{departure}(\mathcal{J}) \geq t\}$. For a given date t, a journey whose departure is $t' \geq t$ and topological length is equal to $d_{u,t}(v)$ is called shortest;
- The temporal distance from u to v at time t, noted $\hat{d}_{u,t}(v)$ is defined as $\text{Min}\{\text{arrival}(\mathcal{J}) : \mathcal{J} \in \mathcal{J}^*_{(u,v)} \land \text{departure}(\mathcal{J}) \geq t\} - t$. Given a date t, a journey whose departure is $t' \geq t$ and arrival is $t + \hat{d}_{u,t}(v)$ is called foremost, and one whose temporal length is $\text{Min}\{\hat{d}_{u',v}(v) : t' \in T\}$ is called fastest.

Informally, a foremost journey is one that minimizes the date of arrival at destination; a shortest journey is one that uses the least number of hops; and a fastest journey is one that minimizes the time spent between departure and arrival (however late the departure be) [7].
2.2. Problems

The problem of computing shortest, fastest, and foremost journeys in delay-tolerant networks was solved in [7] as a centralized (i.e., combinatorics) problem, given complete knowledge of G. We consider a distributed variant of the problem, namely performing broadcast with termination detection at the emitter, or TDB, according to either one of the three metrics.

TDB in general requires all nodes to receive a message with some information initially held by a single node x, called source or emitter, and the source to enter a terminal state after all nodes have received the information, within finite time. A protocol solves TDB in a graph G if it solves it for any source $x \in V$ and time $t \in T$. We say that it solves TDB in a class C if it solves TDB for any $G \in C$. We are interested in three variations of this problem, following the optimality metrics defined above:

- TDB[foremost], where each node receives the information at the earliest possible date following its creation at the emitter;
- TDB[shortest], where each node receives the information within a minimal number of hops from the emitter;
- TDB[fastest], where the overall duration between first global emission and last global reception is minimized.

For each of these problems, we require that the emitter detects termination, however this detection is not subject to the same optimality constraint (it just has to be finite). TDB thus involves two processes: the actual dissemination of information messages, and the exchange of typically smaller control messages used for termination detection, both being considered separately in this paper.

Finally, we call broadcast tree the (delay-tolerant) tree along which the broadcast takes place, without consideration to the dates when the edges are used, that is, considering only the “flattened” hierarchy of nodes the tree consists of. An optimal (i.e., foremost, fastest, or shortest) broadcast tree is said to be reusable if this hierarchy can be purposely followed to perform a subsequent optimal broadcast.

3. Basic Results and Limitations

Let us first state a general property of the computational relationship between the main three contexts of interest, namely knowing n in R (noted R_n), knowing Δ in B (noted B_{Δ}), and knowing p in P (noted P_p). These inclusions will be shown strict later on.

Theorem 2. $P(R_n) \subseteq P(B_{\Delta}) \subseteq P(P_p)$

Proof. The right inclusion is straight from the fact that $B \subseteq P$ and p is a valid bound Δ on the recurrence time. The left inclusion follows from the facts that $R \subseteq B$ and n can be inferred in B if Δ is already known. This can be done by performing, from any node (say u), a depth-first token circulation that will explore the underlying graph G over time. Having a bounded recurrence time indeed allows every node to learn the list of its
neighbors in G within Δ time (all incident edges must appear within this duration). As the token is circulated to unvisited nodes, these nodes are marked as visited by u’s token and the token is incremented. Upon returning to u, the token value is n. \square

We now establish a negative result that justifies the need for additional knowledge in order to solve TDB in any of the considered contexts. In fact we have:

Theorem 3. TDB cannot be solved in \mathcal{P} without additional knowledge.

Proof. By contradiction, let A be an algorithm that solves TDB in \mathcal{P}. Consider an arbitrary $\mathcal{G} = (V, E, T, \rho) \in \mathcal{P}$ and $x \in V$. Execute A in \mathcal{G} starting at time t_0 with x as the source. Let f be the time when the source terminates (and thus all nodes have received the information). Let $\mathcal{G}' = (V', E', T', \rho') \in \mathcal{P}$ such that $V' = V \cup \{v\}$, $E' = E \cup \{(u, v)\}$ for some $u \in V$, $f_0 < t < f$, $\rho'(e, t) = \rho(e, t)$ for all $e \in E$ and $\rho'((u, v), t) = 0$.

