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ABSTRACT
We study the computational power of a distributed system
consisting of simple autonomous robots moving on the plane.
The robots are endowed with visual perception but do not
have any means of explicit communication with each other,
and have no memory of the past. In the extensive literature
it has been shown how such simple robots can form a single
geometric pattern (e.g., a line, a circle, etc), however arbi-
trary, in spite of their obliviousness. This brings to the front
the natural research question: what are the real computa-
tional limits imposed by the robots being oblivious? In par-
ticular, since obliviousness limits what can be remembered,
under what conditions can oblivious robots form a series of
geometric patterns? Notice that a series of patterns would
create some form of memory in an otherwise memory-less
system. In this paper we examine and answer this question
showing that, under particular conditions, oblivious robot
systems can indeed form series of geometric patterns starting
from any arbitrary configuration. More precisely, we study
the series of patterns that can be formed by robot systems
under various restrictions such as anonymity, asynchrony
and lack of common orientation. These results are the first
strong indication that oblivious solutions may be obtained
also for tasks that intuitively seem to require memory.

Categories and Subject Descriptors
I.2.9 [Robotics]: Autonomous vehicles; F.2.2 [Nonnumerical
Algorithms and Problems]: Geometrical problems and
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computations; F.1.1 [Models of Computation]: Unbounded-
action devices

General Terms
Algorithms,Theory

1. INTRODUCTION

1.1 Problem and Background
We are interested in understanding the computational power

of distributed systems consisting of simple autonomous robots.
The robots move on the plane, can see each-other but cannot
explicitly communicate with one another. This lack of direct
communication capabilities means that all synchronization,
interaction, and communication of information among the
sensors take place solely by observing the position of the
robots in the plane. Each robot obtains information about
these positions in terms of a local coordinate system (a set
of Cartesian axes, an origin, and a unit of distance; however
there might be no relationship between the coordinate sys-
tems used by two different robots. Each robot computes its
next location based on the visual information (the vision of
a robot is unrestricted) and moves to this location. There
is no central coordinator; the robots are identical, they have
the same capabilities, and execute the same (deterministic)
algorithm.

These systems have been extensively investigated by re-
searchers from robotics, AI, control and, more recently, dis-
tributed computing (e.g., [1, 3, 5, 6, 7, 9, 12, 13, 14, 15,
16, 22]). A particular subclass of these systems are those in
which the robots are oblivious: they have no memory of the
past, and do not rely on it for their computations. In other
words, the current behavior of an oblivious robot depends
only on the presently observed configuration of the robots
but not on past history of observations and computations by
the robot. A system of oblivious robots is inherently self-
stabilizing in the sense that the robots are allowed to start
from any arbitrary state. Hence there is a strong interest
in such systems (e.g., [4, 3, 6, 7, 12, 13, 14, 16, 22]). The
present paper considers robots which act deterministically.
Designing deterministic algorithms for oblivious robots is
specially challenging and some simple tasks such as the gath-
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ering of two robots, are known to be impossible for oblivious
robots [22].

The studies on the computational power of systems of
oblivious robots have focused on determining what minimal
capabilities are necessary so that the robots can perform
simple basic tasks e.g. gathering at a point, or scattering
uniformly in a given region. Many such problems can be
generalized to the abstract problem of (geometric) pattern
formation. A pattern is represented by a set of points in
the Euclidean plane that form some geometric figure such
as a circle, a line or some other arbitrary shape. Given a
particular pattern as input, the robots must position them-
selves with respect to each other such that the location of the
robots correspond to points in the pattern. Notice that point
formation (i.e., formation of a single point) corresponds to
the well known gathering or rendezvous problem, extensively
studied in the literature (e.g., [1, 3, 8, 10, 7, 11, 17, 19, 20]).
The arbitrary pattern formation problem, that of forming
any pattern given in input, has also been studied [2, 16, 21,
22].

In the case of oblivious robots, formation problems have
been investigated for specific patterns, in particular the cir-
cle [6, 12, 14, 18]. At a more general level, the research has
focused on the characterization of which patterns are possi-
ble under what conditions [2, 16, 22]. For example, if there
is agreement about the local coordinate system (e.g., a com-
pass), oblivious robots can form any pattern even if they are
totally asynchronous [16]. In the semi-synchronous model,
it has been recently shown [23] that oblivious robots can
form exactly the same patterns that non-oblivious robots
can, with one exception: point formation by two robots.
These results indicate that in most settings, simple robots
can form a single geometric pattern, however arbitrary, in
spite of their obliviousness. In other words, obliviousness is
not a limiting factor to form a single pattern. This naturally
brings to the front the question of whether the robots can
form not just a single pattern but a series of patterns in a
particular order, and if so, what series can be formed. No-
tice that obliviousness limits what can be remembered. On
the other hand, to enable a series of patterns to be formed,
a protocol must guarantee that a robot that wakes up in an
arbitrary configuration can still join the others in perform-
ing the required tasks. Thus, a formable series of patterns
provides some form of memory in an otherwise memoryless
system of robots. The problems examined here are integral
components of the crucial research question on what are
the real computational limits imposed by the robots being
oblivious. In other words, what are the limiting powers of
obliviousness?

1.2 Contributions and Organization
This paper studies the computational power of a system

of oblivious robots in the semi-synchronous model. We con-
sider different scenarios, starting from the case of completely
anonymous robots, to that of visibly indistinguishable but
ordered set of robots and finally, distinctly labeled robots.
In each case, we study the series of patterns that may be
formed by such robots. An immediate observation is that
no finite (non-trivial) series of distinct patterns can be com-
pletely formed in finite time starting from arbitrary initial
configurations—as explained later, an adversary can force
any protocol to produce at most a single pattern. Thus the
focus of this paper is forming periodic (or cyclic) series S∞,

i.e. the periodic repetition of a finite series S of distinct pat-
terns. The results we obtain are immediately generalizable
to infinite aperiodic series.

We prove that if the robots have distinct visible identities
then any series can be formed provided that there are suf-
ficient number of robots. The same result holds for robots
having invisible but distinct identities (except for the case
when there are exactly three robots). In case of anonymous
robots, the series that may be formed depends on the sym-
metricity of the initial configuration. We also consider the
special case when the robots agree on directions.

The paper is organized as follows. In the next section the
model, terminology and basic properties are introduced. In
Section 3 we study the more general (thus weaker) case of
anonymous robots. The strongest case when robots have
distinct visible identities is examined in Section 4. Finally
the series formable when the robots have distinct but in-
visible identities is investigated in Section 5. Due to space
limitations, some of the proofs are omitted.

2. THE MODEL

2.1 The Robots
Each robot in the system has sensory capabilities allow-

ing it to determine the location of other robots in the plane,
relative to its own location. The robots also have computa-
tional capabilities which allow them to compute the location
to move to. Each robot follows an identical algorithm that is
preprogrammed into the robot. This algorithm may contain
description of patterns that the robots are required to form.
The robots may start from arbitrary locations in the plane.

The behavior of the robots can be described as follows.
Each step taken by a robot consists of three stages: LOOK,
COMPUTE and MOVE. Each step is instantaneous but be-
tween two steps, the robot may be inactive for an arbitrary
amount of time. This model of asynchrony was introduced
in [22] and is sometimes called the semi-synchronous model
or ATOM model. In this model, time is discretized into
rounds and at each round, an arbitrary subset of the robots
(selected by a scheduler) are active. The robots that are
active in a round complete exactly one step in that round.

During the LOOK stage of a step, an active robot r gets a
complete snapshot of the environment showing the current
location of all the other robots. These locations are observed
by robot r in terms of the local coordinate system and unit
distance used by robot r at the time of observation. The
coordinate system used by a robot may change at the begin-
ning of each LOOK-COMPUTE-MOVE step, but remains
invariant during the step. During the COMPUTE stage, an
active robot executes an algorithm that determines its next
location based on the information obtained from the LOOK
operation and the identifier of the robot (if any). During
the MOVE stage of the step, the robot moves to the loca-
tion computed during the COMPUTE stage. Notice that
movements of robots are instantaneous, since the complete
step is completed within one instance of time.

The robots may not agree on a common sense of direc-
tion, but they agree on a unique sense of orientation, i.e.
the robots can distinguish clockwise from counterclockwise.
The robots may have distinct identities, and these identi-
ties may be visible, allowing other robots to identify and
distinguish between robots; or, the robots may be all iden-
tical. We denote by k the number of robots in the system
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and the i-th robot will be denoted by ri. The robots are
viewed as points in the plane. This means that multiple
robots may occupy the same location in a plane and robots
in distinct locations do not obstruct the view of one another.
The visual capabilities of the robots allows them to detect
multiplicity and they can count how many robots are at the
same location. In order to describe our algorithms and the
global configuration of robots during the algorithm, we shall
use a fixed coordinate system1; in this system, the location
of robot ri is denoted by L(ri) = (xi, yi) and the Euclidean
distance between the robots ri and rj , by d(ri, rj).

A configuration of the k robots on the plane is denoted
by the multiset γ = {(label(ri), L(ri)) : 1 ≤ i ≤ k} where
label(i) is the identity (or label) assigned to robot ri. If
the robots are anonymous then label(ri) = 1, for all i. On
the other hand, if the robots are all distinct then we assume
that label(ri) = i, for all i ∈ {1, 2, . . . , k}. The configuration
at a specific time t is denoted by γ(t). Given a configura-
tion γ, we denote by L(γ) the set of distinct points occu-
pied by robots in the configuration γ, i.e. L(γ) = {(x, y) :
∃l, (l, x, y) ∈ γ}. The set L(γ)) contains at least one and at
most k points.

Given any set of points on the plane, the smallest enclosing
circle (SEC) of the points is the circle of minimum diameter
such that every point is either on or in the interior of this
circle. The diameter of a circle C is denoted by D(C). For
a configuration γ, we define SEC(γ) to be the SEC for the
points in L(γ). In any given configuration γ, the information
obtained by a robot by looking at its surroundings is called
the view of the robot.

2.2 Patterns, Series and Formation
A pattern P is represented by a set of distinct points

(x1, y1), (x2, y2), . . . , (xn, yn) n ≥ 1, in the two-dimensional
Euclidean plane. A pattern Pi is said to be isomorphic to a
pattern Pj if Pj can be obtained by a combination of trans-
lation, rotation and uniform scaling of pattern Pi. The size
of a pattern Pi is its cardinality and will be denoted by ni.
We define some special patterns below:

• POINT: The pattern consisting of a single point.

• TWO-POINTS: The only possible pattern consisting of
exactly two points.

• POLYGON(n) : For any n ≥ 3, this is the pattern consist-
ing of points p1, p2, . . . , pn that are vertices of a regular
convex polygon of n sides.

For any pattern P of size n > 1, we define the sym-
metricity ρ(P ) to be the largest integer q ≥ 1 such that the
smallest enclosing circle containing P can be partitioned into
exactly q equiangular sectors containing the sets of points
s1, s2, . . . , sq respectively, where each si+1 is a rotation of si

with respect to the center of the circle. We define ρ(POINT)
to be infinity.

We say that a system of robots R have formed the pat-
tern P , if the current configuration γ is such that L(γ) is
isomorphic to P . Two configurations γi and γj are said to
be analogous if L(γi) is isomorphic to L(γj) (i.e. the two
configurations form the same pattern P ).

We are interested in ordered series of patterns that can
be formed by a system of robots. A linear pattern series
1The robots themselves are not aware of this global coordi-
nate system.

is any (possibly infinite) ordered sequence S = 〈P1, P2, . . . 〉
of patterns, where Pi and Pj are non-isomorphic whenever
i 6= j. A cyclicly ordered series is any periodic sequence
S∞ = 〈P1, P2, . . . , Pm〉∞ where S = 〈P1, P2, . . . , Pm〉 is a
finite linear pattern series.