Now, consider $\rho'((u, v), t) = 1$ for some $t > f$, and the period of \mathcal{G}' is some $\rho' > t - t_0$. Consider the execution of A in \mathcal{G}' starting at time t_0 with x as the source. Since (u, v) does not appear from t_0 to f, the execution of A at every node in \mathcal{G}' is exactly as at the corresponding node in \mathcal{G}. In particular, node x will have entered a terminal state at time f with node v not having received the information, contradicting the correctness of A. \square

We thus have the following corollary, by inclusion of \mathcal{P}.

Corollary 4. TDB cannot be solved in \mathcal{B} nor \mathcal{R} without any additional knowledge.

Hence, additional knowledge of some kind is required to solve TDB in these classes. We consider three types of knowledge, namely, the number of nodes $n = |V|$, an upper bound Δ on the recurrence time (when in \mathcal{B}), or the period p (in \mathcal{P}). We start by establishing a general impossibility result for TDB[$fastest$] in \mathcal{B} (and a fortiori in \mathcal{R}), which cannot be solved even if both n and Δ are known.

Theorem 5. TDB[$fastest$] is not solvable in \mathcal{B} (and a fortiori in \mathcal{R}), regardless of the knowledge considered.

Proof. The argument relates to the very existence of fastest journeys in an unstructured infinite setting. Consider for example the graph $G = (V, E, T, \rho) \in \mathcal{B}$ such that $V = \{v_1, v_2, v_3\}$, $E = \{e_1 = (v_1, v_2), e_2 = (v_2, v_3)\}$ and ρ is such that:

- $\forall t \in T, \forall i \in \mathbb{N}^+, \rho(e_1, t) = 1 \iff i\Delta \leq t < i\Delta + \zeta$
- $\forall t \in T, \forall i \in \mathbb{N}^+, \rho(e_2, t) = 1 \iff i\Delta + \zeta + i^{-1} \leq t < i\Delta + 2\zeta + i^{-1}$

for any $\Delta \geq 2\zeta + 1$. In such a setting, every period $[i\Delta, (i + 1)\Delta)$ enables a journey J_i from v_1 to v_3 such that $|J_i|_t = 2\zeta + i^{-1}$. Since i^{-1} is decreasinga, there is an infinite sequence of journeys $J_1, J_2, ..$ such that $|J_{i+1}|_t < |J_i|_t$. \square

aWhich notation should we use among i^{-1} or $1/i$? If the latter, please update at the four places in the proof.
Theorem 6. \cite{10} TDB[\textit{fastest}] is feasible in P with a known period p, and the solution can be reused for subsequent broadcasts.

The algorithm from \cite{10} builds fastest broadcast trees in P_p. The solution relies on learning at what time(s) in the period the \textit{temporal eccentricity} of the emitter is minimum, then building a foremost broadcast tree for such date. Note that the broadcast tree so-built remains necessarily optimal in the future, since in P the whole network schedule repeats forever. It can thus be \textit{memorized} for subsequent broadcasts, \textit{i.e.}, the solution is \textit{reusable}.

The rest of the paper focuses on TDB[\textit{foremost}] and TDB[\textit{shortest}] in R and B, knowing n and/or Δ. We then draw some conclusions on the relative difficulty of these three problems, as well as on the computational relationship between $P(R_n)$, $P(B_\Delta)$, and $P(P_p)$.

4. TDB[\textit{foremost}]

TDB[\textit{foremost}] in R or B clearly requires some sort of flooding, because the very fact of probing a neighbor to determine if it already has the information compromises the possibility to send it in a foremost fashion (in addition to risking the disappearance of the edge in-between the probe and the real sending). As a consequence of Theorem 3, this problem cannot be solved without knowledge. In this section we first show that it becomes possible in R if the number of nodes $n = |V|$ is known. The proof is constructive by means of Algorithm 1, whose termination is however not bounded in time. Being in B with the same knowledge allows its termination to be bounded. Knowing Δ instead of n in B then allows us to propose another solution (described in Algorithm 2) that has a lower message complexity. This complexity can be further improved if both Δ and n are known, as in this case we have the possibility to terminate \textit{implicitly}. Regarding \textit{reusability} for the broadcast of the information, none of the broadcast trees built in R or even B turn out to be reusable as such, due to the inherent lack of structure of these classes.

Theorem 7. Foremost broadcast trees are not reusable as such in B_Δ (and a fortiori in R_n).