A system of robots executing an algorithm A, starting
from a configuration γ(t0) is said to completely form a pat-
tern series S = 〈P1, P2, P3 . . . , 〉 if during any possible exe-
cution of A, there exists time instances t1, t2, t3 . . . , where
t0 < tj < tj+1 such that for all 1 ≤ j ≤ |S|, L(γ(tj)) is
isomorphic to Pj . A pattern series S is completely formable
if there exists an algorithm A for a system of k > 0 robots
such that starting from any initial configuration, the sys-
tem of k robots completely forms S. It is immediate that
no finite linear pattern series is completely formable by a
terminating algorithm:

Lemma 2.1. Given any finite linear series of patterns S =
〈P1, P2, P3 . . . , Pm〉, where m ≥ 2, no deterministic algo-
rithm A that terminates in finite time can completely form
S from all possible starting configurations.

The above lemma follows from the observation that the
system may start from a configuration analogous to one
forming pattern Pm, for instance. In that case, the algo-
rithm would terminate immediately.

This means that, for any non-trivial (i.e. m ≥ 2) finite
series S, a terminating algorithm can form only a suffix of
S. Thus, we are interested in constructing non-terminating
algorithms that completely form a given series S, i.e. they
form the cyclic series S∞. Our focus will be on determining
which cyclic series are completely formable by a team of
oblivious robots.

3. ANONYMOUS ROBOTS

3.1 Preliminaries
In this section, the robots are assumed to be anonymous

and oblivious, having no other additional capabilities. The
algorithm followed by each robot must be identical and de-
pends only on the current configuration as viewed by the
robot. If two robots in the same location are activated si-
multaneously, they may both move to the same location.
Since the activation schedule is decided by an adversary,
this implies the following property:

Property 3.1. From a configuration γ consisting of anony-
mous robots at w distinct locations, we may not reach a con-
figuration γ′ where the robots occupy more than w distinct
locations.

If two robots start from symmetric positions within a con-
figuration, then these two robots may take similar actions
and this symmetry may be maintained (if the activation
schedule is decided by an adversary). This notion of sym-
metry in a configuration is quantified using the concept of
symmetricity, that was introduced in [22]. We now formally
define the view of a robot, distinguishing the cases when
the robot lies or does not lie on the center of the smallest
enclosing circle in a configuration.

Definition 3.1. If robot r is not located at the center c
of the SEC of the current configuration γ then its view V(r)
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is defined as follows. Consider the coordinate system Zr de-
fined by taking the location of r as the origin (0, 0) and the
point c as (1, 0), and represent the locations of all robots ac-
cording to this coordinate system. The view V(r) is then the
set of tuples {(xi, yi, ki) : ki > 0 robots are located at (xi, yi)}.

Definition 3.2. If robot r is located at the center c of
the SEC of the current configuration γ then its view V(r) is
defined as follows. If there are robots that are not located at
c, select any robot r′ whose view is minimum among all such
robots. Consider the coordinate system Zr defined by taking
the location of r as the origin (0, 0) and the location of r′

as (1, 0), and represent the locations of all robots according
to this coordinate system. The view of r, V(r) is then the
set of tuples {(xi, yi, ki) : ki robots are located at (xi, yi)}.
On the other hand, if there are no robots outside of c, then
V(r) = {(0, 0, k)}.

The above definition requires a total order on distinct
views, which can be obtained as follows. The elements of
V(r) can be ordered lexicographically to obtain an ordered
sequence Q(V(r)), for each robot r ∈ γ. For any two robots
r1 and r2, the ordered sequences Q(V(r1)) and Q(V(r2))
contain the same number of elements and these sequences
can be ordered lexicographically. So, V(r1) < V(r2) if and
only if Q(V(r1)) is lexicographically smaller than Q(V(r2)).

Note that our definitions of view differ from the one used
in the previous literature, notably in [22] where the views
contained information not only about the locations of other
robots with respect to the location of r, but also information
about coordinate systems used by the robots. Recall that in
our scenario, the coordinate system used by a robot is not
invariant during the execution of the algorithm2. Thus, in
our definition, the view of a robot must be independent of
the coordinate system used by the robot. In the following,
we shall denote by mult(r) the multiplicity of the location
occupied by r.

Property 3.2. Given a configuration γ that does not con-
tain any robots at the center c of SEC, we observe the fol-
lowing properties:
(1) Robots that are collocated have identical views
(2) If V(ri) = V(rj) then mult(ri) = mult(rj).
(3) There exists an integer q ≥ 1 such that (i) for any robot
r, there are exactly q · l robots that have the same view as
robot r, where l = mult(r), (ii) q is the size of any maximal
subset R of robots that have identical views but are located
at mutually distinct locations, and (iii) if q ≥ 3 then the
q robots r1, r2, . . . , rq ∈ R occupy the vertices of a regular
convex polygon of q sides whose center is c 3.

Based on our definition of views of robots, we define the
symmetricity of a configuration γ. (See Figure 1 for an il-
lustration.)

Definition 3.3. The symmetricity, ρ(γ) of a configura-
tion γ consisting of k robots, is the largest integer q such
that for each robot r, the number of robots having the same
view as r (including itself) is a multiple of q; i.e. ρ(γ) =
max{q : ∀ri ∈ γ, q divides |{rj ∈ γ : V(rj) = V(ri)}|}
2i.e. each time a robot wakes up and execute the LOOK
operation, it may use a different coordinate system than the
one in previous steps of the same robot.
3In the special case of q = 2, the robots r1, r2 occupy the
endpoints of the diameter of a circle centered at c

Property 3.3. For any configuration γ where robots oc-
cupy w > 1 locations, ρ(γ) divides w.

Lemma 3.1. If the current configuration γ has symmetric-
ity q = ρ(γ) then, for any algorithm, there exists an execu-
tion where all subsequent configurations γ ′ satisfy ρ(γ′) =
l · q , l ≥ 1.

Proof. Any deterministic algorithm must specify the ac-
tions of a robot based on its current view. Thus, two robots
having the same view would take the same action (if they
are activated simultanoeusly). For the sake of argument, we
assume an adversary that decides which robots are activated
at each step. Whenever a robot r is activated, the adversary
also activates all other robots that have the same view as
r. The new location computed by each such robot r′ with
respect to its coordinate system Zr′ , would be the same as
location computed by robot r with respect to its coordinate
system Zr. In other words, any two robots having identical
views would continue to have identical views after moving to
the new location. In this case, the symmetricity of the new
configuration must be a multiple of the previous one.

3.2 Robots starting from Distinct Locations
Property 3.1 restricts the size of patterns in any formable

series of patterns. To form repetitively any series S of pat-
terns, all the patterns in S should be of the same size. Thus,
we consider only patterns of size k, where k is the number of
robots. Each robot starts from a distinct location and dur-
ing the pattern formation, no two robots should occupt the
same location (i.e. we can not allow points of multiplicity).
Due to Property 3.1 and Lemma 3.1, we know the following
impossibility result:

Lemma 3.2. A cyclic series of distinct patterns 〈P1, P2,
. . . Pm〉∞, is formable only if size(Pi) = size(Pj) and ρ(Pi) =
ρ(Pj), ∀ i, j ∈ {1, 2, . . . m}.

We now show that pattern series of the above type can
indeed be formed, provided that the initial configuration is
not more symmetric than the patterns. We first define some
special types of configurations that can be easily identified
by the robots.

Definition 3.4. (BCC): A configuration is called a bi-
circular configuration (BCC) if the locations of the robots sat-
isfy the following condition. There is one unique location
called the pivot location, such that the smallest enclosing
circle (SEC) containing all the robots has a diameter more
than thrice the diameter of the SEC containing all robots
except those at the pivot. Further the two circles intersect
at exactly one point (the point directly opposite the pivot)
which is called the base-point (BP). The former circle is
called the primary enclosure (or, SEC1) while the latter is
called the secondary enclosure (or, SEC2). The point on the
secondary enclosure directly opposite the base-point is called
the frontier-point (FP).

The ratio of the diameter of the primary enclosure over the
diameter of the secondary enclosure is called the stretch of
the bi-circular configuration. (See Figure 2.)

Definition 3.5. A configuration γ containing k robots is
called q-symmetric-circular configuration or, SCC[q], 1 < q <
k, if the following three conditions hold:
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(a) (c)(b)

Figure 1: A configuration C with (a) symmetricity one, where robots at distinct locations have distinct views;
(b) symmetricity one where only one robot has unique view; (c) symmetricity ρ(C) = 4.

(1) The smallest circle enclosing all robots (called SEC1)
has exactly q points on its circumference that are occupied
by robots.
(2) All the other robots (except those on the SEC1) lie on
or in the interior of a smaller circle called SEC2 that is
concentric to SEC1 such that D(SEC1) ≥ (5+sin−1(π/q))∗
D(SEC2).
(3) There are no robots in the center of SEC1.

As before, the former circle (SEC1) is called the primary
enclosure while the latter (i.e. SEC2) is called the secondary
enclosure. The ratio of the diameter of the primary enclosure
over the diameter of the secondary enclosure is called the
stretch of the q-symmetric-circular configuration.

Lemma 3.3. Starting from any configuration γ with sym-
metricity ρ(γ) = q, 1 < q < k, and for any t ≥ (5 +
sin−1(π/q)) we can reach a configuration γ′ such that either
(i) γ′ is SCC[q′] having stretch t, where q′ > 1 is a factor of
q, or, (ii) γ′ is BCC having stretch t′ = (t + 1)/2.

Lemma 3.4. Starting from a configuration of type SCC[q],
q > 1, with k robots occupying distinct locations we can form
any pattern P such that the symmetricity ρ(P ) = q ·a, a ≥ 1
and size(P )= k.

Lemma 3.5. In any bi-circular configuration, the robots
can agree on a unique coordinate system.

Proof. In a bi-circular configuration, there is a unique
diameter of the primary enclosure (the diameter containing
the pivot). We can define the positive x-axis as the line con-
taining this diameter, in the direction from the base-point
to the pivot. Due to the agreement on left-right orientation,
we can now define the line perpendicular to the x-axis in
the left direction, to be the positive y-axis. Thus, the base-
point represents the origin and we have a unique coordinate
system, where the length of the diameter of the secondary
enclosure is taken as the unit distance.

Note that agreement on a coordinate system implies that
there exists a unique way of ordering robots. Thus, it is
easy to form any single pattern as long as the BCC config-
uration is maintained. We now describe the algorithm for
forming a cyclic series of distinct patterns 〈P1, P2, ...Pm〉∞,
starting from a configuration γ, such that ∀i, size(Pi) = k,
and ρ(Pi) = q = ρ(γ). (We only need to consider the case
q < k, since for q = k there is a single possible pattern:

the regular k-gon and the robots already form that.) Let
F be a function that maps each pattern Pi to a real num-
ber ti = F (Pi). To signal the formation of pattern Pi, we
use either the configuration SCC[x] with stretch ti, where
x is any factor of q or, the configuration BCC with stretch
t′i = (ti + 1)/2. Due to Lemma 3.3 it is possible to form
one of these configurations starting from arbitrary configu-
rations of symmetricity q. By computing the stretch of the
configuration, the robot can identify which pattern is being
formed. During the formation of the pattern Pi, at each
intermediate configuration each robot can uniquely identify
the pattern. Once the pattern has been formed the resulting
configuration has symmetricity q. It is thus again possible
to form the configuration SCC[x] or BCC having the appropri-
ate stretch for the next pattern Pi+1 in the sequence. Using
this technique, the robots can move from one pattern to the
next, without requiring any memory of the past.

From Lemma 3.2 and from the algorithm described above,
we obtain the following characterization.

Theorem 3.1. With k anonymous robots starting from
distinct locations in an arbitrary configuration γ, we can
form a cyclic series of distinct patterns 〈P1, P2, ...Pm〉∞,
each of size k, if and only if ρ(Pi) = ρ(Pj) = ρ(γ) ·a, a ≥ 1,
∀i, j ∈ {1, 2, . . . m}.