Proof (sketch). By contradiction, let a tree T be a reusable foremost tree with respect to emission date t. Since the \textit{order} in which edges re-appear in B is arbitrary (as long as they all occur within a Δ time window), an adversary can act on the schedule in such a way that the edges appear in a different order as that of the hierarchy of T, contradicting the fact that the tree is foremost. \hfill \qed

Note that the proof argument does \textit{not} relate to the non-existence of trees whose optimality repeat in the future; in fact, there must be at least one tree whose optimality holds infinitely often since there are finitely many possible trees and infinitely many time spans of duration Δ. The argument actually relates to the \textit{non-decidability} of using a given tree. Nonetheless, observe that the knowledge acquired can be helpful to lower the complexity of the termination detection.
4.1. TDB[foremost] in \mathcal{R}

In this section we only discuss the knowledge of n since Δ is not defined for \mathcal{R}.

4.1.1. Knowledge of n

In this section, we show how the problem is solvable when n is known.

The algorithm proceeds as follows (see Algorithm 1 for details). Every time a new edge appears locally to an informed node, this node sends the information message onto this edge, and remembers that this edge now leads to an informed node. The first time a node receives the information, it records the sender as parent, transmits the information on its available edges, and sends back a notification message to the parent. Note that these notifications create a parent-relation and thus a converge-cast tree. Each notification is propagated along the converge-cast tree and eventually collected at the emitter. When the emitter has received $n - 1$ notifications, it knows all nodes are informed. Observe that the notification messages are sent using the special primitive send_retry discussed in Section 2.1, to ensure that the parent eventually receives it even if the edge disappears during the first attempt. Information messages, on the other hand, are sent using the normal send primitive. Indeed, if the propagation of such a message fails because the corresponding edge disappears, it simply means that this edge at that particular time did not have to be used (i.e., it did not belong to a valid journey).

Theorem 8. When n is known, TDB[foremost] can be solved in \mathcal{R} exchanging $O(m)$ information messages and $O(n^2)$ control messages, in unbounded time.

Proof. Since a node sends the information to each new appearing edge, it is easy to see, by connectivity of the underlying graph, that all nodes will eventually receive the information. The dissemination itself is necessarily foremost because the information is either directly relayed on edges that are present, or sent as soon as a new edge appears. As for termination detection: every node identifies a unique parent and a converge-cast spanning tree directed towards the source is implicitly constructed; since every node notifies the source (through the tree) and the source knows the total number of nodes, termination is guaranteed. Since information messages might traverse every edge in both directions, and an edge cannot be traversed twice in the same direction, we have that the number of information messages is in the worst case $2m$. Since every node but the emitter induces a notification that is forwarded up the converge-cast tree to the emitter, the number of notification messages is the sum of distances in the converge-cast tree between all nodes and the emitter, $\sum_{v \in V \setminus \{\text{emitter}\}} d_{\text{tree}}(v, \text{emitter})$. The worst case is when the graph is a line where we have $\frac{n^2 - n}{2}$ control messages. Regarding time complexity, the termination of the algorithm is unbounded due to the fact that the recurrence of the edges is itself unbounded. \hfill \square

Reusability for subsequent broadcasts Foremost trees are time-dependent in the sense that they might be optimal for some emission dates and not be so for other dates. Still, they
Algorithm 1 Foremost broadcast in R, knowing n.

1: Edge parent ← nil // edge the information was received from (for non-emitter nodes).
2: Integer nbNotifications ← 0 // number of notifications received (for the emitter).
3: Set<Edge> informedNeighbors ← ∅ // neighbors known to have the information.
4: Status myStatus ← ¬informed // status of the node (informed or non-informed).

5: initialization:
6: if isEmitter() then
7: myStatus ← informed
8: send(information) on $I_{now}()$ // sends the information on all present edges.
9: onAppearancen of an edge e:
10: if myStatus == informed and $e \notin$ informedNeighbors then
11: send(information) on e // (see Prop. 1).
12: informedNeighbors ← informedNeighbors $∪ \{e\}$ // (see Prop. 1).
13: onReception of a message msg from an edge e:
14: if msg.type == Information then
15: informedNeighbors ← informedNeighbors $∪ \{e\}$
16: if myStatus == ¬informed then
17: myStatus ← informed
18: parent ← e
19: send(information) on $I_{now}() \setminus$ informedNeighbors // propagates.
20: send_retry(notification) on e // notifies that this node has the info. (this message is to be resent upon the next appearance, in case of failure).
21: if isEmitter() then
22: nbNotifications ← nbNotifications + 1
23: if nbNotifications == $n - 1$ then
24: terminate // at this stage, the emitter knows that all nodes are informed.
25: else
26: send_retry(notification) to parent

remain valid trees (though, possibly non-foremost ones) regardless of the considered date. As such, they can be memorized by the nodes in order to be used as converge-cast trees for termination detection in subsequent broadcasts. Indeed, while the broadcast is required to be foremost, the detection of termination does not have such constraint. Hence, instead of sending a notification each time a new node is informed (as done previously), nodes can notify their parents (in the converge-cast tree) if and only if they are themselves informed and have received a notification from each of their children (in the converge-cast tree). This reduces the number of control messages from $O(n^2)$ to $O(n)$, having only one notification per edge of the converge-cast tree.