3.3 Special Case: Agreement on Directions
In this section, we assume that, besides agreeing on a

common clock-wise direction, the robots also agree on the
directions of a fixed coordinate system. This allows us to
break the symmetry between the robots. Notice that as long
as the robots occupy distinct locations, there exist a total
order on the robots. However whenever two robots gather
at the same point, we lose the order relationship between
these two robots. For robots with this additional capability,
we have the following results.

Lemma 3.6. With k anonymous robots having common
sense of direction, any single pattern P of size n ≤ k points
can be formed, if the robots start from distinct locations.

Proof. As mentioned before, there is a total order on
the k robots, say r1, r2, . . . , rk based on their locations (e.g.
ordered left to right and then bottom to top). Suppose the
points p1, p2, . . . pn ∈ P are also ordered similarly. Thus,
the location of r1 and r2 can be matched to points p1 and
p2 and all other other robots r3 to rk simply move to the
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(a) (b)

BP FP Pivot

Figure 2: (a) An arbitrary configuration of robots and the smallest enclosing circle. (b) A bi-circular config-
uration.

points p3 to pn, in this order (i.e. robots rn+1 to rn all
move to the same location pn). During these movements,
the ordering of the robots is preserved, thus every robot can
unambiguously determine the location where it should move
to form the pattern P .

In case all robots do not start from distinct locations, it
is easy to see that any pattern P of size n is formable when-
ever at least n out of the k robots are initially in mutually
distinct locations. We now show which series of patterns are
formable starting from any arbitrary configuration.

Theorem 3.2. With k anonymous robots having a com-
mon sense of direction and occupying w distinct locations,
we can form any cyclic series of distinct patterns 〈P1, P2,
. . . Pm 〉∞, if and only if size(Pi) = size(Pi+1) ≤ w, for all
i, 1 ≤ i < m.

Proof. The “only if” part follows from Property 3.1. We
only need to show how to form the given series. Let r1,r2,. . . ,
rw be the order among robots based on their locations. Note
that robots located at the same place share the same iden-
tity. We use the technique of fixed ratios, where robots
r1,r2, and rw form a specific ratio to signal the formation
of a pattern Pi. We employ a function F that associates
each pattern Pi to some real number F (Pi) > 1 and to form
the pattern Pi we maintain a configuration where the ra-
tio of distances d(r1, rl)/d(r1, r2) = F (Pi) (rl denotes the
last robot). Note that such a configuration, called config-
uration FormRatio(F (Pi)), can be formed in one step, by
movement of one or more robots from the location L(rw) to
the new location satisfying the ratio constraint. Each robot
can determine which pattern is being formed by comput-
ing this ratio. Once the configuration FormRatio(F (Pi)) is
formed the pattern Pi can be formed easily using the same
techniques as in the proof above.

4. VISIBLY DISTINCT ROBOTS
When there is no agreement on directions, the symmetry

among the robots can be broken by the use of distinct labels.

In this section, we assume that each robot ri has a unique
identity IDi and any other robot can read this identity even
from a distance. Without loss of generality, we can assume
that IDi = i (i.e. the i-th robot is numbered i). In this
case, the view of each robot is unique as it contains infor-
mation about both the identities and locations of the other
robots. Thus, there can be no symmetric configurations. In
this case, we can allow the robots to form points of multi-
plicity, since the robots can be separated later, if required
(i.e. Property 3.1 does not hold anymore).

As we showed in section 3.3, having an order on the robots
allows us to form any pattern of size n ≤ k. However, for
labelled robots, the order is preserved even if the robots are
not in distinct location.

Lemma 4.1. With k robots having visibly distinct identi-
ties, any single pattern P of size n ≤ k points can be formed.

Proof. This is achieved by Algorithm 1. The case for
P = POINT is trivial; all robots except r1 simply move to the
location of r1. Let us consider patterns where size(P ) > 1.
If robots r1 and r2 are at the same location, then r2 will be
the first robot to move. Once these two robots are in distinct
locations, they remain there until the end of the algorithm.
Taking L(r1) as point p1 ∈ P and L(r2) as point p2 ∈ P , the
locations corresponding to all the other points in the pattern
can be uniquely determined with respect to these two fixed
points. Whenever the robot ri, i > 2 becomes active, it can
determine the correct location, corresponding to the point
pi (or pn if i > n) and move there. Thus, after every robot
has executed at least one computation cycle, the pattern P
would be formed.

We now consider the series of patterns that may be formed
by visibly distinct robots. For forming any interesting series
of patterns there must be at least three robots. For only one
robot, no non-trivial series are possible. For k = 2 robots, it
is easy to form the only possible series 〈POINT, TWO-POINTS
〉∞, by movement of a single robot (say r2). We show below
that with k ≥ 3 robots, we can form any series of distinct
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Algorithm 1: Form-Pattern

/* Algorithm for single pattern P */
INPUT: P =(p1, p2, . . . , pn) , ID = i
begin

if P = POINT and i > 1 then
Move to the location of robot r1

else

if i = 2 and r1 is colocated with r2 then
Move to a location distinct from robot r1 ;

if i > 2 and r1 is not colocated with r2 then

i ← Min(i,size(P ));
Consider the coordinate system Z such that,
LZ(r1) = p1 and LZ(r2) = p2;
Move to the location corresponding to pi ∈ P ;

patterns S = 〈P1, P2, . . . , Pm〉, with the only restriction that
each pattern Pi has at most k points. Let us first consider
a series of patterns not containing POINT.

As before we use a function F to associate each pattern Pi

to a real number ti = F (Pi), ti ∈ (1,∞). When forming the
pattern Pi, the last robot rk moves to a location between
the first two robots r1 and r2 such that the ratio of dis-
tances d(r1, r2)/d(r1, rk) is exactly equal to ti. Any robot
can compute this ratio by looking at the current configu-
ration of robots and thus, it can determine which pattern
Pj in the series is being formed. The ordered set of robots
r3 to rk can be assigned to points in the pattern Pj . The
robots r1, r2, and rk remain stationary until each of the
other robots has moved into the correct position, and then
robot rk moves to complete the pattern. Notice that robots
r1 and r2 do not need to move as the system transforms
from one pattern to the next. This algorithm works for any
finite series of patterns not containing the POINT pattern.
In order to include POINT in the series of patterns formed,
we need to make some modifications to our scheme. No-
tice that the penultimate configuration just before forming
POINT must necessarily have all robots except one at the
same location. The same holds for the configuration imme-
diately after forming POINT . In these two situations, we
can not use the ratio of distances to signal the formation
of a pattern. So, we use the following convention. When
forming the POINT pattern, the robot rk is the last robot to
join and when breaking away from the POINT pattern, robot
r2 is the first robot to move. We define the following special
configurations:
(i) PrePoint : Robots r1 to rk−1 in the same location and rk

in a different location.
(ii) PostPoint : All robots except r2 in the same location and
robot r2 in a different location.
(iii) TwoPoints: Robots r2 to rk in the same location and
r1 in a different location.
(iv) FormRatio(t): This is the set of configurations where
robots r1, r2, rk lie on distinct locations on the same line
such that the ratio of distances d(r1, r2)/d(r1, rk) = t. (The
other robots may be located anywhere.)

The algorithm for forming a given series S∞ = 〈 P1, P2,
. . . Pm 〉∞ is called Form-Series: it is sketched below and
reported in Algoritm 2. The algorithm recognizes the above
configurations as special configurations. In particular, the
PrePoint configuration is recognized as the configuration
immediately before forming POINT. In this case, the al-
gorithm proceeds to form POINT. Similarly, the algorithm

recognizes the special configuration PostPoint as the config-
uration immediately after POINT formation. In this case, the
algorithm proceeds to form the next pattern P(i mod m)+1

if Pi = POINT ∈ S. On the other hand, if POINT does
not belong to the series S then the algorithm proceeds to
form the first pattern P1 in S. Notice that the configu-
rations PrePoint, PostPoint and TwoPoints are analogous;
however only the configuration TwoPoints is considered to
correspond to the pattern TWO-POINTS. Whenever the cur-
rent configuration corresponds to some pattern Pi ∈ S, the
algorithm proceeds to form the next pattern P(i mod m)+1

by first forming a configuration of type FormRatio(t) where
t = F (P(i mod m)+1).

Algorithm 2: FormSeries

/* Algorithm for forming a series S∞ with visibly distinct
robots */
INPUT: S = 〈P1, P2, . . . , Pm〉, ID = i
begin

case ID = 2
if all robots except rk are colocated then

Do nothing;
else if r1 is colocated with r2 then

Move to a location distinct from robot r1 ;
else if all robots except r2 and rk are colocated
then

if ∃Pj ∈ S : Pj = POINT and d(r1, r2)/d(r1 , rk)
equals F (Pj) then

Move to the location of robot r1;

case 2 < ID < k
if r1, r2 and rk are at distinct locations then

t ← d(r1, r2)/d(r1 , rk) ;
if ∃j ∈ [1,m] : F (Pj) = t then

Execute Form-Pattern (Pj , ID) ;

case ID = k
if all robots except rk are colocated then

Move to the same location as the other robots;
else if all robots except r2 are colocated then

if ∃j ∈ {1, 2, . . . ,m} : Pj = POINT then
Move to a location such that the ratio
d(r1, r2)/d(r1, rk) = F(P(j mod m)+1);

else
Move to a location such that
d(r1, r2)/d(r1, rk) = F (P1);

else if r1 is not colocated with r2 then

t ← d(r1, r2)/d(r1 , rk) ;
if ∃j ∈ {1, 2, . . . , m} : F (Pj) = t then

if all other robots are in correct location to
form pattern Pj then

Move to the appropriate location to form
Pj

else if Current configuration corresponds to
pattern Pj ∈ S then

Move to a location such that
d(r1, r2)/d(r1, rk) = F (P(j mod m)+1);

else

// Start to form pattern P1

Move to a location such that
d(r1, r2)/d(r1, rk) = F (P1);

Lemma 4.2. Given a finite series of distinct patterns S =
〈P1, P2, . . . , Pm〉 Algorithm Form-Series forms S∞ if size(Pi)
= ni ≤ k, for all i = 1, 2, . . . , m.
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Proof. During the algorithm, the robot system trans-
forms through a series of configurations γ0, γ1, . . . , where
for all i > 1, either γi corresponds to some pattern Pi ∈
S

⋃
{POINT} or γi is one of the following configurations: Pre-

Point, PostPoint, TwoPoints, or any configuration of the
type FormRatio(t) for t = F (Pi), 1 ≤ i ≤ m. If the ini-
tial configuration is none of those described above, then the
system reaches such a configuration in just one or two steps
with a single movement of robot r2 or rk or both (one af-
ter the other). If all robots are collocated, r2 moves away
to form configuration PostPoint. If r1 and r2 are initially
collocated, then r2 first moves out and followed by robot rk

to form configuration FormRatio(F (P1)). Otherwise r1 and
r2 are initially seperated and in this case only rk needs to
move to form FormRatio(F (P1)).

We now need to show that from a configuration γi that
is one of the types discussed above, the algorithm eventu-
ally forms the complete series of patterns. It is easy to see
that if γi is of type FormRatio(F (Pj)), 1 ≤ j ≤ m, then
the algorithm forms the pattern Pj . On the other hand
if γi corresponds to some pattern Pj in S, Pj 6= POINT

then γi+1 is a configuration of type FormRatio(t) where
t = F (P(j mod m)+1) which implies that eventually pattern
P(j mod m)+1 will be formed. This implies that the algo-
rithm forms the complete series in this case. Note that if γi

is TwoPoints, it is considered to correspond to the pattern
TWO-POINTS and the thus the above argument holds in that
case too. This leaves us with only the special cases when
γi is either PrePoint, PostPoint or corresponds to POINT .
If γi is PrePoint then γi+1 would correspond to POINT and
γi+2 would be PostPoint. This further implies that γi+3

would be the configuration FormRatio(t) where t = F (Pj)
if Pj−1 = POINT and t = 1 otherwise. This combined with
the previous argument implies that the algorithm forms the
series S even in these special cases.