4.2. TDB[foremost] in B

If the recurrence time is bounded, then either the knowledge of n or an upper bound Δ on the recurrence time can be used to solve the problem (with various message complexities).
4.2.1. **Knowledge of \(n \).**

Since \(B \subseteq R \), one can obviously solve \(TDB[\text{foremost}] \) in \(B \) using Algorithm 1 (and the same observations apply regarding reusability of the converge-cast tree). Here, however, the termination time becomes bounded due to the fact that the recurrence of edges is itself bounded.

Theorem 9. When \(n \) is known, \(TDB[\text{foremost}] \) can be solved in \(B \) exchanging \(O(m) \) information messages and \(O(n^2) \) control messages, in \(O(n\Delta) \) time.

Proof. Since all edges in \(E \) are recurrent within any \(\Delta \) time window, the delivery of the information at the last node must occur within \((n - 1)\Delta \) global time. The same property holds for the latest notification, bounding the overall process to a duration of \(\Delta(2n - 2) \). The rest follows from Theorem 8. \(\square \)

4.2.2. **Knowledge of \(\Delta \).**

The information dissemination is performed as in Algorithm 1, but the termination detection is different. Thanks to the time-bound \(\Delta \) on edge recurrence, a node can discover all of its neighbors within \(\Delta \) time. This fact can be used by a node to determine whether it is a leaf in the broadcast tree (i.e., if it has not informed any other node within \(\Delta \) time following their own reception time)\(^1\). This allows the leaves to terminate spontaneously and notify their parent, which recursively terminate after receiving the notifications from all their children and notifying their own parent. With this type of termination, the whole process is in the same spirit as the Dijkstra-Scholten algorithm [15] for static graphs. In that algorithm, a particular node initiates a task that is progressively distributed over the network. The process then terminates recursively based on the relations created during the distribution, each node terminating after its children have terminated.

The temporal adaption for bounded-recurrent TVGs is as follows (see Algorithm 2 for details). First, everytime a new edge appears locally to an informed node, this node sends the information on the edge, and records it. The first time a node receives the information, it chooses the sender as parent, memorizes the current time (in a variable \(\text{firstRD} \)), transmits the information on its available edges, and returns an affiliation message to its parent using the send_retry primitive (starting to build the converge-cast tree). This affiliation message is not relayed upward in the tree, but is only intended to inform the direct parent about the existence of a new child (so this parent knows it must wait for a future notification by this node). If an informed node has not received any affiliation message after a duration of \(\Delta + \zeta \), it sends a notification message to its parent using the send_retry primitive. The wait is bounded by \(\Delta + \zeta \) for the following reasons (see also Figure 1). First note that (due to Prop. 1) the information messages cannot be lost when they are sent on an appearing edge, neither can their potential affiliation answer. Thus, the loss of information messages can only occur when the information is directly relayed by a node which received it (say,

\(^1\)This is where we need \(2\zeta \) I think...
as per Figure 1, node a, relaying at time firstRD the information to node b). As before, if the information message is lost, then it simply means that this edge at that time did not have to be used. On the other hand, if the affiliation message is lost, it must be sent again (send_retry). However, in the worst case, the common edge disappears just before the affiliation message is delivered, and reappears only $\Delta - 2 \times \zeta$ later (Prop. 1). Affiliation messages can thus be received until $\text{firstRD} + \Delta + \zeta$.

If a node has one or more children, it waits until it receives a notification message from each of them, then notifies its parent in the converge-cast tree (using send_retry again). Once the emitter has received a notification from each of its children, it knows that all nodes are informed.

Theorem 10. When Δ is known, TDB[foremost] can be solved in B exchanging $O(m)$ information messages and $O(n)$ control message, in $O(n\Delta)$ time.

Proof. Correctness follows the same lines of the proof of Theorem 8. However the correct construction of a converge-cast spanning tree is guaranteed by the knowledge of Δ (i.e., the nodes of the tree that are leaves detect their status because no new edges appear within Δ time) and the notification starts from the leaves and is aggregated before reaching the source. The number of information messages is $O(m)$ as the exchange of information messages is the same as in Algorithm 1, but the number of notification and affiliation messages decreases to $2(n - 1)$. Each node but the emitter sends a single affiliation message; as for the notification messages, instead of sending a notification as soon as it is informed, each node notifies its parent in the converge-cast tree if and only if it has received a notification from each of its children resulting in one notification message per edge of the tree. The time complexity of the dissemination itself is the same as for the foremost broadcast when n is known. The time required for the emitter to subsequently detect termination is an additional $\Delta + \zeta + \Delta(n - 1)$ (the value $\Delta + \zeta$ corresponds to the time needed by the last informed node to detect that it is a leaf, and $\Delta(n - 1)$ corresponds to the worst case of the notification process, chained from that node to the emitter).
Algorithm 2 Foremost broadcast in B, knowing a bound Δ on the recurrence time.

1: $\text{Edge parent} \leftarrow \text{nil}$ // edge the information was received from (for non-emitter nodes).
2: $\text{Integer } nbChildren \leftarrow 0$ // number of children.
3: $\text{Integer } nbNotifications \leftarrow 0$ // number of children that have terminated.
4: $\text{Set } < \text{Edge} > \text{ informedNeighbors } \leftarrow \emptyset$ // neighbors known to have the information.
5: $\text{Date } firstRD \leftarrow \text{nil}$ // date of first reception.
6: $\text{Status myStatus } \leftarrow \text{¬informed}$ // status of the node (informed or non-informed).

7: **initialization:**
8: if isEmitter() then
9: $\text{myStatus } \leftarrow \text{informed}$
10: $\text{send(information) on } I_{\text{now}()}$ // sends the information on all present edges.
11: onAppearance of an edge e:
12: if $\text{myStatus } = \text{informed}$ and $e \notin \text{informedNeighbors}$ then
13: $\text{send(information) on } e$
14: $\text{informedNeighbors } \leftarrow \text{informedNeighbors } \cup \{e\}$ // (see Prop. 1).
15: onReception of a message msg from an edge e:
16: if $\text{msg.type } = \text{Information}$ then
17: $\text{informedNeighbors } \leftarrow \text{informedNeighbors } \cup \{e\}$
18: if $\text{myStatus } = \text{¬informed}$ then
19: $\text{myStatus } \leftarrow \text{informed}$
20: $\text{firstRD } \leftarrow \text{now()}$ // memorizes the date of first reception.
21: $\text{parent } \leftarrow e$
22: $\text{send(information) on } I_{\text{now}()} \setminus \text{informedNeighbors}$ // propagates.
23: $\text{send_retry(affiliation) on } e$ // informs the parent that it has a new child.
24: else if $\text{msg.type } = \text{Affiliation}$ then
25: $\text{nbChildren } \leftarrow \text{nbChildren } + 1$
26: else if $\text{msg.type } = \text{Notification}$ then
27: $\text{nbNotifications } \leftarrow \text{nbNotifications } + 1$
28: if $\text{nbNotifications } = \text{nbChildren}$ then
29: if ¬isEmitter() then
30: $\text{send_retry(notification) to parent}$ // notifies the parent in turn.
31: terminate // whether emitter or not, the node has terminated at this stage.
32: when $\text{now() } = \text{firstRD } + \Delta + \zeta$: // tests whether the underlying node is a leaf.
33: if $\text{nbChildren } = 0$ then
34: $\text{send_retry(notification) on parent}$
35: terminate

4.2.3. Knowledge of both n and Δ

In this case, the emitter knows an upper bound on the broadcast termination date; in fact, the broadcast cannot last longer than $(n - 1)\Delta$ (this worst case is when the foremost tree is a line). Termination detection can thus become implicit after this amount of time, which removes the need for any control message (whether of affiliation or of notification).
Theorem 11. When Δ and n are known, TDB[foremost] can be solved in B exchanging $O(m)$ information messages and no control messages, in $O(n\Delta)$ time.

5. TDB[shortest]

Let us remind that the objective of TDB[shortest] is to deliver the information to each node within a minimal number of hops from the emitter, and to have the emitter detect termination within finite time. We show below that contrary to the foremost case, knowing n is insufficient to perform a shortest broadcast in R or even in B. This becomes however feasible in B when Δ is also known. Moreover any shortest tree built at some time t will remain optimal in B relative to any future emission date $t' > t$. This feature allows the solution to TDB[shortest] to be possibly reused in subsequent broadcasts.

5.1. TDB[shortest] in B

We first show that the knowledge of n is not sufficient to solve TDB[shortest] in B (and thus in R), then describe how to solve the problem when Δ is known, and finally when both n and Δ are known.