Theorem 4.1. With k ≥ 1 robots having distinct visible
identities, we can form any finite series of distinct patterns
〈P1, P2, . . . , Pm〉 if and only if for all i, 1 ≤ i ≤ m, size(Pi)
= ni ≤ k.

5. DISTINCT ROBOTS WITH INVISIBLE
IDENTITIES

In this section, we consider a model that is between the
two extremes considered before. We assume that the robots
are ordered with labels 1, 2, 3, . . . , k and each robot ri knows
its own label i, but it can not visibly identify the label of
other robots. In this case, the information contained in the
views of the robots is similar to anonymous case. Thus,
two robots may have identical views (in particular, robots
at the same location have identical views). However since
the robots have distinct identities they can execute different
algorithms depending on their labels.

When there are only two robots, this scenario is equivalent
to the previous one when the robots had visible identities
and thus, the same results follow for that particular case.
However, for k ≥ 3, we have slightly different results.

5.1 Exactly Three Robots (k = 3)
Let γ be any configuration consisting of three robots r1,

r2, r3. Then either L(γ) is a triangle or it is isomorphic to
POINT or TWO-POINTS. There are three types of configura-
tions where the robots occupy exactly two distinct locations

(depending on which of the three robots is alone). In the fol-
lowing, we shall use the notation C(i, j; l), i, j, l ∈ {1, 2, 3} to
represent any configuration (of three robots) where robots ri

and rj are collocated, but the third robot rl is not collocated
with the others. If all three robots are at distinct locations
then such a configuration is called a triangular configuration.
We now show the following possibility result:

Lemma 5.1. With k = 3 robots, we can form a series S∞

where S has the following forms:
(i) S = 〈P1, P2, . . . , Pm, POINT, TWO-POINTS〉,
(ii) S = 〈P1, P2, . . . , Pm, TWO-POINTS, POINT〉, or
(iii) any subsequence of the above series,
such that size(Pi)= 3 for i = 1, 2, . . . , m and for any i 6= j,
Pi and Pj are non-isomorphic.

We briefly describe here how the above series are formed.
Let us consider the series of the first type. Note that each
pattern Pi consists of exactly three points and so the trans-
formation from Pi to Pi+1 is trivially achieved by the move-
ment of only one robot (say r3). Thus, there is no interme-
diate configuration during these transformations. To form
POINT from a triangular configuration (representing pattern
Pm), robots r2 and r3 (in this order) move to the location
of r1. Thus the intermediate configuration is C(1, 2; 3). To
form TWO-POINTS from POINT, robot r1 moves away from the
others. Thus, the configuration representing TWO-POINTS is
C(1; 2, 3) which can be distinguished from the previous in-
termediate configuration C(1, 2; 3), by the robot r3. To form
pattern P1 again, robot r3 now moves away from r2 to the
appropriate location.

The series of the second type can be formed in a sim-
ilar manner. In this case, we need to form POINT from
TWO-POINTS and this can be achieved by a single movement
of robot r1. During the whole series, there is only one in-
termediate configuration and this occurs when transform-
ing from POINT to P1. This intermediate configuration is
C(1, 3; 2) which can be distinguished from the TWO-POINTS

configuration C(1; 2, 3), by the robot r1. Thus, robot r1 can
unambiguously determine the next location that it has to
move to.

The fact that the three configurations of type C(i, j; l)
can not be distinguished by any single robot, implies the
following impossibility result:

Lemma 5.2. Given any non-trivial series 〈P1, P2, . . . , Pm〉,
where size(Pi)> 2 and any l, 1 ≤ l < m, three robots can
not form a series of the form

〈P1, P2, . . . , Pl, POINT, Pl+1, Pl+2, . . . , Pm, TWO-POINTS〉∞

Thus, we have a characterization of series that can be
formed with k = 3 robots having invisible identities. In
the following the notation S[0/1] denotes either zero or one
occurrence of the series S of patterns.

Theorem 5.1. With exactly k = 3 robots, we can form a
series S∞ iff S is a cyclic rotation of
〈P1, P2, . . . , Pm〉[0/1]〈POINT〉[0/1]〈TWO-POINTS〉[0/1] or,

〈P1, P2, . . . , Pm〉[0/1]〈TWO-POINTS〉[0/1]〈POINT〉[0/1]

where m ≥ 1, size(Pi)= 3 for i = 1, 2, . . . , m and for any
i 6= j, Pi and Pj are non-isomorphic.
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5.2 More than three Robots (k > 3)
We now consider the case when there are at least four

robots. In this case, the impossibility from Lemma 5.2 no
longer holds. As in previous sections, a system of more than
three robots may go through many intermediate configura-
tions during the transition from one pattern to the next. The
intermediate configurations must encode information about
the pattern to be formed. In the following, we use again
the BCC configuration, defined earlier, to signal the forma-
tion of specific patterns in a series. In this case we allow
points of multiplicity and we shall ensure that there is at
least one robot each at the pivot and at the base-point of
the bicircular configuration.

Lemma 5.3. From any arbitrary configuration γ with |L(γ)|
≥ 3 , we can form a bi-circular configuration of any given
stretch t > 3, by movement of a single robot. (This single
robot will place itself in a pivot position).

We now describe the technique for forming any given pat-
tern Pi starting from a bi-circular configuration of stretch
ti. (As mentioned before, the bi-circular configuration can
be formed by robot rk jumping to the pivot location). Once
the robots are in bi-circular configuration BCC(ti), robot r1

and robot rk−1 occupy the base-point and the frontier-point.
These three robots remain in their location while the other
robots move to the required positions for forming the pattern
P . We assign the robots to these positions in the following
manner. The points in the pattern P are mapped to loca-
tions in the bi-circular configuration such that the bounding
circle of pattern P coincides with the secondary enclosure of
the configuration and the base-point coincides with the lex-
icographically smallest point pi on the bounding circle of P ,
i.e., pi ∈ BC(P ) and pi ≤ pj , for any pj ∈ BC(P ). Notice
that this mapping is unique and every robot can obtain the
same set Γ(P ) of locations that correspond to points in the
pattern P . (Note that the coordinates of the points in Γ(P )
are assigned with respect to the fixed coordinate system de-
fined by the bicircular configuration.) The elements of Γ(P )
are sorted in such a way that the first point is the base-point
and all points which lie on the SEC2 precede those that are
located in the interior of SEC2. For 1 ≤ i ≤ n robot ri is
assigned the ith location in Γ(P ) and for n < j ≤ k robot
rj is assigned the n-th location in Γ(P ).