5.1.1. Knowledge of n

The following theorem establishes that knowing n is not sufficient to solve TDB[shortest] in B (and thus in R).

Theorem 12. TDB[shortest] is not feasible in B (nor a fortiori in R) knowing only n.

Proof. By contradiction, let \mathcal{A} be an algorithm that solves TDB[shortest] in B with the knowledge of n only. Consider an arbitrary graph $G = (V, E, T, \rho) \in B$ and $x \in V$. Execute \mathcal{A} in G starting at time t_0 with x as the source. Let t_f be the time when the source terminates and T the shortest broadcast tree along which broadcast was performed. Let $G' = (V', E', T', \rho') \in B$ such that $V' = V$, $E' = E \cup \{(x, v) \mid (x, v) \notin E\}$, $\rho'(e, t) = \rho(e, t)$ for all $e \in E$, $0 \leq t \leq t_f$, $\rho'((x, v), t) = 0$ for all $t_0 \leq t < t_f$, and $\rho'((x, v), t) = 1$ for some $t > t_f$ (we can take Δ as large as needed here).

Consider the execution of \mathcal{A} in G' starting at time t_0 with x as the source. Since (x, v) does not appear between t_0 and t_f, the execution of \mathcal{A} at every node in G' will be exactly as at the corresponding node in G and terminate with v having received the information in more than one hop, contradicting the fact that T is a shortest tree, and thus the correctness of \mathcal{A}.

5.1.2. Knowledge of Δ

The idea is to propagate the message along the edges of a breadth-first spanning tree of the underlying graph. We present the pseudo-code in Algorithm 3, and provide the following informal description.

Assuming that the message is created at some date t, the mechanism consists of authorizing nodes at level i in the tree to inform new nodes only between time $t + i\Delta$ and...
\(t + (i + 1)\Delta \) (doing it sooner would lead to a non-shortest tree, while doing it later is pointless because all the edges have necessarily appeared within one \(\Delta \)). So the broadcast is confined into rounds of duration \(\Delta \) as follows: whenever a node sends the information to another, it sends a time value that indicates the remaining duration of its round (that is, the starting date of its own round plus \(\Delta \) minus the current time minus the crossing delay), so the receiving node knows when to start informing new nodes in turn (if it had not the information yet). For instance in Figure 2 when the node \(a \) attempts to become \(b \)'s parent, node \(a \) transmits its own starting date plus \(\Delta \) minus the current date minus \(\zeta \). This duration corresponds to the exact amount of time the child would have to wait, if the relation is established, before integrating other nodes in turn. If a node has not informed any other node during its round, it notifies its parent. When a node has been notified by all its children, it notifies its parent. Note that this requires parents to keep track of the number of children they have, and thus children need to send affiliation messages when they select a parent (with the same constraints as already discussed in Figure 1). Finally, when the emitter has been notified by all its children, it knows the broadcast is terminated.

Theorem 13. TDB[shortest] can be solved in \(B \) knowing \(\Delta \), exchanging \(O(m) \) info. messages and \(O(n) \) control messages, in \(O(n\Delta) \) time.

Proof. The fact that the algorithm constructs a breadth-first (and thus shortest) delay-tolerant spanning tree follows from the connectivity over time of the underlying graph and from the knowledge of the duration \(\Delta \). The bound on recurrence is used to enable a rounded process whereby the correct distance of each node to the emitter is detected. The number of information messages is \(2m \) as the dissemination process exchanges at most two messages per edge. The number of affiliation and notification messages are each of \(n - 1 \) (one per edge of the tree). The time complexity for the construction of the tree is at most \((n - 1)\Delta \) to reach the last node, plus \(\Delta + \zeta \) at this node, plus at most \((n - 1)\Delta \) to aggregate this node’s notification. (The additional \(\zeta \) caused by waiting affiliation messages matters only for the last round, since the construction continues in parallel otherwise.) The total is thus at most \((2n - 1)\Delta + \zeta \).

Reusability for subsequent broadcasts Thanks to the fact that shortest trees remain shortest regardless of the emission date, all subsequent broadcasts can be performed within the
same, already known tree, which reduces the number of information message from $O(m)$ to $O(n)$. Moreover, if the depth d of the tree is detected through the first notification process, then all subsequent broadcasts can enjoy an implicit termination detection that is itself optimal in time (after $d\Delta$ time). No control message is needed.