The algorithm that implements the above strategy is called
Form-Series-2 and is reported in Algorithm 3. During the
formation of a pattern Pi, the algorithm ensures that the
BCC configuration is maintained by keeping the robots r1,
rk−1 and rk stationary at the BP, FP and pivot positions.
When all other robots have moved to their assigned location,
robot rk−1 finally moves to its assigned location. If rk−1 is
assigned a location inside the SEC2, then all the points on
the bounding circle are already occupied by robots; So, the
SEC2 (and thus the BCC) is preserved after the move of rk−1.
Otherwise, if rk−1 is assigned another position on the SEC2,
then there must be already two other robots on the SEC2
(since k ≥ 4) and thus, the BCC is preserved after the move
of rk−1 (Any three points uniquely determine the only circle
passing through them). Thus, after the move of rk−1, the
BCC configuration of appropriate stretch is still maintained.
Hence robot rk can unambiguously move to the required
position to complete the pattern.

When the BCC configuration is initially formed, the robots
r1 and rk−1 may not be present at the base-point(BP) and

Algorithm 3: FormSeries2

/* Algorithm for forming a series S∞; Robots with invisible
identities */
INPUT: S = 〈P1, P2, . . . , Pm〉, ID = i
begin

/* Let Conf be the current configuration of
robots as viewed by ri. */

/* Let loc be the current location of the robot
ri. */

case i = 1 /* Algorithm for robot r1 */
if Conf is BCC(tj ) for some j ∈ [1,m] then

if loc 6= BP and FP is unoccupied then

Move to FP;
else if loc 6= BP and FP is occupied by at least
one other robot then

Move to BP;
else if loc = FP and k − 2 other robots are
occupying at least nj − 2 points of Pj then

MoveToPosition(Pj , k − 1);

else if all robots are collocated then /* i.e.
L(Conf) ' POINT */

Move to an unoccupied location;
else if all robots except one are at loc and POINT

/∈ S then /* maybe only rk is alone */
Move to an unoccupied location within current
SEC;

case ID = k − 1 /* Algorithm for robot rk−1 */
if Conf is BCC(tj ) for some j ∈ [1,m] then

if loc 6= FP and loc 6= BP then

Move to FP;
else if loc = BP and multiplicity(BP) > 1
then

Move to FP;
else if loc = FP and k − 2 other robots are
occupying at least nj − 2 points of Pj then

MoveToPosition(Pj , k − 1);

case ID = k /* Algorithm for robot rk */
if Conf is BCC(tj ) for some j ∈ [1,m] then

if all other robots are occupying at least nj − 1
points of Pj then

MoveToPosition(Pj , k);

else if all robots except one are at loc then

if Pj = POINT for some j ∈ [1,m] then
Move to pivot to form BCC (t(j mod m)+1);

else

Move to pivot to form BCC (t1);

else if all other robots are at the same location
l 6= loc and POINT ∈ S then

Move to the location occupied by all other
robots;

else if L(Conf) matches Pj for j ∈ [1,m], Pj 6=
POINT then

Move to pivot to form BCC (t(j mod m)+1);

else
Move to pivot to form BCC (t1);

otherwise /* Algorithm for all other robots, i.e.
1 < ID < k − 1 */

if Conf is BCC(tj ) for some j ∈ [1,m] and BP, FP
are occupied then

if at least i− 1 robots are occupying at least
min(i− 1, nj) points of Pj then

if loc 6= BP or multiplicity(BP)> 1 then

MoveToPosition(Pj , i);
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frontier-point(FP) respectively. In that case, these robots
move to these locations during the first step when they are
activated. Only after this the robots that were originally at
BP and FP are allowed to move to other locations. In case
r1 is at FP and rk−1 is at BP, then none of these robots can
move without breaking the BCC configuration. In this special
case, the robots r1 and rk−1 simply reverse their roles (i.e.
rk−1 remains stationary at BP until the pattern is formed,
while r1 moves from the FP only in the penultimate stage,
to go to the location assigned to rk−1).

For the above algorithm, the special configuration Pre-
Point is defined similarly as before, while the configuration
PostPoint is defined as the configuration where r1 is alone
and all other robots are together. The configuration Two-
Points that corresponds to TWO-POINTS is defined as the con-
figuration where r1 and rk are together and all other robots
are collocated at a separate location. Since k ≥ 4, these
three special configurations can be distinguished from each-
other by both robot r1 and robot rk.

Lemma 5.4. Algorithm Form-Series-2 executed by k ≥ 4
distinct robots forms the given series S = 〈P1, P2, . . . , Pm〉
of distinct patterns, if size(Pi)≤ k, for i = 1, 2, . . . , m.

Thus we can conclude:

Theorem 5.2. With k ≥ 4 robots having distinct invisible
identities, a series of distinct patterns 〈P1, P2, . . . , Pm〉 is
formable if and only if size(Pi)≤ k, 1 ≤ i ≤ m.
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[20] S. Souissi, X. Défago, and M. Yamashita. Using
eventually consistent compasses to gather memory-less
mobile robots with limited visibility. ACM
Transactions on Autonomous and Adaptive Systems,
4(1), 2009.

[21] K. Sugihara and I. Suzuki. Distributed algorithms for
formation of geometric patterns with many mobile
robots. Journal of Robotics Systems, 13:127–139, 1996.

[22] I. Suzuki and M. Yamashita. Distributed anonymous
mobile robots: Formation of geometric patterns.
SIAM J. on Computing, 28(4):1347–1363, 1999.

[23] M. Yamashita and I. Suzuki. Characterizing geometric
patterns formable by oblivious anonymous mobile
robots. Theoretical Computer Science, 411(26-28):2433
– 2453, 2010.

276