5.1.3. Knowledge of n and Δ

When both n and Δ are known, one can apply the same dissemination procedure as in Algorithm 3 combined with an implicit termination detection that avoids using control messages at all. Indeed, each node learns (and possibly informs) all of its neighbors within Δ time. Since the underlying graph is connected, the whole process must then complete within $n\Delta$ time. Hence, if the emitter knows both Δ and n, it can simply wait $n\Delta$ time, then terminate implicitly.

Theorem 14. When n and Δ are known, $\text{TDB}[\text{shortest}]$ can be solved in \mathcal{B} exchanging $O(m)$ info. messages and no control messages, in $O(n\Delta)$ time.

However, such a strategy would prevent the emitter from learning the depth d of the shortest tree, and thus prevent lowering the termination bound to $d\Delta$ time. An alternative solution would be to achieve explicit termination for the first broadcast in order to build a reusable broadcast tree (and learn its depth d in the process). In this case, dissemination is achieved with $O(m)$ information messages, termination detection is achieved similarly to Algorithm 3 with $O(n)$ control messages (where however affiliation messages are not necessary, and the number of control messages would decrease to $n-1$). In this way we would have an increase in control messages, but the subsequent broadcasts could reuse the broadcast tree for dissemination with $O(n)$ information messages, and termination detection could be implicit with no exchange of control message at all after $d\Delta$ time. The choice of either solution may depend on the size of an information message and on the expected number of broadcasts planned.

6. Computational Relationship

On the basis of this paper results, we can conclude regarding the computational relationship between $\mathcal{P}(\mathcal{R}_n)$, $\mathcal{P}(\mathcal{B}_\Delta)$, and $\mathcal{P}(\mathcal{P}_p)$, that is, prove the validity of Equation 1.

Theorem 15. $\mathcal{P}(\mathcal{R}_n) \subsetneq \mathcal{P}(\mathcal{B}_\Delta) \subsetneq \mathcal{P}(\mathcal{P}_p)$

Proof. The fact that $\mathcal{P}(\mathcal{R}_n) \subsetneq \mathcal{P}(\mathcal{B}_\Delta)$ was observed in Theorem 2. To make the left inclusion strict, one has to exhibit a problem Π such that $\Pi \in \mathcal{P}(\mathcal{B}_\Delta)$ and $\Pi \notin \mathcal{P}(\mathcal{R}_n)$. By Theorem 12 and Theorem 13, $\text{TDB}[\text{shortest}]$ is one such example. The right inclusion is similarly proven strict, based on the fact that $\text{TDB}[\text{fastest}]$ is in $\mathcal{P}(\mathcal{P}_p)$ (Theorem 6) but it is not in $\mathcal{P}(\mathcal{B}_\Delta)$ (Theorem 5).

Now, considering the fact that $\text{TDB}[\text{foremost}] \in \mathcal{P}(\mathcal{R}_n)$ while $\text{TDB}[\text{shortest}] \notin \mathcal{P}(\mathcal{R}_n)$, and the fact that $\text{TDB}[\text{shortest}] \in \mathcal{P}(\mathcal{B}_\Delta)$ while $\text{TDB}[\text{fastest}] \notin \mathcal{P}(\mathcal{B}_\Delta)$.

\[\square\]
together with the inclusions of Theorem 15, we have

\[\text{TDB[foremost]} \preceq_{\text{feasibility}} \text{TDB[shortest]} \preceq_{\text{feasibility}} \text{TDB[fastest]} \]

where \(\preceq_{\text{feasibility}} \) is a partial order on these problems topological requirements (relative to feasibility). The order is “only” partial here because the variations of feasibility of these problems may be different in another set of assumptions. Following a similar reasoning (that is the fact that the solutions to TDB[shortest] are reusable in \(B_\Delta \) whereas those to TDB[foremost] are not) leads to

\[\text{TDB[shortest]} \preceq_{\text{reusability}} \text{TDB[foremost]} \]

where \(\preceq_{\text{reusability}} \) is a partial order on these problems topological requirements (relative to reusability). This result suggests that a problem could be both easier or more difficult than another, depending on which aspect is looked at (feasibility vs. reusability). In other words, the difficulty of these problems seems to be multi-dimensional. Finally, whether reusability is easier for TDB[fastest] or TDB[foremost] is an open question, both of these problems being unsolvable in \(B_\Delta \) but solvable in \(\mathcal{P}_p \) [10].

7. Concluding Remarks

In this paper we looked at three particular problems (shortest, fastest, and foremost broadcast) in three particular classes of dynamic graphs (recurrent, time-bounded recurrent, and periodic graphs). By comparing the feasibility of these problems within each class, we came to observe both requirement relationships between the problems and computational relationships between the classes.

The methodology exploited here goes certainly beyond the scope of these problems and graph classes. In general terms, the principle here is to connect problems through their feasibility in a set of hierarchized classes of dynamic graphs. One can take two problems \(P_1 \) and \(P_2 \) that are respectively feasible in classes \(C_1 \) and \(C_2 \), then show that both \(C_1 \subseteq C_2 \) and \(P_1 \) is not feasible in \(C_2 \), to finally conclude that \(P_1 \) is at least as difficult as \(P_2 \) in terms of topological requirements. As we have shown, such characterizations can also be used reversely to exhibit computational relationship between several classes/assumptions. We hope and believe this approach could be used as a generic mean to explore further distributed algorithms in a dynamic context.

Bibliography

[24] D. Ilcinkas and A. Wade. On the power of waiting when exploring public transportation sys-

Algorithm 3 Shortest broadcast in B, knowing a bound Δ on the recurrence.

1: $\text{Edge parent} \leftarrow \text{nil}$ // edge the information was received from (for non-emitter nodes).
2: Date roundStart $\leftarrow +\infty$ // date when the underlying node starts informing new nodes.
3: Set $\langle \text{Edge} \rangle$ children $\leftarrow \emptyset$ // set of children from which a notification is expected.
4: Integer nbNotifications $\leftarrow 0$ // number of children that have sent their notification.
5: Set $\langle \text{Edge} \rangle$ informedNeighbors $\leftarrow \emptyset$ // set of neighbors known to have the info.
6: Status myStatus $\leftarrow \text{¬informed}$ // status of the node (informed or non-informed).

7: initialization:
8: \hspace{1em} \text{if isEmitter()} then
9: \hspace{2em} roundStart $\leftarrow \text{now}()$ \hfill \text{when $\text{now}() = \text{roundStart}$;" (below) to execute.}
10: \hspace{2em} onAppearance of an edge e:
11: \hspace{3em} \text{if myStatus == informed then}
12: \hspace{4em} $\text{if } e \notin \text{informedNeighbors then}$
13: \hspace{5em} $\text{send}((\text{roundStart} + \Delta - \text{now}()) - \zeta) \text{ on } e$ // time until the end of the round.
14: \hspace{5em} $\text{informedNeighbors} \leftarrow \text{informedNeighbors} \cup \{e\}$ \hfill \text{(see Prop. 1)}.
15: \hspace{3em} onReception of a message msg from an edge e:
16: \hspace{4em} \text{if msg.type == Duration then}
17: \hspace{5em} $\text{informedNeighbors} \leftarrow \text{informedNeighbors} \cup \{e\}$
18: \hspace{4em} \text{if parent == nil then}
19: \hspace{5em} \hspace{1em} parent $\leftarrow e$
20: \hspace{5em} \hspace{1em} roundStart $\leftarrow \text{now}() + \text{msg}$
21: \hspace{5em} \hspace{1em} $\text{send_retry(affiliation)}$ on e
22: \hspace{4em} \text{else if msg.type == Affiliation then}
23: \hspace{5em} children $\leftarrow \text{children} \cup \{e\}$
24: \hspace{4em} \text{else if msg.type == Notification then}
25: \hspace{5em} nbNotifications $\leftarrow \text{nbNotifications} + 1$
26: \hspace{5em} \hspace{1em} \text{if nbNotifications} == |\text{children}| \text{ then}$
27: \hspace{5em} \hspace{2em} \text{if } \neg\text{isEmitter()} \text{ then}$
28: \hspace{5em} \hspace{3em} \hspace{1em} \text{send_retry(notification)}$ on parent
29: \hspace{5em} \hspace{3em} \hspace{1em} \text{terminate}$
30: \hspace{4em} \text{when $\text{now}() == \text{roundStart}$:}
31: \hspace{5em} myStatus $\leftarrow \text{informed}$
32: \hspace{5em} $\text{send}(\Delta - \zeta)$ on $I_{\text{now}()} \setminus \text{informedNeighbors}$ \hfill \text{nodes that receive this message and}$
33: \hspace{5em} \hspace{1em} \text{have no parent yet will take this node as parent and wait $\Delta - \zeta$ before informing new}$
34: \hspace{5em} \hspace{1em} \hspace{1em} \text{nodes.}$
35: \hspace{4em} \text{when $\text{now}() == \text{roundStart} + \Delta + \zeta$; "tests whether the underlying node is a leaf.}$
36: \hspace{5em} \text{if } |\text{children}| == 0 \text{ then}$
37: \hspace{5em} \hspace{1em} \text{send_retry(notification)}$ on parent